Predictors of junior versus senior elite performance are opposite: A systematic review and meta-analysis of participation patterns – Supplementary information

Sports Medicine

Michael Barth^(a)*, Arne Güllich^(b), Brooke N. Macnamara^(c), David Z. Hambrick^(d)

^(a) Department of Business & Society
University of Applied Sciences Kufstein Tirol
Andreas Hofer-Straße 7
6330 Kufstein
Austria
ORCID ID <u>http://orcid.org/0000-0001-5333-3122</u>

* correspondence to Michael Barth: michael.barth@fh-kufstein.ac.at

^(b) Department of Sports Science
University of Technology Kaiserslautern
Erwin-Schrödinger-Straße 57
67663 Kaiserslautern
Germany

ORCID ID <u>http://orcid.org/0000-0001-6911-2236</u>

^(c) Department of Psychological Sciences Case Western Reserve University 11220 Bellflower Road Cleveland, OH, 44106 USA

ORCID ID https://orcid.org/0000-0003-1056-4996

^(d) Department of Psychology Michigan State University 316 Physics Road East Lansing, MI, 48825 USA

ORCID ID <u>https://orcid.org/0000-0002-5315-5597</u>

Tab. S1. Description and results of the primary studies.

Ref.	Study					Method definition	Method data	Method data	
N ^o Reference	N ^o	Age_Cat	Sex	Country	Sports ^(a)	performance	collection	analysis	Published
1 Baker et al., 2003a	1	Senior	mf	AUS	Game sports: BB, FH, NB	coach evaluation	interview	group comp	publ
2 Baker et al., 2003b	2	Senior	mf	AUS	Game sports: BB, FH, NB	coach evaluation	interview	group comp	publ
3 Baker et al., 2005_s1	3	Senior	m	CAN	Triathlon	competition level	interview	group comp	publ
3 Baker et al., 2005_s2	4	Senior	m	CAN	Triathlon	competition level	interview	group comp	publ
3 Baker et al., 2005_s3	5	Senior	m	CAN	Triathlon	competition level	interview	group comp	publ
4 Baker et al., 2006_s1	6	Senior	m	CAN	Triathlon	competition level	interview	group comp	publ
4 Baker et al., 2006_s2	7	Senior	m	CAN	Triathlon	competition level	interview	group comp	publ
4 Baker et al., 2006_s3	8	Senior	m	CAN	Triathlon	competition level	interview	group comp	publ
5 Baker et al., 2012_s1	9	Junior	m	GER	Handball	coach evaluation	interview	group comp	publ
5 Baker et al., 2012_s2	10	Junior	f	GER	Handball	coach evaluation	interview	group comp	publ
6 Barreiros et al., 2013	11	Senior	mf	POR	Multiple sports	competition level	interview	group comp	publ
7 Berry et al., 2008	12	Senior	m	AUS	AUS football	coach evaluation	interview	group comp	publ
8 Bjoerndal et al., 2016_s1	13	Junior	f	NOR	Handball	competition level	questionnaire	group comp	publ
8 Bjoerndal et al., 2016_s2	14	Junior	f	NOR	Handball	competition level	questionnaire	group comp	publ
8 Bjoerndal et al., 2016_s3	15	Junior	f	NOR	Handball	competition level	questionnaire	group comp	publ
9 Bruce et al., 2013	16	Senior	f	AUS	Netball	coach evaluation	questionnaire	group comp	publ
10 Casado et al., 2019_s1	17	Senior	m	ESP, KEN	Athletics (long distance)	competition level	questionnaire	group comp	publ
10 Casado et al., 2019_s2	18	Senior	m	ESP, KEN	Athletics (long distance)	competition level	questionnaire	group comp	publ
10 Casado et al., 2019_s3	19	Senior	m	ESP	Athletics (long distance)	competition level	questionnaire	group comp	publ
11 Cathey & French, 2014	20	Senior	m	USA	Baseball (pitchers)	competition level	interview	group comp	publ
12 Cathey, 2010	21	Senior	m	USA	Baseball (pitchers)	competition level	interview	group comp	unp
13 Coelho-e-Silva et al., 2012	22	Junior	m	POR	Roller hockey	coach evaluation	questionnaire	group comp	publ
14 Coutinho et al., 2014	23	Senior	mf	POR	Volleyball	competition level	questionnaire	group comp	publ
15 Coutinho et al., 2015_s1	24	Senior	m	POR	Volleyball	competition level	interview	group comp	publ
15 Coutinho et al., 2015_s2	25	Senior	f	POR	Volleyball	competition level	interview	group comp	publ
16 Coutinho et al., 2016_s1	26	Senior	m	POR	Volleyball	competition level	interview	group comp	publ
16 Coutinho et al., 2016_s2	27	Senior	f	POR	Volleyball	competition level	interview	group comp	publ
17 Da Matta, 2004	28	Senior	f	BRA	Volleyball	coach evaluation	interview	group comp	unp
18 Dehghansai et al., 2016	29	Junior	mf	CAN	Wheelchair basketball	competition level	questionnaire	group comp	unp
19 Drake & Breslin, 2017	30	Senior	f	IRE	Field hockey	coach evaluation	questionnaire	group comp	publ
20 Duffy et al., 2004_s1	31	Senior	m	GBR	Dart	competition level	interview	group comp	publ
20 Duffy et al., 2004_s2	32	Senior	f	GBR	Dart	competition level	interview	group comp	publ
21 Elferink-Gemser et al., 2004_s1	33	Junior	f	NED	Field hockey	coach evaluation	questionnaire	group comp	publ
21 Elferink-Gemser et al., 2004_s2	34	Junior	m	NED	Field hockey	coach evaluation	questionnaire	group comp	publ
22 Elferink-Gemser et al., 2006_s1	35	Junior	f	NED	Field hockey	coach evaluation	questionnaire	group comp	publ
22 Elferink-Gemser et al., 2006_s2	36	Junior	m	NED	Field hockey	coach evaluation	questionnaire	group comp	publ
23 Elferink-Gemser et al., 2011_s1	37	Junior	mf	NED	Field hockey	coach evaluation	questionnaire	group comp	publ
23 Elferink-Gemser et al., 2011_s2	38	Junior	mf	NED	Field hockey	coach evaluation	questionnaire	group comp	publ

Ref.	Study					Method definition	Method data	Method data	
N ^o Reference	N°	Age_Cat	Sex	Country	Sports ^(a)	performance	collection	analysis	Published
24 Erikstad et al., 2018	39	Junior	m	NOR	Soccer	coach evaluation	questionnaire	group comp	publ
25 Ford & Williams, 2012	40	Junior	m	GBR	Soccer	coach evaluation	questionnaire	group comp	publ
26 Ford et al., 2009_s1	41	Junior	m	GBR	Soccer	coach evaluation	questionnaire	group comp	publ
26 Ford et al., 2009_s2	42	Junior	m	GBR	Soccer	coach evaluation	questionnaire	group comp	publ
27 Ford et al., 2010	43	Junior	m	GBR	Cricket (batsmen)	lab testing	questionnaire	group comp	publ
28 Guimaraes et al., 2019	44	Junior	m	POR	Basketball	lab testing	n.a.	correl	publ
29 Güllich & Emrich, 2014_s1	45	Senior	mf	GER	Cgs sports	competition level	questionnaire	group comp	publ
29 Güllich & Emrich, 2014_s10	46	Junior	mf	GER	Other types sports	competition level	questionnaire	group comp	unp
29 Güllich & Emrich, 2014_s11	47	Junior	mf	GER	Cgs sports	competition level	questionnaire	group comp	unp
29 Güllich & Emrich, 2014_s12	48	Junior	mf	GER	Game sports	competition level	questionnaire	group comp	unp
29 Güllich & Emrich, 2014_s13	49	Junior	mf	GER	Combat sports	competition level	questionnaire	group comp	unp
29 Güllich & Emrich, 2014_s14	50	Junior	mf	GER	Art. comp. sports	competition level	questionnaire	group comp	unp
29 Güllich & Emrich, 2014_s15	51	Junior	mf	GER	Other types sports	competition level	questionnaire	group comp	unp
29 Güllich & Emrich, 2014_s2	52	Senior	mf	GER	Game sports	competition level	questionnaire	group comp	publ
29 Güllich & Emrich, 2014_s3	53	Senior	mf	GER	Combat sports	competition level	questionnaire	group comp	publ
29 Güllich & Emrich, 2014_s4	54	Senior	mf	GER	Art. comp. sports	competition level	questionnaire	group comp	publ
29 Güllich & Emrich, 2014_s6	55	Junior	mf	GER	Cgs sports	competition level	questionnaire	group comp	publ
29 Güllich & Emrich, 2014_s7	56	Junior	mf	GER	Game sports	competition level	questionnaire	group comp	publ
29 Güllich & Emrich, 2014_s8	57	Junior	mf	GER	Combat sports	competition level	questionnaire	group comp	publ
29 Güllich & Emrich, 2014_s9	58	Junior	mf	GER	Art. comp. sports	competition level	questionnaire	group comp	publ
30 Güllich et al., 2020	59	Junior	m	GER	Soccer	competition level	questionnaire	correl	unp
31 Güllich, 2014	60	Senior	m	GER	Field hockey	competition level	questionnaire	group comp	publ
32 Güllich, 2017_s1	61	Senior	mf	GER	Cgs sports	competition level	questionnaire	group comp	publ
32 Güllich, 2017_s2	62	Senior	mf	GER	Game sports	competition level	questionnaire	group comp	publ
32 Güllich, 2017_s3	63	Senior	mf	GER	Combat sports	competition level	questionnaire	group comp	publ
32 Güllich, 2017_s4	64	Senior	mf	GER	Art. comp. sports	competition level	questionnaire	group comp	publ
32 Güllich, 2017_s5	65	Senior	mf	GER	Other types sports	competition level	questionnaire	group comp	publ
33 Güllich, 2018a_s1	66	Senior	mf	GER	Athletics	competition level	questionnaire	group comp	publ
33 Güllich, 2018a_s2	67	Senior	mf	GER	Athletics	competition level	questionnaire	group comp	unp
33 Güllich, 2018a_s3	68	Junior	mf	GER	Athletics	competition level	questionnaire	group comp	publ
33 Güllich, 2018a_s4	69	Junior	mf	GER	Athletics	competition level	questionnaire	group comp	unp
34 Güllich, 2019	70	Senior	f	GER	Soccer	competition level	questionnaire	group comp	publ
35 Gunn et al., 2019	71	Senior	mf	USA	Swimming	competition level	questionnaire	correl	unp
36 Hardy et al., 2013	72	Senior	mf	GBR	Multiple sports	competition level	interview	group comp	unp
37 Harris, 2008	73	Senior	n.a.	USA	Bowling	competition level	questionnaire	group comp	unp
38 Haugaasen et al., 2014	74	Junior	m	NOR	Soccer	coach evaluation	questionnaire	group comp	publ
39 Helsen et al., 1998_s1	75	Senior	m	BEL	Soccer	competition level	questionnaire	group comp	publ
39 Helsen et al., 1998_s2	76	Senior	m	BEL	Soccer	competition level	questionnaire	group comp	publ

Ref.	Study					Method definition	Method data	Method data	
N ^o Reference	N ^o	Age_Cat	Sex	Country	Sports ^(a)	performance	collection	analysis	Published
39 Helsen et al., 1998_s3	77	Senior	m	BEL	Soccer	competition level	questionnaire	group comp	publ
39 Helsen et al., 1998_s4	78	Senior	m	BEL	Field hockey	coach evaluation	questionnaire	group comp	publ
39 Helsen et al., 1998_s5	79	Senior	m	BEL	Field hockey	competition level	questionnaire	group comp	publ
39 Helsen et al., 1998_s6	80	Senior	m	BEL	Field hockey	coach evaluation	questionnaire	group comp	publ
40 Hendry & Hodges, 2018_s1	81	Senior	m	GBR	Soccer	coach evaluation	questionnaire	group comp	publ
40 Hendry & Hodges, 2018_s2	82	Junior	m	GBR	Soccer	coach evaluation	questionnaire	group comp	publ
41 Hendry et al., 2018_s1	83	Senior	m	GBR	Soccer	coach evaluation	questionnaire	correl	publ
41 Hendry et al., 2018_s2	84	Junior	m	GBR	Soccer	coach evaluation	questionnaire	correl	publ
42 Hendry et al., 2019a	85	Junior	m	CAN, GBR	Soccer	coach evaluation	questionnaire	group comp	publ
43 Hendry et al., 2019b	86	Senior	f	CAN	Soccer	competition level	questionnaire	group comp	publ
44 Hendry, 2012_s1	87	Junior	m	GBR	Soccer	coach evaluation	questionnaire	correl	unp
44 Hendry, 2012_s2	88	Junior	m	GBR	Soccer	coach evaluation	questionnaire	correl	unp
44 Hendry, 2012_s3	89	Junior	m	GBR	Soccer	coach evaluation	questionnaire	correl	unp
45 Hodges et al., 2015	90	Senior	mf	CAN	Triathlon	competition level	questionnaire	correl	publ
46 Hopwood et al., 2015_s1	91	Senior	mf	AUS, CAN	Multiple sports	competition level	questionnaire	group comp	publ
46 Hopwood et al., 2015_s2	92	Senior	mf	AUS, CAN	Multiple sports	competition level	questionnaire	group comp	publ
46 Hopwood et al., 2015_s3	93	Senior	mf	AUS, CAN	Multiple sports	competition level	questionnaire	group comp	publ
47 Hornig et al., 2016_s1	94	Senior	m	GER	Soccer	competition level	questionnaire	group comp	publ
47 Hornig et al., 2016_s2	95	Senior	m	GER	Soccer	competition level	questionnaire	group comp	publ
47 Hornig et al., 2016_s3	96	Senior	m	GER	Soccer	competition level	questionnaire	group comp	publ
48 Huijgen et al., 2009	97	Senior	m	NED	Soccer	coach evaluation	n.a.	group comp	publ
49 Huijgen et al., 2013	98	Junior	m	NED	Soccer	coach evaluation	n.a.	group comp	publ
50 Hutchinson et al., 2013	99	Junior	mf	USA, RUS, MEX	Ballet	coach evaluation	questionnaire	correl	publ
51 Johnson et al., 2006	100	Senior	mf	USA	Swimming	competition level	interview	group comp	publ
52 Lemez et al., 2020	101	Senior	mf	CAN	Wheelchair basketball	competition level	questionnaire	group comp	publ
53 Low et al., 2017	102	Senior	m	MAL	Badminton	competition level	questionnaire	group comp	publ
54 Maynard et al., 2016	103	Senior	mf	USA	Bowling	competition level	interview	correl	unp
55 Memmert et al., 2010_s1	104	Senior	mf	GER	Game sports: BB, FH, SO	competition level	questionnaire	group comp	publ
55 Memmert et al., 2010_s2	105	Senior	mf	GER	Game sports: BB, FH, SO	competition level	questionnaire	group comp	publ
55 Memmert et al., 2010_s3	106	Senior	mf	GER	Game sports: BB, FH, SO	competition level	questionnaire	group comp	publ
56 Mendes et al., 2018	107	Junior	m	BRA	Volleyball	coach evaluation	questionnaire	group comp	publ
57 Moesch et al., 2011	108	Senior	mf	DEN	Cgs sports	competition level	questionnaire	group comp	publ
58 Moseid et al.,2019	109	Junior	mf	NOR	Multiple sports	coach evaluation	questionnaire	group comp	publ
59 Noon et al., 2019	110	Junior	m	GBR	Soccer	coach evaluation	docu-analysis	group comp	publ
60 O'Connor et al., 2016	111	Junior	m	AUS	Soccer	coach evaluation	questionnaire	group comp	publ
61 Roca et al., 2012_s1	112	Senior	m	GBR	Soccer	lab testing	questionnaire	group comp	publ
61 Roca et al., 2012_s2	113	Senior	m	GBR	Soccer	lab testing	questionnaire	group comp	publ
61 Roca et al., 2012_s3	114	Senior	m	GBR	Soccer	lab testing	questionnaire	group comp	publ

Ref. N° Reference	Study N ^o	Age_Cat	Sov	Country	Sports ^(a)	Method definition performance	Method data collection	Method data analysis	Published
62 San & Lee, 2014	115	Junior		MAL	Swimming	competition level	questionnaire	group comp	publ
63 Sawai et al., 2018	116	Senior	f	JAP	Multiple sports	competition level	questionnaire	group comp	publ
64 Sigmund & Güllich, 2020_s1	117	Senior	mf	GER	Athletics, volleyball	competition level	questionnaire	group comp	unp
64 Sigmund & Güllich, 2020_s2	118	Junior	mf	GER	Athletics, volleyball	competition level	questionnaire	group comp	unp
65 Smith, 2012	119	Senior	f	USA	Basketball	competition level	questionnaire	group comp	unp
66 Toering et al., 2009	120	Junior	m	NED	Soccer	competition level	questionnaire	group comp	publ
67 Urena, 2004	121	Junior	f	USA, MEX, RUS	Ballet	coach evaluation	questionnaire	correl	unp
68 Ward et al., 2007	122	Junior	m	GBR	Soccer	competition level	questionnaire	group comp	publ
69 Weissensteiner et al., 2008_s1	123	Senior	m	AUS	Cricket (batsmen)	coach evaluation	interview	group comp	publ
69 Weissensteiner et al., 2008_s2	124	Junior	m	AUS	Cricket (batsmen)	coach evaluation	interview	group comp	publ
69 Weissensteiner et al., 2008_s3	125	Junior	m	AUS	Cricket (batsmen)	coach evaluation	interview	group comp	publ
70 Williams et al., 2012_s1	126	Junior	m	GBR	Soccer	competition level	questionnaire	correl	publ
70 Williams et al., 2012_s2	127	Junior	m	GBR	Soccer	competition level	questionnaire	group comp	publ
70 Williams et al., 2012_s3	128	Junior	m	GBR	Soccer	competition level	questionnaire	group comp	publ
71 Young & Salmela, 2010_s1	129	Junior	m	CAN	Athletics (middle distance)	competition level	questionnaire	group comp	publ
71 Young & Salmela, 2010_s2	130	Junior	m	CAN	Athletics (middle distance)	competition level	questionnaire	group comp	publ
71 Young & Salmela, 2010_s3	131	Junior	m	CAN	Athletics (middle distance)	competition level	questionnaire	group comp	publ

^(a) BB = basketball, FH = field hockey,

NB = netball, SO = soccer

Ref.	Study	Performance		Performance				d perf	d MSPr					
N ^o Reference	N ^o	level high ^(b)	HP n	level low ^(b)	LP n	N	Bandwidth	milestones ^(c)	start	d MSPr	d MSPI	d OSPrPl	d OSPr	d OSPI
1 Baker et al., 2003a		WCI	15	RCI_bRCI	13	28	extreme			1.079				
2 Baker et al., 2003b	2	WCI	15	RCI_bRCI	13	28	extreme			1.140	-0.540			
3 Baker et al., 2005_s1	3	bRCl_high	9	bRCl_low	9	18	narrow			0.755		0.321		
3 Baker et al., 2005_s2	4	NCI	9	bRCl_high	9	18	medium			1.926		0.913		
3 Baker et al., 2005_s3	5	NCI	9	bRCl_low	9	18	extreme			2.977		1.236		
4 Baker et al., 2006_s1	6	bRCl_high	6	bRCl_low	6	12	narrow			0.236		0.312		
4 Baker et al., 2006_s2	7	NCI	6	bRCl_high	6	12	medium			2.595		0.808		
4 Baker et al., 2006_s3	8	NCI	6	bRCl_low	6	12	extreme			2.260		1.044		
5 Baker et al., 2012_s1	9	NCl_high	19	NCI_low	24	43	narrow			0.187		0.322		
5 Baker et al., 2012_s2	10	NCl_high	46	NCI_low	40	86	narrow			-0.186		0.513		
6 Barreiros et al., 2013	11	NCl_high	21	NCI_low_RCI	21	42	medium	3.396	0.069	-0.036	-0.017	0.332	0.323	0.340
7 Berry et al., 2008	12	NCl_high	17	NCI_low	15	32	narrow	-0.412	-0.051	0.620	1.060	0.415	0.470	0.360
8 Bjoerndal et al., 2016_s1	13	NCI	21	RCl_high	6	27	narrow			0.634				
8 Bjoerndal et al., 2016_s2	14	NCI	21	RCI_low	6	27	medium			4.984				
8 Bjoerndal et al., 2016_s3	15	RCl_high	6	RCl_low	6	12	narrow			2.215				
9 Bruce et al., 2013	16	WCI	19	bRCl	18	37	extreme		1.082	1.429		-0.055	-0.145	0.036
10 Casado et al., 2019_s1	17	WCI	19	NCl_high	18	37	narrow		0.889					
10 Casado et al., 2019_s2	18	WCI	19	NCI_low	18	37	narrow		1.860					
10 Casado et al., 2019_s3	19	NCl_high	18	NCI_low	18	36	narrow		0.870					
11 Cathey & French, 2014	20	RCI	9	bRCl	9	18	narrow			0.889				
12 Cathey, 2010	21	RCI	11	bRCl	10	21	narrow		0.851	0.521				
13 Coelho-e-Silva et al., 2012	22	WCI	32	RCI	41	73	medium			0.682				
14 Coutinho et al., 2014	23	NCI	140	RCI	89	229	narrow		0.275	0.647		0.068		
15 Coutinho et al., 2015_s1	24	NCI	15	RCI	15	30	narrow		0.000	1.243		2.476	2.476	
15 Coutinho et al., 2015_s2	25	NCI	15	RCI	15	30	narrow		0.297	1.017		0.280	0.280	
16 Coutinho et al., 2016_s1	26	NCI	15	bRCl	15	30	extreme					0.445	0.734	0.155
16 Coutinho et al., 2016_s2	27	NCI	15	bRCl	15	30	extreme					-0.051	0.054	-0.156
17 Da Matta, 2004	28	WCI	10	bRCl	10	20	extreme		0.162	1.183				
18 Dehghansai et al., 2016	29	NCl_high	22	NCL_low	26	48	narrow			0.850				
19 Drake & Breslin, 2017	30	NCl_high	11	NCI_low	12	23	narrow	-1.160	-0.513	0.772	0.492	0.268		
20 Duffy et al., 2004_s1	31	WCI	12	bRCl	12	24	extreme			1.348	0.142			
20 Duffy et al., 2004_s2	32	WCI	6	bRCl	6	12	extreme			1.526	1.817			
21 Elferink-Gemser et al., 2004_s1	33	NCl_high	17	NCI_low	46	63	narrow			0.965				
21 Elferink-Gemser et al., 2004_s2	34	NCl_high	21	NCI_low	42	63	narrow			1.523				
22 Elferink-Gemser et al., 2006_s1	35	NCl_high	15	NCI_low	18	33	narrow			0.512				
22 Elferink-Gemser et al., 2006_s2	36	NCl_high	15	NCI_low	17	32	narrow			1.179				
23 Elferink-Gemser et al., 2011_s1	37	NCl_high	31	NCI_low	66	97	narrow			0.290				
23 Elferink-Gemser et al., 2011_s2	38	NCl_high	32	NCI_low	95	127	narrow			0.450				

Ref.	Study	Performance		Performance				d perf	d MSPr					
N ^o Reference	N°	level high ^(b)	HP n	level low ^(b)	LP n	Ν	Bandwidth	milestones ^(c)	start	d MSPr	d MSPI	d OSPrPl	d OSPr	d OSPI
24 Erikstad et al., 2018		NCI	105	RCI	410	515	narrow			0.088	-0.004			
25 Ford & Williams, 2012	40	NCI	16	RCI	16	32	narrow	-0.180	-0.615	0.455	0.645	0.063		
26 Ford et al., 2009_s1	41	NCl_high	11	NCI_low	11	22	narrow	0.300	-0.107	-0.400	0.800	-0.300		
26 Ford et al., 2009_s2	42	NCI	22	bRCI	11	33	extreme		0.000	1.500	0.400	-0.700		
27 Ford et al., 2010	43	NCl_high	15	NCI_low	15	30	narrow	0.210	-0.015	0.870	0.603	0.430		
28 Guimaraes et al., 2019	44	NCI	75	RCI	75	150	narrow			0.799				
29 Güllich & Emrich, 2014_s1	45	WCI	208	NCI	97	305	narrow	0.287	0.303	-0.011		0.193	0.319	0.067
29 Güllich & Emrich, 2014_s10	46	WCl_NCl_high	46	NCI_low	75	121	medium	-0.882	-0.823	0.712		-0.125	0.093	-0.343
29 Güllich & Emrich, 2014_s11	47	WCI	20	NCI	314	334	narrow	-0.603	-0.254	0.273		-0.089	-0.165	-0.012
29 Güllich & Emrich, 2014_s12	48	WCI	18	NCI	148	166	narrow	-0.899	-0.095	0.802		-0.199	-0.189	-0.210
29 Güllich & Emrich, 2014_s13	49	WCI	7	NCI	86	93	narrow	-0.320	0.516	-0.256		-0.037	-0.108	0.033
29 Güllich & Emrich, 2014_s14	50	WCI	16	NCI	75	91	narrow	-0.607	-0.348	-0.041		-0.351	-0.236	-0.466
29 Güllich & Emrich, 2014_s15	51	WCI	8	NCI	62	70	narrow	-0.441	-0.348	1.123		-0.304	-0.291	-0.318
29 Güllich & Emrich, 2014_s2	52	WCI	73	NCI	44	117	narrow	0.013	0.138	-0.350		0.340	0.380	0.299
29 Güllich & Emrich, 2014_s3	53	WCI	40	NCI	24	64	narrow	0.480	0.475	-0.088		0.344	0.362	0.326
29 Güllich & Emrich, 2014_s4	54	WCI	20	NCI	24	44	narrow	0.940	0.399	0.396		0.094	0.331	-0.143
29 Güllich & Emrich, 2014_s6	55	WCI_NCI_high	220	NCI_low	337	557	medium	-0.689	-0.933	1.116		-0.252	-0.309	-0.196
29 Güllich & Emrich, 2014_s7	56	WCl_NCl_high	91	NCI_low	139	230	medium	-0.698	-0.511	0.425		-0.180	-0.215	-0.144
29 Güllich & Emrich, 2014_s8	57	WCl_NCl_high	59	NCI_low	51	110	medium	-0.578	-0.516	0.443		-0.202	-0.217	-0.188
29 Güllich & Emrich, 2014_s9	58	WCl_NCl_high	77	NCI_low	20	97	medium	-0.254	-0.523	0.277		-0.233	-0.551	0.084
30 Güllich et al., 2020	59	RCl_high	50	RCI_low	50	100	narrow	-0.215	-0.318	0.916	0.161	-0.029	-0.140	0.082
31 Güllich, 2014	60	WCI	16	NCI	19	35	narrow	0.830	-0.365	-0.523	-0.099	0.613	0.755	0.470
32 Güllich, 2017_s1	61	WCI	44	NCI	44	88	narrow	0.286	0.542	-0.885		0.524	0.878	0.169
32 Güllich, 2017_s2	62	WCI	12	NCI	12	24	narrow	-0.095	0.232	-0.769		0.525	0.506	0.543
32 Güllich, 2017_s3	63	WCI	8	NCI	8	16	narrow	0.000	1.196	-1.614		0.675	1.619	-0.270
32 Güllich, 2017_s4	64	WCI	5	NCI	5	10	narrow	0.230	1.355	-0.845		0.149	0.740	-0.443
32 Güllich, 2017_s5	65	WCI	14	NCI	14	28	narrow	-0.060	0.120	-0.961		0.616	1.244	-0.012
33 Güllich, 2018a_s1	66	WCl_NCl_high	40	NCI_low	40	80	narrow	1.304	0.349	-0.209	-0.371	0.471	0.876	0.009
33 Güllich, 2018a_s2	67	WCI	17	NCI	17	34	narrow	1.493	0.440	-0.168	-0.671	0.445	1.154	-0.364
33 Güllich, 2018a_s3	68	WCl_NCl_high	69	NCI_low	69	138	narrow	-0.297	0.083	0.355	-0.023	0.072	0.090	0.051
33 Güllich, 2018a_s4	69	WCI	23	NCI	23	46	narrow	-0.707	0.084	0.415	0.028	0.005	-0.008	0.020
34 Güllich, 2019	70	WCI	14	NCI	15	29	narrow	0.884	0.708	-0.619	0.818	0.399	0.842	-0.017
35 Gunn et al., 2019	71	NCI	13	RCI	17	30	narrow			-0.654		0.407	0.407	
36 Hardy et al., 2013	72	WCI	16	NCI	16	32	narrow	0.852	0.510	0.323	0.033	0.341	0.282	0.400
37 Harris, 2008	73	RCI	16	bRCI	16	32	narrow		0.319	0.904	0.633			
38 Haugaasen et al., 2014	74	NCI	81	RCI	462	543	narrow		-0.060	0.240				
39 Helsen et al., 1998_s1	75	NCI	17	RCI_high	21	38	narrow			0.743				
39 Helsen et al., 1998_s2	76	RCl_high	21	RCI_low	35	56	narrow			1.059				

Ref.	Study	Performance		Performance				d perf	d MSPr					
N° Reference	N°	level high ^(b)	HP n	level low (b)	LP n	Ν	Bandwidth	milestones ^(c)	start	d MSPr	d MSPI	d OSPrPl	d OSPr	d OSPI
39 Helsen et al., 1998_s3	77	NCI	17	RCI_low	35	52	extreme			1.731				
39 Helsen et al., 1998_s4	78	NCl_high	16	NCI_low	18	34	narrow			-0.055				
39 Helsen et al., 1998_s5	79	NCI_low	18	RCI	17	35	narrow			0.792				
39 Helsen et al., 1998_s6	80	NCl_high	16	RCI	17	33	extreme			0.804				
40 Hendry & Hodges, 2018_s1	81	NCI	9	RCI	17	26	narrow	-0.070	-0.180	-0.124	2.020	0.047		
40 Hendry & Hodges, 2018_s2	82	NCI	26	RCI	76	102	narrow	-1.040	-0.230	0.600	0.190	-0.150		
41 Hendry et al., 2018_s1	83	NCI	9	RCI	17	26	narrow			0.673	0.282			
41 Hendry et al., 2018_s2	84	NCI	26	RCI	76	102	narrow			0.018	-0.133			
42 Hendry et al., 2019a	85	NCI	31	RCI	32	63	narrow		-0.337	1.205	1.730	-1.430		
43 Hendry et al., 2019b	86	WCI	21	RCI	24	45	medium	0.739	0.780	0.410	1.463	0.273		
44 Hendry, 2012_s1	87	NCl_h_to_NCl_low	48			48	narrow			0.814	-0.341			
44 Hendry, 2012_s2	88	NCl_h_to_NCl_low	50			50	narrow			0.385	0.064			
44 Hendry, 2012_s3	89	NCl_h_to_NCl_low	46			46	narrow			0.108	0.042			
45 Hodges et al., 2015	90	RCl_to_bRCl	90			90	narrow			0.539				
46 Hopwood et al., 2015_s1	91	NCl_high	122	NCI_low	32	154	narrow		-0.001					
46 Hopwood et al., 2015_s2	92	NCI_low	32	RCI_bRCI	55	87	medium		0.047					
46 Hopwood et al., 2015_s3	93	NCl_high	122	RCI_bRCI	55	177	extreme		0.047					
47 Hornig et al., 2016_s1	94	WCI	18	NCI	34	52	narrow	0.259	-0.524	-0.266	0.038	0.272	0.386	0.158
47 Hornig et al., 2016_s2	95	NCI	34	RCI	50	84	narrow	0.544	0.215	0.516	0.099	-0.048	-0.049	-0.046
47 Hornig et al., 2016_s3	96	WCI	18	RCI	50	68	extreme	0.937	-0.290	0.295	0.155	0.227	0.348	0.105
48 Huijgen et al., 2009	97	NCI	11	RCI	15	26	narrow			0.649				
49 Huijgen et al., 2013	98	NCI	76	RCI	37	113	narrow	-0.448	0.124	0.240				
50 Hutchinson et al., 2013	99	NCl_to_bRCl	47			47	extreme		-0.020	0.926				
51 Johnson et al., 2006	100	WCI	7	NCI	9	16	narrow	-0.424	0.434	-0.129		0.786	0.786	
52 Lemez et al., 2020	101	WCI	37	NCI	21	58	narrow					0.256	0.256	
53 Low et al., 2017	102	NCI	16	RCI	20	36	narrow	0.721	1.208	-0.700	-0.996			
54 Maynard et al., 2016	103	bRCl	92			92	medium			0.676	-0.499			
55 Memmert et al., 2010_s1	104	NCI	24	RCI_high	24	48	narrow		0.682	0.321	-0.636	0.089		
55 Memmert et al., 2010_s2	105	RCl_high	24	RCI_low	24	48	narrow		-0.168	-0.688	-0.468	-0.043		
55 Memmert et al., 2010_s3	106	NCI	24	RCI_low	24	48	medium		0.528	-0.281	-1.103	0.041		
56 Mendes et al., 2018	107	NCl_high	14	NCI_low	64	78	narrow		-0.519	-0.129		-0.401	-0.401	
57 Moesch et al., 2011	108	WCI	143	NCI	94	237	narrow	0.420	0.630	-0.230		0.060		
58 Moseid et al.,2019	109	NCl_high	96	NCI_low	114	210	narrow					-0.260	-0.260	
59 Noon et al., 2019	110	NCI	16	RCI	60	76	narrow	-0.504						
60 O'Connor et al., 2016	111	NCI	22	RCI	105	127	narrow			0.057	-0.259			
61 Roca et al., 2012_s1	112	RCl_high	16	RCI_low	16	32	narrow	0.362	-0.224	0.267	0.670	0.074		
61 Roca et al., 2012_s2	113	RCI_low	16	bRCI	16	32	narrow		-0.099	1.317	0.603	-0.071		
61 Roca et al., 2012_s3	114	RCl_high	16	bRCl	16	32	medium		-0.343	1.398	1.194	-0.002		

Ref.	Study	Performance		Performance				d perf	d MSPr					
N [°] Reference	N ^o	level high ^(b)	HP n	level low (b)	LP n	Ν	Bandwidth	milestones ^(c)	start	d MSPr	d MSPI	d OSPrPl	d OSPr	d OSPI
62 San & Lee, 2014	115	NCI	15	RCI	15	30	medium		-0.128	1.145	0.155	-2.327		
63 Sawai et al., 2018	116	NCI	258	RCI_bRCI	273	531	medium		-0.300	0.492				
64 Sigmund & Güllich, 2020_s1	117	WCI	72	NCI	116	188	narrow			-0.087	-0.093	0.292	0.526	0.057
64 Sigmund & Güllich, 2020_s2	118	WCI	67	NCI	172	239	narrow			0.447	-0.067	-0.045	-0.117	-0.018
65 Smith, 2012	119	RCl_high	36	RCI_low	36	72	narrow		0.506	-0.510	-0.321			
66 Toering et al., 2009	120	NCI	159	RCI_bRCI	285	444	medium			3.228		-0.460	-0.460	
67 Urena, 2004	121	NCl_to_bRCl	195			195	extreme			0.985				
68 Ward et al., 2007	122	NCI	102	bRCI	101	203	extreme		-0.623	4.782	-1.098	-1.190	-1.003	-1.376
69 Weissensteiner et al., 2008_s1	123	NCI	13	bRCI	10	23	extreme			1.482	-0.297	-0.024	-0.207	0.160
69 Weissensteiner et al., 2008_s2	124	NCI	18	bRCI	20	38	extreme			0.708	-0.322	0.063	0.186	-0.061
69 Weissensteiner et al., 2008_s3	125	NCI	21	bRCI	20	41	extreme			1.206	0.810	0.312	0.224	0.400
70 Williams et al., 2012_s1	126	NCI	12	RCI	12	24	medium				0.680			
70 Williams et al., 2012_s2	127	NCI	12	bRCI	12	24	extreme				1.634			
70 Williams et al., 2012_s3	128	RCI	12	bRCI	12	24	medium				1.029			
71 Young & Salmela, 2010_s1	129	NCI	10	RCI	24	34	narrow		0.667	0.394				
71 Young & Salmela, 2010_s2	130	RCI	24	bRCI	14	38	narrow		-0.378	0.680				
71 Young & Salmela, 2010_s3	131	NCI	10	bRCI	14	24	extreme		0.215	0.977				

^(b) WCl = world class, NCl = national class,

RCI = regional class, bRCI = below regional class

^(c) d = Cohen's *d* , MS = main sport, OS = other sports,

Pr = practice, Pl = play

Ref.	Study		
N ^o Reference	N ^o	Source of Cohen's d	Annotation
1 Baker et al., 2003a	1	converted from reported F	HP: coach evaluation, LP: competition level
2 Baker et al., 2003b	2	reported d	HP: coach evaluation, LP: competition level
3 Baker et al., 2005_s1	3	calculated from reported M ± SD	
3 Baker et al., 2005_s2	4	calculated from reported M ± SD	
3 Baker et al., 2005_s3	5	calculated from reported M ± SD	
4 Baker et al., 2006_s1	6	calculated from reported M ± SD	
4 Baker et al., 2006_s2	7	calculated from reported M ± SD	
4 Baker et al., 2006_s3	8	calculated from reported M ± SD	
5 Baker et al., 2012_s1	9	calculated from reported M \pm SD (partly from figure)	
5 Baker et al., 2012_s2	10	calculated from reported M \pm SD (partly from figure)	
6 Barreiros et al., 2013	11	calculated from reported M ± SD	sex controlled for
7 Berry et al., 2008	12	reported d or calculated from reported M ± SD	
8 Bjoerndal et al., 2016_s1	13	calculated from reported M ± SD	
8 Bjoerndal et al., 2016_s2	14	calculated from reported M ± SD	
8 Bjoerndal et al., 2016_s3	15	calculated from reported M ± SD	
9 Bruce et al., 2013	16	calculated from reported M ± SD	HP: coach evaluation, LP: competition level
10 Casado et al., 2019_s1	17	calculated from reported M ± SD	
10 Casado et al., 2019_s2	18	calculated from reported M ± SD	
10 Casado et al., 2019_s3	19	calculated from reported M ± SD	
11 Cathey & French, 2014	20	calculated from reported M ± SD	
12 Cathey, 2010	21	calculated from reported M ± SD	
13 Coelho-e-Silva et al., 2012	22	calculated from reported M ± SD	
14 Coutinho et al., 2014	23	converted from reported χ^2 (frequencies within categories) or F	sex controlled for
15 Coutinho et al., 2015_s1	24	calculated from reported M ± SD	(d)
15 Coutinho et al., 2015_s2	25	calculated from reported M ± SD	(d)
16 Coutinho et al., 2016_s1	26	calculated from reported M ± SD	
16 Coutinho et al., 2016_s2	27	calculated from reported M ± SD	
17 Da Matta, 2004	28	calculated from reported M ± SD or converted from reported F	HP: coach evaluation, LP: competition level
18 Dehghansai et al., 2016	29	reported d	
19 Drake & Breslin, 2017	30	reported d or calculated from reported M \pm SD (partly from figure)	(d)
20 Duffy et al., 2004_s1	31	calculated from reported M ± SD	
20 Duffy et al., 2004_s2	32	calculated from reported M ± SD	
21 Elferink-Gemser et al., 2004_s1	33	calculated from reported M ± SD	
21 Elferink-Gemser et al., 2004_s2	34	calculated from reported M ± SD	
22 Elferink-Gemser et al., 2006_s1	35	calculated from reported M ± SD	
22 Elferink-Gemser et al., 2006_s2	36	calculated from reported M ± SD	
23 Elferink-Gemser et al., 2011_s1	37	reported d	sex controlled for
23 Elferink-Gemser et al., 2011_s2	38	reported d	sex controlled for

Ref.	Study		
N ^o Reference		Source of Cohen's d	Annotation
24 Erikstad et al., 2018		converted from reported r.	
25 Ford & Williams, 2012	40	reported d	
26 Ford et al., 2009 s1	41	reported d or calculated from reported M ± SD	
26 Ford et al., 2009 s2		reported d or calculated from reported M ± SD	HP: coach evaluation, LP: competition level
27 Ford et al., 2010	43	reported d	
28 Guimaraes et al., 2019	44	converted from reported r	
29 Güllich & Emrich, 2014_s1	45	reported d and raw data	sex controlled for; OSPI unpublished ^(d)
29 Güllich & Emrich, 2014_s10	46	reported d and raw data	sex controlled for ^(d)
29 Güllich & Emrich, 2014_s11	47	reported d and raw data	sex controlled for ^(d)
29 Güllich & Emrich, 2014_s12	48	reported d and raw data	sex controlled for ^(d)
29 Güllich & Emrich, 2014_s13	49	reported d and raw data	sex controlled for ^(d)
29 Güllich & Emrich, 2014_s14	50	reported d and raw data	sex controlled for ^(d)
29 Güllich & Emrich, 2014_s15	51	reported d and raw data	sex controlled for ^(d)
29 Güllich & Emrich, 2014_s2	52	reported d and raw data	sex controlled for; OSPI unpublished ^(d)
29 Güllich & Emrich, 2014_s3	53	reported d and raw data	sex controlled for; OSPI unpublished ^(d)
29 Güllich & Emrich, 2014_s4	54	reported d and raw data	sex controlled for; OSPI unpublished ^(d)
29 Güllich & Emrich, 2014_s6	55	reported d and raw data	sex controlled for; OSPI unpublished ^(d)
29 Güllich & Emrich, 2014_s7	56	reported d and raw data	sex controlled for; OSPI unpublished ^(d)
29 Güllich & Emrich, 2014_s8	57	reported d and raw data	sex controlled for; OSPI unpublished ^(d)
29 Güllich & Emrich, 2014_s9	58	reported d and raw data	sex controlled for; OSPI unpublished ^(d)
30 Güllich et al., 2020	59	converted from raw data	(d)
31 Güllich, 2014	60	reported d and raw data	(d)
32 Güllich, 2017_s1	61	reported d and raw data	matched pairs; OSPI unpublished ^(d)
32 Güllich, 2017_s2	62	reported d and raw data	matched pairs; OSPI unpublished ^(d)
32 Güllich, 2017_s3	63	reported d and raw data	matched pairs; OSPI unpublished ^(d)
32 Güllich, 2017_s4	64	reported d and raw data	matched pairs; OSPI unpublished ^(d)
32 Güllich, 2017_s5	65	reported d and raw data	matched pairs; OSPI unpublished ^(d)
33 Güllich, 2018a_s1	66	reported d and raw data	matched pairs ^(d)
33 Güllich, 2018a_s2	67	reported d and raw data	matched pairs ^(d)
33 Güllich, 2018a_s3	68	reported d and raw data	matched pairs ^(d)
33 Güllich, 2018a_s4	69	reported d and raw data	matched pairs ^(d)
34 Güllich, 2019	70	reported d and raw data	(d)
35 Gunn et al., 2019	71	converted from reported r	
36 Hardy et al., 2013	72	caluclated from reported M \pm SD and raw data	matched pairs ^(d)
37 Harris, 2008	73	calculated from reported M ± SD	
38 Haugaasen et al., 2014	74	from reported ES, p	
39 Helsen et al., 1998_s1	75	calculated from reported M \pm SD (partly from figure)	
39 Helsen et al., 1998_s2	76	calculated from reported M \pm SD (partly from figure)	

Ref.	Study		
N ^o Reference	N°	Source of Cohen's d	Annotation
39 Helsen et al., 1998_s3	77	calculated from reported M ± SD (partly from figure)	
39 Helsen et al., 1998_s4	78	calculated from reported M ± SD (partly from figure)	HP: coach evaluation, LP: competition level
39 Helsen et al., 1998_s5	79	calculated from reported M ± SD (partly from figure)	
39 Helsen et al., 1998_s6	80	calculated from reported M ± SD (partly from figure)	HP: coach evaluation, LP: competition level
40 Hendry & Hodges, 2018_s1	81	reported d	
40 Hendry & Hodges, 2018_s2	82	reported d	
41 Hendry et al., 2018_s1	83	converted from reported r	
41 Hendry et al., 2018_s2	84	converted from reported r	
42 Hendry et al., 2019a	85	reported d	
43 Hendry et al., 2019b	86	calculated from reported M \pm SD (partly from figure)	
44 Hendry, 2012_s1	87	converted from reported r	
44 Hendry, 2012_s2	88	converted from reported r	
44 Hendry, 2012_s3	89	converted from reported r	
45 Hodges et al., 2015	90	converted from reported r	
46 Hopwood et al., 2015_s1	91	calculated from reported M \pm SD	
46 Hopwood et al., 2015_s2	92	calculated from reported M ± SD	
46 Hopwood et al., 2015_s3	93	calculated from reported M ± SD	
47 Hornig et al., 2016_s1	94	reported d and raw data	(d)
47 Hornig et al., 2016_s2	95	reported d and raw data	(d)
47 Hornig et al., 2016_s3	96	reported d and raw data	(d)
48 Huijgen et al., 2009	97	calculated from reported M ± SD	
49 Huijgen et al., 2013	98	calculated from reported M ± SD	
50 Hutchinson et al., 2013	99	converted from reported r	sex controlled for
51 Johnson et al., 2006	100	calculated from reported individual raw data (from figure)	sex controlled for ^(d)
52 Lemez et al., 2020	101	calculated from reported M ± SD	
53 Low et al., 2017	102	calculated from reported M ± SD	
54 Maynard et al., 2016	103	converted from reported r	(d)
55 Memmert et al., 2010_s1	104	calculated from reported M \pm SD and raw data	sex controlled for ^(d)
55 Memmert et al., 2010_s2	105	calculated from reported M \pm SD and raw data	sex controlled for ^(d)
55 Memmert et al., 2010_s3	106	calculated from reported M ± SD and raw data	sex controlled for ^(d)
56 Mendes et al., 2018	107	calculated from reported M ± SD	(d)
57 Moesch et al., 2011	108	reported d and raw data	sex controlled for ^(d)
58 Moseid et al.,2019	109	calculated from reported frequency distributions	
59 Noon et al., 2019	110	calculated from reported frequency distributions	
60 O'Connor et al., 2016	111	calculated from reported M ± SD	
61 Roca et al., 2012_s1	112	calculated from reported M ± SD	
61 Roca et al., 2012_s2	113	calculated from reported M ± SD	HP: lab testing, LP: competition level
61 Roca et al., 2012_s3	114	calculated from reported M ± SD	HP: lab testing, LP: competition level

Ref.	Study		
N ^o Reference	N°	Source of Cohen's d	Annotation
62 San & Lee, 2014	115	calculated from reported M ± SD	
63 Sawai et al., 2018	116	calculated from reported M ± SD	
64 Sigmund & Güllich, 2020_s1	117	calculated from raw data	sex controlled for ^(d)
64 Sigmund & Güllich, 2020_s2	118	calculated from raw data	sex controlled for ^(d)
65 Smith, 2012	119	converted from reported F or calculated from reported raw data	
66 Toering et al., 2009	120	calculated from reported M ± SD	
67 Urena, 2004	121	converted from reported r or F	
68 Ward et al., 2007	122	calculated from reported M \pm SD (partly from figure)	
69 Weissensteiner et al., 2008_s1	123	calculated from reported M \pm SD (partly from figure)	HP: coach evaluation, LP: competition level ^(d)
69 Weissensteiner et al., 2008_s2	124	calculated from reported M \pm SD (partly from figure)	HP: coach evaluation, LP: competition level ^(d)
69 Weissensteiner et al., 2008_s3	125	calculated from reported M \pm SD (partly from figure)	HP: coach evaluation, LP: competition level ^(d)
70 Williams et al., 2012_s1	126	calculated from reported M ± SD	
70 Williams et al., 2012_s2	127	calculated from reported M ± SD	
70 Williams et al., 2012_s3	128	calculated from reported M ± SD	
71 Young & Salmela, 2010_s1	129	calculated from reported M \pm SD (partly from figure)	
71 Young & Salmela, 2010_s2	130	calculated from reported M \pm SD (partly from figure)	
71 Young & Salmela, 2010_s3	131	calculated from reported M ± SD (partly from figure)	

^(d) Direct interaction with authors and/or original data were made available.

- Baker J, Cote J, Abernethy B. Sport-specific practice and the development of expert decision-making in team ball sports. Journal of Applied Sport Psychology. 2003;15:12–25. doi:10.1080/10413200305400.
- Baker J, Côté J, Abernethy B. Learning from the experts: practice activities of expert decision makers in sport. Res Q Exerc Sport. 2003;74:342–7. doi:10.1080/02701367.2003.10609101.
- Baker J, Côté J, Deakin J. Expertise in ultra-endurance triathletes early sport involvement, training structure, and the theory of deliberate practice. J Appl Sport Psychol. 2005;17:64– 78. doi:10.1080/10413200590907577.
- 4. Baker J, Côte J, Deakin J. Patterns of early involvement in expert and nonexpert masters triathletes. Res Q Exerc Sport. 2006;77:401–7. doi:10.1080/02701367.2006.10599375.
- Baker J, Bagats S, Büsch D, Strauss B, Schorer J. Training differences and selection in a talent identification system. Talent Development & Excellence. 2012;4:23–32.
- Barreiros A, Côté J, Fonseca AM. Training and psychosocial patterns during the early development of Portuguese national team athletes. High Ability Studies. 2013;24:49–61. doi:10.1080/13598139.2013.780965.
- Berry J, Abernethy B, Côté J. The contribution of structured activity and deliberate play to the development of expert perceptual and decision-making skill. J Sport Exerc Psychol. 2008;30:685–708. doi:10.1123/jsep.30.6.685.
- Bjørndal CT, Ronglan LT, Andersen SS. The diversity of developmental paths among youth athletes: a 3-year longitudinal study of Norwegian handball players. Journal of Talent Development and Excellence. 2016;8:20–32.
- Bruce L, Farrow D, Raynor A. Performance milestones in the development of expertise: are they critical? J Appl Sport Psychol. 2013;25:281–97. doi:10.1080/10413200.2012.725704.

- Casado A, Hanley B, Ruiz-Pérez LM. Deliberate practice in training differentiates the best Kenyan and Spanish long-distance runners. Eur J Sport Sci. 2019;online first. doi:10.1080/17461391.2019.1694077.
- 11. Cathey RM, French KE. Retrospective practice histories of expert and novice baseball pitchers. Res Q Exerc Sport. 2014;85:A108. doi:10.1080/02701367.2014.948745.
- 12. Cathey RM. Retrospective practice histories of expert and novice baseball pitchers [Doctoral Thesis]. Columbia: University of South Carolina; 2010.
- Coelho-E-Silva MJ, Vaz V, Simões F, Carvalho HM, Valente-Dos-Santos J, Figueiredo AJ, et al. Sport selection in under-17 male roller hockey. J Sports Sci. 2012;30:1793–802. doi:10.1080/02640414.2012.709262.
- Coutinho P, Mesquita I, Fonseca AM, Martin-Silva L de. Patterns of sport participation in Portuguese volleyball players according to expertise level and gender. Int J Sports Sci Coach. 2014;9:579–92. doi:10.1260/1747-9541.9.4.579.
- 15. Coutinho P, Mesquita I, Fonseca AM, Côte J. Expertise development in Volleyball: the role of early sport activities and players' age and height. Kinesiology. 2015;47:215–25.
- Coutinho P, Mesquita I, Davids K, Fonseca AM, Côté J. How structured and unstructured sport activities aid the development of expertise in volleyball players. Psychol Sport Exerc. 2016;25:51–9. doi:10.1016/j.psychsport.2016.04.004.
- Da Matta GB. The influence of deliberate practice and social support systems of the development of expert and intermediate women volleyball players in Brazil [Doctoral Thesis].
 Columbia: University of South Carolina; 2004.
- Dehghansai N, Srdjan Lemez, Wattie N, Baker J. Talent or physical precocity; Examination of junior, senior and precocious para-athletes' developmental trajectories and training histories; 2016.

- Drake D, Breslin G. Developmental activities and the acquisition of perceptual-cognitive expertise in international field hockey players. Int J Sports Sci Coach. 2019;online first. doi:10.1177/1747954117711093.
- Duffy LJ, Baluch B, Ericsson AK. Dart performance as a function of facets of practice amongst professional and amateur men ana women players. Int J Sport Psychol. 2004;3:232–45.
- Elferink-Gemser MT, Visscher C, Lemmink KAPM, Mulder TW. Relation between multidimensional performance characteristics and level of performance in talented youth field hockey players. J Sports Sci. 2004;22:1053–63. doi:10.1080/02640410410001729991.
- 22. Elferink-Gemser MT, Visscher C, Lemmink KAPM, Mulder T. Multidimensional performance characteristics and standard of performance in talented youth field hockey players: a longitudinal study. J Sports Sci. 2006;online first. doi:10.1080/02640410600719945.
- Elferink-Gemser MT, Starkes JL, Medic N, Lemmink KAPM, Visscher, C. What discriminates elite and sub-elite youth field hockey players. Annals of Research in Sport and Physical Activity. 2011:50–68. doi:10.14195/2182-7087_1_3.
- 24. Erikstad MK, Høigaard R, Johansen BT, Kandala N-B, Haugen T. Childhood football play and practice in relation to self-regulation and national team selection; a study of Norwegian elite youth players. J Sports Sci. 2018;36:2304–10. doi:10.1080/02640414.2018.1449563.
- 25. Ford PR, Williams AM. The developmental activities engaged in by elite youth soccer players who progressed to professional status compared to those who did not. Psychol Sport Exerc. 2012;13:349–52. doi:10.1016/j.psychsport.2011.09.004.
- 26. Ford PR, Ward P, Hodges NJ, Williams AM. The role of deliberate practice and play in career progression in sport: the early engagement hypothesis. High Ability Studies. 2009;20:65–75. doi:10.1080/13598130902860721.

- 27. Ford PR, Low J, McRobert AP, Williams AM. Developmental activities that contribute to high or low performance by elite cricket batters when recognizing type of delivery from bowlers' advanced postural cues. J Sport Exerc Psychol. 2010;32:638–54. doi:10.1123/jsep.32.5.638.
- 28. Guimarães E, Ramos A, Janeira MA, Baxter-Jones ADG, Maia J. How does biological maturation and training experience impact the physical and technical performance of 11-14-year-old male basketball players? Sports (Basel) 2019. doi:10.3390/sports7120243.
- Güllich A, Emrich E. Considering long-term sustainability in the development of world class success. Eur J Sport Sci. 2014;14 Suppl 1:S383-S397. doi:10.1080/17461391.2012.706320.
- Güllich A, Cronauer R, Diehl J, Gard L, Miller C. Coach-assessed skill learning progress of youth soccer players correlates with earlier childhood practice in other sports. Int J Sports Sci Coach. 2020;15:285–96. doi:10.1177/1747954120912351.
- Güllich A. Many roads lead to Rome—developmental paths to Olympic gold in men's field hockey. Eur J Sport Sci. 2014;14:763–71. doi:10.1080/17461391.2014.905983.
- 32. Güllich A. International medallists' and non-medallists' developmental sport activities a matched-pairs analysis. J Sports Sci. 2017;35:2281–8. doi:10.1080/02640414.2016.1265662.
- Güllich A. Sport-specific and non-specific practice of strong and weak responders in junior and senior elite athletics - a matched-pairs analysis. J Sports Sci. 2018;36:2256–64. doi:10.1080/02640414.2018.1449089.
- 34. Güllich A. "Macro-structure" of developmental participation histories and "micro-structure" of practice of German female world-class and national-class football players. J Sports Sci. 2019;37:1347–55. doi:10.1080/02640414.2018.1558744.

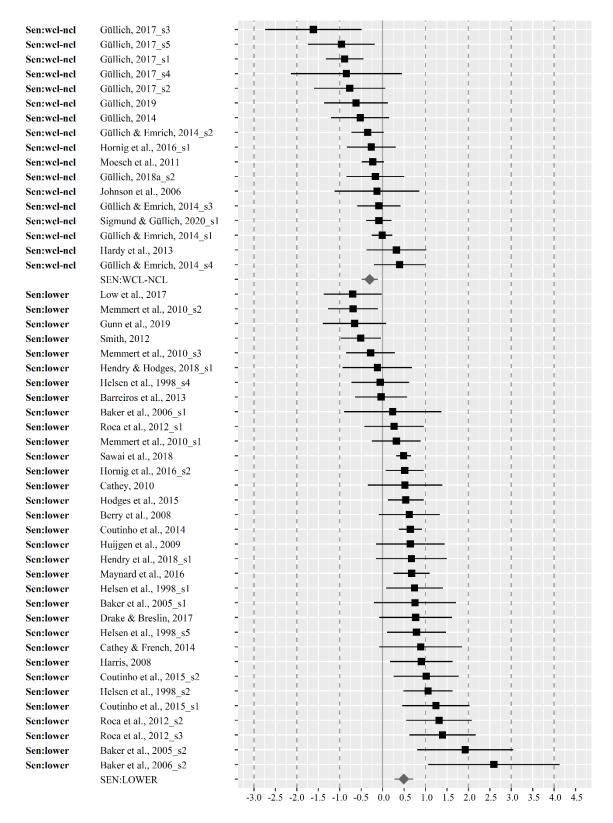
- 35. Gunn SM, Mangine GT, VanDusseldorp TA, Hester GM. Influence of sport specialization on athletic performance and injury risk in collegiate swimmers. The Kennesaw Journal of Undergraduate Research. 2019;6:Article 3. doi:10.32727/25.2019.31.
- 36. Hardy L, Laing S, Barlow M, Kincheva L, Evans L, Rees T, et al. A comparison of the biographies of GB serial medal and non-medalling olympic athletes. London; 2013.
- Harris KR. Deliberate practice, mental representations, and skilled performance in bowling [Doctoral Thesis]. Tallahassee: Florida State University; 2008.
- 38. Haugaasen M, Toering T, Jordet G. From childhood to senior professional football: a multilevel approach to elite youth football players' engagement in football-specific activities. Psychol Sport Exerc. 2014;15:336–44. doi:10.1016/j.psychsport.2014.02.007.
- Helsen WF, Starkes JL, Hodges NJ. Team sports and the theory of deliberate practice. J Sport Exerc Psychol. 1998;20:12–34.
- 40. Hendry DT, Hodges NJ. Early majority engagement pathway best defines transitions from youth to adult elite men's soccer in the UK: a three time-point retrospective and prospective study. Psychol Sport Exerc. 2018;36:81–9. doi:10.1016/j.psychsport.2018.01.009.
- 41. Hendry DT, Williams AM, Hodges NJ. Coach ratings of skills and their relations to practice, play and successful transitions from youth-elite to adult-professional status in soccer. J Sports Sci. 2018;36:2009–17. doi:10.1080/02640414.2018.1432236.
- 42. Hendry DT, Crocker PRE, Williams AM, Hodges NJ. Tracking and comparing self-determined motivation in elite youth soccer: influence of developmental activities, age, and skill. Front Psychol. 2019;10:304. doi:10.3389/fpsyg.2019.00304.
- Hendry DT, Williams AM, Ford PR, Hodges NJ. Developmental activities and perceptions of challenge for National and Varsity women soccer players in Canada. Psychol Sport Exerc. 2019;43:210–8. doi:10.1016/j.psychsport.2019.02.008.

- 44. Hendry DT. The role of developmental activities on self determined motivation, passion and skill in youth soccer players [Master Thesis]. Vancouver: The University of British Columbia; 2012.
- 45. Hodges NJ, Augaitis L, Crocker PRE. Sport commitment and deliberate practice among male and female triathletes. Int J Sport Psychol. 2015;46:652–65. doi:10.7352/IJSP.2015.46.652.
- Hopwood M, Macmahon C, Farrow D, Baker J. Is practice the only determinant of sporting expertise? Revisiting Starkes (2000). Int J Sport Psychol. 2015;46:631–51. doi:10.7352/IJSP.2015.46.631.
- 47. Hornig M, Aust F, Güllich A. Practice and play in the development of German top-level professional football players. Eur J Sport Sci. 2016;16:96–105. doi:10.1080/17461391.2014.982204.
- 48. Huijgen BCH, Elferink-Gemser MT, Post WJ, Visscher C. Soccer skill development in professionals. Int J Sports Med. 2009;30:585–91. doi:10.1055/s-0029-1202354.
- 49. Huijgen BCH, Elfernik-Gemser MT, Post WJ, Visscher C. Soccer skill development in professionals. In: Huijgen BCH, editor. Technical skills the key to success? A study on talent development and selection of youth soccer players [Doctoral Thesis]. Groningen: University of Groningen; 2013. pp. 53–67
- 50. Hutchinson CU, Sachs-Ericsson NJ, Ericsson KA. Generalizable aspects of the development of expertise in ballet across countries and cultures: a perspective from the expert-performance approach. High Ability Studies. 2013;24:21–47. doi:10.1080/13598139.2013.780966.
- Johnson MB, Tenenbaum G, Edmonds WA. Adaptation to physically and emotionally demanding conditions: the role of deliberate practice. High Ability Studies. 2006;17:117–36. doi:10.1080/13598130600947184.

- 52. Lemez S, Wattie N, Dehghansai N, Baker J. Developmental pathways of Para athletes: examining the sporting backgrounds of elite Canadian wheelchair basketball players. CISS. 2020;5:2. doi:10.15203/CISS 2020.002.
- 53. Low J, Mohamad NI, Ong KB, Aziz SA, Abdullah MR, Maliki A. The developmental pathways of Malaysian elite youth badminton players. Journal of Fundamental and Applied Sciences. 2017;9:842–57. doi:10.4314/jfas.v9i2s.60.
- 54. Maynard D, Hambrick DZ, Meinz EJ. How important is deliberate practice for explaining expertise in sports? The case of bowling; 2016.
- 55. Memmert D, Baker J, Bertsch C. Play and practice in the development of sport-specific creativity in team ball sports. High Ability Studies. 2010;21:3–18. doi:10.1080/13598139.2010.488083.
- 56. Mendes FG, Nascimento JV, Souza ER, Collet C, Milistetd M, Côté J, Carvalho HM. Retrospective analysis of accumulated structured practice: a Bayesian multilevel analysis of elite Brazilian volleyball players. High Ability Studies. 2018;29:255–69. doi:10.1080/13598139.2018.1507901.
- 57. Moesch K, Elbe A-M, Hauge M-LT, Wikman JM. Late specialization: the key to success in centimeters, grams, or seconds (cgs) sports. Scand J Med Sci Sports. 2011;21:e282-90. doi:10.1111/j.1600-0838.2010.01280.x.
- 58. Moseid CH, Myklebust G, Fagerland MW, Bahr R. The association between early specialization and performance level with injury and illness risk in youth elite athletes. Scand J Med Sci Sports. 2019;29:460–8. doi:10.1111/sms.13338.
- 59. Noon MR, Eyre ELJ, Ellis M, Myers TD, Morris RO, Mundy PD, et al. The influence of recruitment age and anthropometric and physical characteristics on the development pathway of English academy football players. Int J Sports Physiol Perform. 2019;online first. doi:10.1123/ijspp.2019-0534.

- 60. O'Connor D, Larkin P, Mark Williams A. Talent identification and selection in elite youth football: an Australian context. Eur J Sport Sci. 2016;16:837–44. doi:10.1080/17461391.2016.1151945.
- Roca A, Williams AM, Ford PR. Developmental activities and the acquisition of superior anticipation and decision making in soccer players. J Sports Sci. 2012;30:1643–52. doi:10.1080/02640414.2012.701761.
- 62. San ATL, Lee JLF. Developmental practice activities of elite youth swimmers. Movement, Health & Exercise. 2014;3:27–37. doi:10.15282/mohe.v3i0.15.
- 63. Sawai A, Mathis BJ, Natsui H, Zaboronok A, Mitsuhashi R, Warashina Y, et al. Risk of female athlete triad development in Japanese collegiate athletes is related to sport type and competitive level. Int J Womens Health. 2018;10:671–87. doi:10.2147/IJWH.S175446.
- 64. Sigmund P, Güllich A. Participation patterns of national-squad athletes in track-and-field and volleyball; 2020.
- 65. Smith SA. Retrospective practice histories of Division I and Division II female basketball players in the Carolinas [Doctoral Thesis]. Columbia: University of South Carolina; 2012.
- 66. Toering TT, Elferink-Gemser MT, Jordet G, Visscher C. Self-regulation and performance level of elite and non-elite youth soccer players. J Sports Sci. 2009;27:1509–17. doi:10.1080/02640410903369919.
- 67. Ureña CA. Skill acquisition in ballet dancers: the relationship between deliberate practice and expertise [Doctoral Thesis]. Tallahassee: Florida State University; 2004.
- Ward P, Hodges NJ, Starkes JL, Williams MA. The road to excellence: deliberate practice and the development of expertise. High Ability Studies. 2007;18:119–53. doi:10.1080/13598130701709715.

- 69. Weissensteiner J, Abernethy B, Farrow D, Müller S. The development of anticipation: a cross-sectional examination of the practice experiences contributing to skill in cricket batting. J Sport Exerc Psychol. 2008;30:663–84. doi:10.1123/jsep.30.6.663.
- 70. Williams AM, Ward P, Bell-Walker J, Ford PR. Perceptual-cognitive expertise, practice history profiles and recall performance in soccer. Br J Psychol. 2012;103:393–411. doi:10.1111/j.2044-8295.2011.02081.x.
- 71. Young, BW, Salmela JH. Examination of practice activities related to the acquisition of elite performance in Canadian middle distance running. Int J Sport Psychol. 2010;41:73–90.


Supplementary Materials

Sen:wcl-nel Johnson et al., 2006 Sen:wcl-nel Güllich, 2017_s2 Sen:wcl-nel Güllich, 2017_s5 Sen:wcl-nel Güllich, 2017_s3 Sen:wcl-nel Güllich, 2017_s4 Sen:wcl-nel Güllich, 2017_s1 Sen:wcl-nel Güllich, 2017_s1 Sen:wcl-nel Güllich, 2014_s1 Sen:wcl-nel Güllich, 2014_s1 Sen:wcl-nel Güllich, 2014_s1 Sen:wcl-nel Güllich, 2014_s3 Sen:wcl-nel Güllich, 2014_s4 Sen:wcl-nel Güllich, 2018_s2 Sen:lower Drake & Breslin, 2017 Sen:lower Bery et al., 2008
Sen:wel-nel Güllich, 2017_s5 Sen:wel-nel Güllich, 2017_s3 Sen:wel-nel Güllich, 2017_s4 Sen:wel-nel Güllich, 2017_s4 Sen:wel-nel Güllich, 2017_s1 Sen:wel-nel Güllich, 2017_s1 Sen:wel-nel Güllich, 2014_s1 Sen:wel-nel Güllich & Emrich, 2014_s1 Sen:wel-nel Güllich & Emrich, 2014_s1 Sen:wel-nel Güllich & Emrich, 2014_s3 Sen:wel-nel Güllich, 2014_s3 Sen:wel-nel Güllich, 2014_s3 Sen:wel-nel Güllich, 2014 Sen:wel-nel Güllich, 2014_s3 Sen:wel-nel Güllich, 2014 Sen:wel-nel Güllich, 2019 Sen:wel-nel Güllich, 2014_s4 Sen:wel-nel Güllich, 2014_s4 Sen:wel-nel Güllich, 2018_s2 Sen:wel-nel Güllich, 2018_s2 Sen:wer Drake & Breslin, 2017 Sen:lower Berry et al., 2008
Sen:wel-nel Güllich, 2017_s3 Sen:wel-nel Güllich, 2017_s4 Sen:wel-nel Güllich, 2017_s1 Sen:wel-nel Güllich, 2017_s1 Sen:wel-nel Güllich, 2017_s1 Sen:wel-nel Güllich, 2014_s1 Sen:wel-nel Güllich, 2014_s1 Sen:wel-nel Güllich, 2014_s1 Sen:wel-nel Güllich, 2014_s3 Sen:wel-nel Güllich, 2014 Sen:wel-nel Güllich, 2019 Sen:wel-nel Güllich, 2014_s4 Sen:wel-nel Güllich, 2014_s4 Sen:wel-nel Güllich, 2018a_s2 SEN:WCL-NCL Sen:wel-nel Sen:lower Drake & Breslin, 2017 Sen:lower Berry et al., 2008
Sen:wcl-ncl Güllich & Emrich, 2014_s2 Sen:wcl-ncl Güllich, 2017_s4 Sen:wcl-ncl Hornig et al., 2016_s1 Sen:wcl-ncl Güllich, 2017_s1 Sen:wcl-ncl Güllich & Emrich, 2014_s1 Sen:wcl-ncl Güllich & Emrich, 2014_s1 Sen:wcl-ncl Güllich & Emrich, 2014_s1 Sen:wcl-ncl Güllich, 2017 Güllich, 2017
Sen:wcl-ncl Güllich, 2017_s4 Sen:wcl-ncl Güllich, 2017_s1 Sen:wcl-ncl Güllich & Emrich, 2014_s1 Sen:wcl-ncl Güllich & Emrich, 2014_s3 Sen:wcl-ncl Güllich, 2017 Güllich, 2017
Sen:wcl-ncl Hornig et al., 2016_s1 Sen:wcl-ncl Güllich, 2017_s1 Sen:wcl-ncl Güllich & Emrich, 2014_s1 Sen:wcl-ncl Güllich & Emrich, 2014_s3 Sen:wcl-ncl Güllich, 2014 Sen:wcl-ncl Güllich, 2014 Sen:wcl-ncl Güllich, 2014 Sen:wcl-ncl Güllich, 2014 Sen:wcl-ncl Güllich, 2013 Sen:wcl-ncl Güllich, 2014_s4 Sen:wcl-ncl Güllich, 2014_s4 Sen:wcl-ncl Güllich, 2014_s4 Sen:wcl-ncl Güllich, 2014_s4 Sen:wcl-ncl Güllich, 2018a_s2 Sen:wcl-ncl Güllich, 2018a_s2 Sen:lower Drakc & Breslin, 2017 Sen:lower Berry et al., 2008
Sen:wcl-ncl Güllich, 2017_s1 Sen:wcl-ncl Güllich & Emrich, 2014_s1 Sen:wcl-ncl Güllich & Emrich, 2014_s3 Sen:wcl-ncl Güllich, 2014 Sen:wcl-ncl Güllich, 2014 Güllich, 2014
Sen:wel-nel Güllich & Emrich, 2014_s1 Sen:wel-nel Moesch et al., 2011 Sen:wel-nel Güllich & Emrich, 2014_s3 Sen:wel-nel Güllich, 2014 Sen:wel-nel Güllich, 2014 Sen:wel-nel Güllich, 2013 Sen:wel-nel Güllich, 2019 Sen:wel-nel Güllich, 2014_s4 Sen:wel-nel Güllich, 2014_s4 Sen:wel-nel Güllich, 2014_s4 Sen:wel-nel Güllich, 2018a_s2 Sen:wel-nel Güllich, 2018a_s2 Sen:wel-nel Güllich, 2017 Sen:lower Drake & Breslin, 2017 Sen:lower Berry et al., 2008
Sen:wcl-ncl Moesch et al., 2011 Sen:wcl-ncl Güllich & Emrich, 2014_s3 Sen:wcl-ncl Güllich, 2014 Sen:wcl-ncl Güllich, 2014 Sen:wcl-ncl Güllich, 2013 Sen:wcl-ncl Güllich, 2019 Sen:wcl-ncl Güllich, 2014_s4 Sen:wcl-ncl Güllich, 2014_s4 Sen:wcl-ncl Güllich, 2018_s2 Sen:wcl-ncl Güllich, 2018a_s2 Sen:wcl-ncl Güllich, 2017 Sen:lower Drakc & Breslin, 2017 Sen:lower Berry et al., 2008
Sen:wcl-ncl Güllich & Emrich, 2014_s3 Sen:wcl-ncl Güllich, 2014 Sen:wcl-ncl Hardy et al., 2013 Sen:wcl-ncl Güllich, 2019 Sen:wcl-ncl Güllich, 2019 Sen:wcl-ncl Güllich, 2014_s4 Sen:wcl-ncl Güllich, 2014_s4 Sen:wcl-ncl Güllich, 2018a_s2 Sen:wcl-ncl Güllich, 2018a_s2 Sen:lower Drake & Breslin, 2017 Sen:lower Berry et al., 2008
Sen:wcl-ncl Güllich, 2014 Sen:wcl-ncl Hardy et al., 2013 Sen:wcl-ncl Güllich, 2019 Sen:wcl-ncl Güllich & Emrich, 2014_s4 Sen:wcl-ncl Güllich, 2018a_s2 Sen:wcl-ncl Güllich, 2018a_s2 Sen:lower Drake & Breslin, 2017 Sen:lower Berry et al., 2008
Sen:wel-nel Hardy et al., 2013 Sen:wel-nel Güllich, 2019 Sen:wel-nel Güllich & Emrich, 2014_s4 Güllich, 2018a_s2 Sen:wel-nel Güllich, 2018a_s2 Sen:wel-nel Güllich, 2018a_s2 Sen:wel-nel Güllich, 2018a_s2 Sen:wel-nel Güllich, 2017 Berlower Drake & Breslin, 2017 Sen:lower Berry et al., 2008
Sen:wcl-ncl Güllich, 2019 Sen:wcl-ncl Güllich & Emrich, 2014_s4 Sen:wcl-ncl Güllich, 2018a_s2 SEN:WCL-NCL Sen:lower Drake & Breslin, 2017 Sen:lower Berry et al., 2008
Sen:wcl-ncl Güllich & Emrich, 2014_s4 Sen:wcl-ncl Güllich, 2018a_s2 SEN:WCL-NCL Sen:lower Drake & Breslin, 2017 Sen:lower Berry et al., 2008
Sen:wcl-ncl Güllich, 2018a_s2 SEN:WCL-NCL Sen:lower Drake & Breslin, 2017 Sen:lower Berry et al., 2008
SEN:WCL-NCL - Sen:lower Drake & Breslin, 2017 Berry et al., 2008 -
Sen:lower Berry et al., 2008
Sen:lower Hendry & Hodges, 2018_s1
Sen:lower Roca et al., 2012_s1
Sen:lower Hornig et al., 2016_s2
Sen:lower Low et al., 2017
SEN:LOWER -
Jun IIendry & IIodges, 2018_s2
Jun Güllich & Emrich, 2014_s10 -
Jun Güllich & Emrich, 2014_s7
Jun Güllich & Emrich, 2014_s6
Jun Güllich & Emrich, 2014_s8 -
Jun Noon et al., 2019 -
Jun Huijgen et al., 2013 -
Jun Güllich, 2018a_s3
Jun Güllich & Emrich, 2014_s9 -
Jun Güllich et al., 2020
Jun Ford & Williams, 2012
Jun Ford et al., 2010
Jun Ford et al., 2009_s1
JUNIOR -
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Figure S1. Age to reach performance milestones. Forest plot depicting each effect size (squares) and its 95% confidence interval (lines) entered into the meta-analytic model for differences between relatively higher and lower skilled athletes, along with the meta-analytic mean effect size overall and for junior athletes and senior athletes (diamonds). _s# refers to independent samples. Senior world-class vs. national-class athletes (Sen:wcl-ncl) I^2 =39.82, Senior lower-level (Sen:lower) I^2 =70.74, Junior (Jun) I^2 =54.81.

Sen:wcl-ncl	Hornig et al., 2016_s1 -		-			
Sen:wcl-ncl	Güllich, 2014 -		╞───╋─┼──			
Sen:wcl-ncl	Güllich, 2017_s5 -	1	· · · · · · · · · · · · · · · · · · ·			
Sen:wcl-ncl	Güllich & Emrich, 2014_s2 -		╎╴╷╴╼			
Sen:wcl-ncl	Güllich, 2017_s2 -		· · · · · · · · · · · · · · · · · · ·			1
Sen:wcl-ncl	Güllich & Emrich, 2014_s1 -	i i -				1
Sen:wcl-ncl	Güllich & Emrich, 2014_s4 -	1				
Sen:wcl-ncl	Johnson et al., 2006 -	i i		i i	i i	1
Sen:wel-nel	Güllich, 2018a_s2 -					
Sen:wcl-ncl	Güllich & Emrich, 2014_s3 -					
Sen:wcl-ncl	Hardy et al., 2013				i i	
Sen:wcl-ncl	Güllich, 2017_s1					
Sen:wel-nel	Moesch et al., 2011		!			
Sen:wcl-ncl						
Sen:wcl-ncl Sen:wcl-ncl	Casado et al., 2019_s1					
Sen:wcl-ncl	Güllich, 2017_s3	i i i	i i i i i i i i i i i i i i i i i i i		i i	
Sen:wel-nel	Casado et al., 2019_s2					
Sen. wei-nei	SEN:WCL-NCL -					
Sen:lower	Drake & Breslin, 2017	· · · -				
Sen:lower	Roca et al., 2012 s3					
Sen:lower	Sawai et al., 2012_55				i	
Sen:lower	Roca et al., 2012_s1					
Sen:lower	Hendry & Hodges, 2018 s1		_			
Sen:lower	Memmert et al., 2010_s2 -	i	·		i	-i
Sen:lower	Roca et al., 2012_s2 -	1 1				
Sen:lower	Berry et al., 2008 -	<u>+ + + + +</u>	! 			
Sen:lower	Hopwood et al., 2016_s1 -					
Sen:lower	Coutinho et al., 2015_s1		: 			
Sen:lower	Hopwood et al., 2016_s2	-ii	i 	ii	i	-i
Sen:lower	Barreiros et al., 2013					1
Sen:lower	Hornig et al., 2016_s2 -	1 1 1	·			1
Sen:lower	Coutinho et al., 2014 -		╎╶──			
Sen:lower	Coutinho et al., 2015_s2 -		╎╴╶┼╋╴			
Sen:lower	Harris, 2008 -					
Sen:lower	Smith, 2012 -					
Sen:lower	Memmert et al., 2010_s3 -	1	· • •			
Sen:lower	Memmert et al., 2010_s1 -	i i i	i –		i i	1
Sen:lower	Cathey, 2010		1		1	
Sen:lower	Casado et al., 2019_s3	1	:			
Sen:lower	Low et al., 2017	i i i				
Jun	SEN:LOWER - Güllich & Emrich, 2014 s6 -					
Jun	Güllich & Emrich, 2014_s10					
Jun	Ford & Williams, 2012	· · · · · ·				-i
Jun	Güllich & Emrich, 2014 s9 -					
Jun	Mendes et al., 2018					
Jun	Güllich & Emrich, 2014 s8 -		·			
Jun	Güllich & Emrich, 2014 s7 -	<u> </u>				
Jun	Young & Salmela, 2010 s2 -	-i	_		i	-i
Jun	Hendry et al., 2019a					-
Jun	Güllich et al., 2020		┆╺╼╋┿╶─			+
Jun	Hendry & Hodges, 2018_s2	i				
Jun	San & Lee, 2014					
Jun	Ford et al., 2009_s1 -	1				1
Jun	Haugaasen et al., 2014 -					
Jun	Ford et al., 2010 -			- : :		
Jun	Güllich, 2018a_s3			i i		1
Jun	Huijgen et al., 2013					
Jun	Young & Salmela, 2010_s1	1 1			!	
	JUNIOR -		-			1 1
		-3.0 -2.5 -2.0 -1.5 -1	.0 -0.5 0.0 0.	5 1.0 1.5 2.0	2.5 3.0 3.5	4.0 4.5

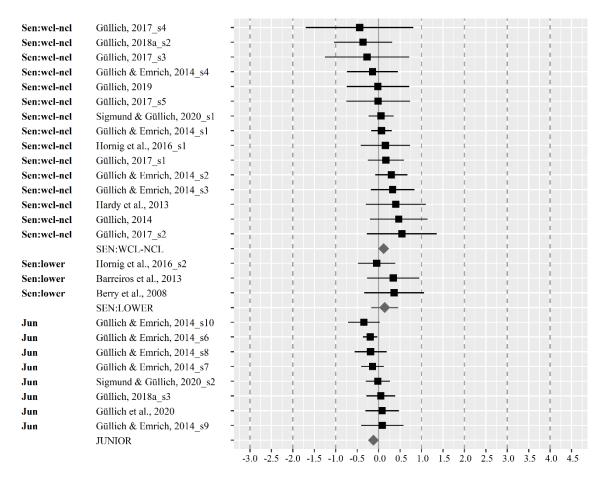
Figure S2. Main-sport starting age. Forest plot depicting each effect size (squares) and its 95% confidence interval (lines) entered into the meta-analytic model for differences between relatively higher and lower skilled athletes, along with the meta-analytic mean effect size overall and for junior athletes and senior athletes (diamonds). _s# refers to independent samples. Senior world-class vs. national-class athletes (Sen:wcl-ncl) l^2 =50.48, Senior lower-level (Sen:lower) l^2 =57.79, Junior (Jun) l^2 =76.29.

Figure S3a. Main-sport coach-led practice Seniors. Forest plot depicting each effect size (squares) and its 95% confidence interval (lines) entered into the meta-analytic model for differences between relatively higher and lower skilled athletes, along with the meta-analytic mean effect size overall and for junior athletes and senior athletes (diamonds). _s# refers to independent samples. Senior world-class vs. national-class athletes (Sen:wcl-ncl) I^2 =32.33, Senior lower-level (Sen:lower) I^2 =62.36.

Jun	Ford et al., 2009 s1
Jun	Baker et al., 2012_s2 -
Jun	Mendes et al., 2018
Jun	Hendry et al., 2018_s2
Jun	O'Connor et al., 2016 -
Jun	Erikstad et al., 2018
Jun	Hendry, 2012_s3 -
Jun	Baker et al., 2012 s1
Jun	Haugaasen et al., 2014 –
Jun	Huijgen et al., 2013 -
Jun	Güllich & Emrich, 2014 s9 -
Jun	Elferink-Gemser et al., 2011_s1 -
Jun	Güllich, 2018a_s3
Jun	Hendry, 2012_s2
Jun	Young & Salmela, 2010_s1 -
Jun	Güllich & Emrich, 2014_s7
Jun	Güllich & Emrich, 2014_s8 -
Jun	Sigmund & Güllich, 2020_s2 -
Jun	Elferink-Gemser et al., 2011_s2 -
Jun	Ford & Williams, 2012
Jun	Elferink-Gemser et al., 2006_s1 -
Jun	Hendry & Hodges, 2018_s2 -
Jun	Bjoerndal et al., 2016_s1
Jun	Young & Salmela, 2010_s2
Jun	Coelho-e-Silva et al., 2012 -
Jun	Güllich & Emrich, 2014_s10
Jun	Guimaraes et al., 2019 -
Jun	Hendry, 2012_s1
Jun	Dehghansai et al., 2016
Jun	Ford et al., 2010 -
Jun	Güllich et al., 2020
Jun	Elferink-Gemser et al., 2004_s1 -
Jun	Güllich & Emrich, 2014_s6 -
Jun	San & Lee, 2014 -
Jun	Elferink-Gemser et al., 2006_s2 -
Jun	Hendry et al., 2019a
Jun	Elferink-Gemser et al., 2004_s2 -
Jun	Bjoerndal et al., 2016_s3
Jun	Toering et al., 2009
	JUNIOR -
	-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Figure S3b. Main-sport coach-led practice Juniors. Forest plot depicting each effect size (squares) and its 95% confidence interval (lines) entered into the meta-analytic model for differences between relatively higher and lower skilled athletes, along with the meta-analytic mean effect size overall and for junior athletes and senior athletes (diamonds). _s# refers to independent samples. Junior (Jun) I^2 =91.79.

Sen:wcl-ncl	Güllich, 2018a s2								
Sen:wcl-ncl	Güllich, 2018a_s2	i	- i				i i	- i	i i
Sen:wel-nel	Sigmund & Güllich, 2020 s1 -								
Sen:wel-nel	Hardy et al., 2013								
Sen:wel-nel	Hornig et al., 2016 s1								
Sen:wel-nel	Güllich, 2019 -								
Sen:wei-nei	SEN:WCL-NCL -	i	i i i					i I	i
Sen:lower	Memmert et al., 2010 s3 -			_					
Sen:lower	Low et al., 2017 -			1					1
Sen:lower	Memmert et al., 2010_s1 -							- i - I	- i
Sen:lower	Maynard et al., 2016								
		i i	- i			i i	i i	i III	i i
Sen:lower	Memmert et al., 2010_s2 -								
Sen:lower	Smith, 2012 -		1				1	1.1	1
Sen:lower	Barreiros et al., 2013		1					1	1
Sen:lower	Hornig et al., 2016_s2								1
Sen:lower	Hendry et al., 2018_s1			- i - T	_	ī		111	
Sen:lower	Drake & Breslin, 2017 -								
Sen:lower	Roca et al., 2012_s2 -		1				1		
Sen:lower	Harris, 2008							1	1
Sen:lower	Roca et al., 2012_s1		1					1	1
Sen:lower	Berry et al., 2008					1			1
Sen:lower	Roca et al., 2012_s3 -								
Sen:lower	Hendry & Hodges, 2018_s1 -	i i	-i	1			-	-	-i
	SEN:LOWER -	•							
Jun	Hendry, 2012_s1								1
Jun	O'Connor et al., 2016 -		1					1	i i
Jun	Hendry et al., 2018_s2 -								
Jun	Sigmund & Güllich, 2020_s2 -	i	-i	-i	-		i i	-i	i
Jun	Güllich, 2018a_s3								1
Jun	Erikstad et al., 2018				-				
Jun	Hendry, 2012_s3	i	-i		-				-i
Jun	Hendry, 2012_s2								
Jun	San & Lee, 2014 -					-			
Jun	Güllich et al., 2020		1						1
Jun	Hendry & Hodges, 2018_s2 -								
Jun	Ford et al., 2010		i i	1					
Jun	Ford & Williams, 2012					_			
Jun	Williams et al., 2012_s1								
Jun	Ford et al., 2009_s1 -								
Jun	Williams et al., 2012_s3 -	• •				-	- :		1
Jun	Hendry et al., 2019a		1	1				i	i
	JUNIOR -				-				
		-3.0 -2.5	-2.0 -1.5	-1.0 -0.5	0.0 0.5	1.0 1.5	2.0 2.5	3.0 3.5	4.0 4.5


Figure S4. Main-sport peer-led play. Forest plot depicting each effect size (squares) and its 95% confidence interval (lines) entered into the meta-analytic model for differences between relatively higher and lower skilled athletes, along with the meta-analytic mean effect size overall and for junior athletes and senior athletes (diamonds). _s# refers to independent samples. Senior world-class vs. national-class athletes (Sen:wcl-ncl) l^2 =40.39, Senior lower-level (Sen:lower) l^2 =75.97, Junior (Jun) l^2 =68.10.

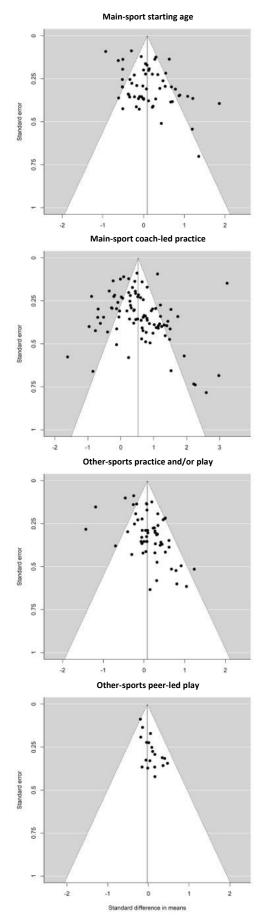
Sen:wcl-ncl	Moesch et al., 2011				-							
Sen:wcl-ncl	Güllich & Emrich, 2014_s4		- i -					- i -				
Sen:wcl-ncl	Güllich, 2017_s4					-						
Sen:wcl-ncl	Güllich & Emrich, 2014_s1	- 1	- i-	- i-			1	-i-	i			
Sen:wcl-ncl	Lemez et al., 2020	-				-						
Sen:wcl-ncl	Hornig et al., 2016_s1					-	- !	1	1		1	
Sen:wcl-ncl	Sigmund & Güllich, 2020_s1											
Sen:wcl-ncl	Güllich & Emrich, 2014_s2	- 1					+ +					
Sen:wcl-ncl	Hardy et al., 2013	- 1	- i -	i					-			
Sen:wcl-ncl	Güllich & Emrich, 2014_s3	-				-						
Sen:wcl-ncl	Güllich, 2019	- i -	— i —	i		_	<u> </u>	i	i		-i	
Sen:wcl-ncl	Güllich, 2018a s2					-						
Sen:wcl-ncl	Güllich, 2017 s1						_!					
Sen:wcl-ncl	Güllich, 2017_s2					-						
Sen:wcl-ncl	Güllich, 2014											
Sen:wcl-ncl	Güllich, 2017_s5		i	i		_					- i	
Sen:wcl-ncl	Güllich, 2017_s3						_					
Sen:wel-nel	Johnson et al., 2006		- i -						i.			
	SEN:WCL-NCL						-					
Sen:lower	Roca et al., $2012 \text{ s}2$					Ť						
Sen:lower	Hornig et al., 2016_s2											
Sen:lower	Memmert et al., 2010_s2											
Sen:lower	Roca et al., 2012 s3	_ 1	- i -					11	i i			
Sen:lower	Memmert et al., 2012_33											
Sen:lower	Hendry & Hodges, 2018 s1											
Sen:lower	Coutinho et al., 2014	_			_							
Sen:lower	Roca et al., 2012_s1											
Sen:lower	Memmert et al., 2012_31	_ 1	i i				- i	i	i			
Sen:lower	Drake & Breslin, 2017	_										
Sen:lower	Coutinho et al., 2015 s2						_					
Sen:lower	Baker et al., 2006 s1	_ 1										
Sen:lower	Baker et al., 2005_s1											
Sen:lower	Barreiros et al., 2013						_		i.			
Sen:lower	Gunn et al., 2019	_										
Sen:lower	Berry et al., 2008						1					
Sen:lower	Baker et al., 2008 s2											
Sen:lower	Baker et al., 2005_s2											
Self:Iower	SEN:LOWER		i i	1.1			7	i i	i i		i	
Jun	Hendry et al., 2019a			_								
Jun Jun	Toering et al., 2009				_							
	-											
Jun Tun	Mendes et al., 2018 Ford et al., 2009 s1											
Jun	· –	- i	i i	1				i i	i		i	
Jun	Moseid et al.,2019											
Jun	Güllich & Emrich, 2014_s6						1		1			
Jun	Güllich & Emrich, 2014_s9						1		1			
Jun	Güllich & Emrich, 2014_s8											
Jun	Güllich & Emrich, 2014_s7		i i	- i -		Γ	- i	i i	i i		1	
Jun	Hendry & Hodges, 2018_s2											
Jun	Güllich & Emrich, 2014_s10											
Jun	Sigmund & Güllich, 2020_s2											
Jun	Güllich et al., 2020											
Jun	Ford & Williams, 2012	ī i					1	i.	i i			
Jun	Güllich, 2018a_s3											
Jun	Baker et al., 2012_s1				_				i			
Jun	Ford et al., 2010	-			_		-					
Jun	Baker et al., 2012_s2											
	JUNIOR				•		1.					
		-3.0 -2	2.5 -2.0	-1.5 -1.0	-0.5 0	0.0 0.5	1.0 1.:	5 2.0	2.5 3.0	3.5	4.0	4.5

Figure S5. Other-sports practice and/or play. Forest plot depicting each effect size (squares) and its 95% confidence interval (lines) entered into the meta-analytic model for differences between relatively higher and lower skilled athletes, along with the meta-analytic mean effect size overall and for junior athletes and senior athletes (diamonds). _s# refers to independent samples. Senior world-class vs. national-class athletes (Sen:wcl-ncl) I^2 =0.0, Senior lower-level (Sen:lower) I^2 =0.0, Junior (Jun) I^2 =64.81.

Sen:wcl-ncl	Lemez et al., 2020	
Sen:wel-nel	Hardy et al., 2013	- ! . !
Sen:wcl-ncl	Güllich & Emrich, 2014 s1	. i i
Sen:wcl-ncl	Güllich & Emrich, 2014 s4	• · · · · · · · · · · · · · · · · · · ·
Sen:wel-nel	Güllich & Emrich, 2014 s3	• ! · · ! · · ! · · + • · · ! · · ! · · ! · · !
Sen:wcl-ncl	Güllich & Emrich, 2014 s2	• · · · · · · · · · · · · · · · · · · ·
Sen:wcl-ncl	Hornig et al., 2016 s1	- ╎ ╎
Sen:wcl-ncl	Güllich, 2017 s2	- · · · · · · · · · · · · · · · · · · ·
Sen:wcl-ncl	Sigmund & Güllich, 2020_s1	· · · · · · · · · · · · · · · · · · ·
Sen:wel-nel	Güllich, 2017_s4	
Sen:wcl-ncl	Güllich, 2014	- i - · i - · i - · i - · i - · i - · i - · i
Sen:wcl-ncl	Johnson et al., 2006	- ; ; ; , , , , , , ; , ; , ; , ;
Sen:wel-nel	Güllich, 2019	╸┊╴╴┊╴╴┊╴╴╞
Sen:wcl-ncl	Güllich, 2017_s1	- i - · i - · i - · i - · i - · i - · i
Sen:wel-nel	Güllich, 2018a_s2	• · · · · · · · · · · · · · · · · · · ·
Sen:wcl-ncl	Güllich, 2017_s5	╸┊╴╴┊╴╴┊╺╾┽┻╌╌┊╴╴┊╴╴┊
Sen:wcl-ncl	Güllich, 2017_s3	- i _ i _ i _ - i _ ≣ i i _ i _ i
	SEN:WCL-NCL	
Sen:lower	Hornig et al., 2016_s2	· · · · · · · · · · · · · · · · · ·
Sen:lower	Coutinho et al., 2015_s2	╴┊╴╴┊╴╶┼┛╌┥╴┊╴╴┊╴╴┊
Sen:lower	Barreiros et al., 2013	╸╏╴╴╏╴╴╏╸╸╏╸╸╏╴╴╏
Sen:lower	Gunn et al., 2019	╸┇╴╴┇╴╴┇╴╺╈╋╋┱╋
Sen:lower	Berry et al., 2008	
	SEN:LOWER	• • • • • • • • • • • • • • • • • • • •
Jun	Güllich & Emrich, 2014_s9	• ; · · · · · · · · · · · · · · · · · ·
Jun	Toering et al., 2009	
Jun	Mendes et al., 2018	
Jun	Güllich & Emrich, 2014_s6	
Jun	Moseid et al.,2019	
Jun	Güllich & Emrich, 2014_s8	
Jun	Güllich & Emrich, 2014_s7	
Jun	Güllich et al., 2020	
Jun T	Sigmund & Güllich, 2020_s2	
Jun	Güllich, 2018a_s3	
Jun	Güllich & Emrich, 2014_s10	
	JUNIOR	⁻
		-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Figure S6. Other-sports practice. Forest plot depicting each effect size (squares) and its 95% confidence interval (lines) entered into the meta-analytic model for differences between relatively higher and lower skilled athletes, along with the meta-analytic mean effect size overall and for junior athletes and senior athletes (diamonds). _s# refers to independent samples. Senior world-class vs. national-class athletes (Sen:wcl-ncl) I^2 =0.0, Senior lower-level (Sen:lower) I^2 =0.0, Junior (Jun) I^2 =33.69.

Figure S7. Other-sports play. Forest plot depicting each effect size (squares) and its 95% confidence interval (lines) entered into the meta-analytic model for differences between relatively higher and lower skilled athletes, along with the meta-analytic mean effect size overall and for junior athletes and senior athletes (diamonds). _s# refers to independent samples. Senior world-class vs. national-class athletes (Sen:wcl-ncl) I^2 =0.0, Senior lower-level (Sen:lower) I^2 =0.0, Junior (Jun) I^2 =0.0.


Publication bias analyses

Publication bias occurs when certain types of effects, such as small effects, null effects, or effects that are in the opposite direction to researchers' expectations, are systematically suppressed from publication.

We first examined the funnel plots for each overall model for asymmetry. Funnel plots depict the relationship between standard error and effect size. The smaller the study's standard error, the closer that study's effect size should be to the mean effect. The larger the study's standard error, the more random error it has. Due to its random nature, the study's effect size should have an equally likely chance of being higher or lower than the mean effect size. If a funnel plot is asymmetrical, i. e., if smaller studies (with larger standard error) are "missing" from one side of the plot, those studies might be missing due to publication bias. We also quantified symmetry with Egger's regression (Egger et al., 1997). However, Egger's regression is prone to Type I error when heterogeneity is high (Sterne et al., 2011), as is the case in these meta-analytic models. Thus, Egger's regression results should be interpreted with caution.

As can be seen in Figure S8, the funnel plots are by and large symmetrical. Egger's regression supports this observation for age to reach milestones, main-sport practice, main-sport play, and other-sports practice and/or play. However, Egger's regression was significant, suggesting there could be publication bias, in starting age, other-sports practice, and other-sports play (.003). The analyses suggest that associations of higher performance with a*later*starting age or*more*other-sports practice or play in small samples may have been more likely to be published,

We next examined a potential moderator effect of publication status, i. e., whether the mean effect sizes differed between published and unpublished studies. Significant results would suggest that larger (or smaller) effects are more likely to be published. There was no evidence for differences in effect size by publication status (i. e., there was no significant moderation effect of publication status) for any of the predictor variables when considering the entire sample, only juniors, or only seniors (0.00 < F < 2.45, .126). The results suggest that smaller or larger than average effects were not less likely to be published in this literature.

0

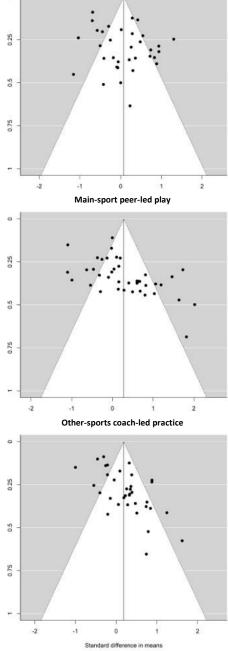


Figure S8. Funnel plots for the seven predictors.

					Quality of
	Study design ^(a)	Consistency	Directness	Precision	evidence ^(a)
Age of milestones					
Junior performance	moderate	high	high	high	moderate
Senior performance	moderate	high	high	high	moderate
Senior WCl vs. NCl	moderate to high ^(b)	high	high	high	moderate to high
Junior vs. senior	moderate	high	high	high	moderate
Starting age					
Junior performance	moderate	high	high	high	moderate
Senior performance	moderate	high	high	high	moderate
Senior WCl vs. NCl	moderate to high ^(b)	high	high	high	moderate to high
Junior vs. senior	moderate	high	high	high	moderate
Main-sport practice					
Junior performance	moderate	high	high	high	moderate
Senior performance	moderate	high ^(c)	high	high	moderate
Senior WCl vs. NCl	moderate to high ^(b)	high	high	high	moderate to high
Junior vs. senior	moderate	high	high	high	moderate
Main-sport play					
Junior performance	low	low	high	high	low
Senior performance	low	low	high	high	low
Senior WCl vs. NCl	low	low	high	moderate	low
Junior vs. senior	low	low	high	high	low
Other-sports practice					
Junior performance	moderate	high	high	high	moderate
Senior performance	moderate	high	high	high	moderate
Senior WCl vs. NCl	moderate to high ^(b)	high	high	high	moderate to high
Junior vs. senior	moderate	high	high	high	moderate
Other-sports play					
Junior performance	low	low	high	high ^(d)	low
Senior performance	low	low	high	high	low
Senior WCl vs. NCl	low to moderate ^(b)	low	high	high	low
Junior vs. senior	low	low	high	high ^(d)	low

Table S2. GRADE rating of the quality of evidence.

^(a) Dose-response gradient for all predictor variables except main-sport play and other-sports play. ^(b) Several matched-pairs studies with consistent findings. ^(c) When only considering effect of *early* main-sport practice (up to age 15 years) on senior performance, consistency is low. ^(d) When only considering effect of *early* other-sports play (up to age 15 years) on junior performance, precision is low.