# **Supplementary information for:**

**TITLE:** Mechanical, morphological and material adaptations of healthy lower limb tendons to mechanical loading: A systematic review and meta-analysis

JOURNAL: Sports Medicine

### AUTHORS

Lazarczuk, Stephanie L.<sup>1, 2</sup> (ORCID: 0000-0001-8467-8799) Maniar, Nirav<sup>3, 4</sup> (ORCID: 0000-0002-6180-6003) Opar, David A.<sup>3, 4</sup> (ORCID: 0000-0002-8354-6353) Duhig, Steven J.<sup>1, 2</sup> (ORCID: 0000-0002-4014-7731) Shield, Anthony<sup>5</sup> (ORCID: 0000-0002-0393-2466) Barrett, Rod S.<sup>1, 2</sup> (ORCID: 0000-0002-1784-1629) Bourne, Matthew N.<sup>1, 2</sup> (ORCID: 0000-0002-3374-4669)

# AFFILIATIONS

- 1. School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- 2. Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, Australia
- 4. Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, Australia
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia

### **CORRESPONDING AUTHOR:**

Stephanie L. Lazarczuk – <u>stephanie.lazarczuk@griffithuni.edu.au</u>

# S1. Search strategy and limits

| 1. Location      | 2. Tendon  | 3. Trg Intervention | 4. Tendon        | 5. NOT            |
|------------------|------------|---------------------|------------------|-------------------|
|                  | Tissue     | -                   | Properties       |                   |
| OR               | OR         | OR                  | OR               | OR                |
|                  |            |                     |                  |                   |
| Lower limb       | Tend*      | Strength*           | Adapt*           | ACL               |
| Hamstring*       | Aponeuros* | Resistance          | Modulus          | Anterior cruciate |
| Vastus lateralis |            | Run*                | Stiffness        | ligament          |
| Quadricep*       |            | Sprint*             | Cross-sectional  | Tendinopath*      |
| Achilles         |            | Power               | area             | Tendinitis        |
| Patella*         |            | Endurance           | CSA              | Tendinosis        |
| Adductor*        |            | jump*               | Morphology       | Rupture           |
| Gastrocnemius    |            | plyometric          | Geometry         | Reconstruction    |
| Soleus           |            | ballistic           | Material prop*   | Graft             |
|                  |            | bound*              | Mechanical prop* | Injur*            |
|                  |            | land*               | Complian*        |                   |
|                  |            | stretch short*      | Stress           |                   |
|                  |            | SSC                 | Strain           |                   |
|                  |            |                     | Deformation      |                   |
|                  |            | AND                 | Elongation       |                   |
|                  |            |                     | Plasticity       |                   |
|                  |            | (Load* OR           |                  |                   |
|                  |            | Exercis* OR         |                  |                   |
|                  |            | Training OR         |                  |                   |
|                  |            | Intervention)       |                  |                   |
|                  |            |                     |                  |                   |

**Strategy:** The terms in each column were searched using the Boolean operator above them. These searches were combined using the following strategy for titles, abstracts: (1 AND 2 AND 3 AND 4) NOT 5

The following database keywords were also searched in addition to the title and abstract search above: PubMed = MeSH Terms; Scopus = Keywords; CINAHL = Subject Terms; SportDISCUS = Subject Terms; EMBASE = Author key terms

#### **Limits applied**: Human(s), English

A manual check of reference lists of included studies and similar reviews was also conducted.

<u>S2.</u> Funnel plot for all studies reporting stiffness, demonstrating the standardised mean differences versus standard error, with result for Egger's test and adjusted SMDs based on the methods in Vevea & Woods (2005).



Standardised Mean Difference

Egger's: intercept = 4.90, t = 4.89, p < 0.001

Original SMD: 0.74, 95% CI 0.62 – 0.86

Adjusted SMD – moderate bias: 0.63, 95% CI 0.50 – 0.76

Reference: Vevea JL, Woods CM. Publication bias in research synthesis: Sensitivity analysis using a priori weight functions. Psychol Methods. 2005;10(4):428–43.

**S3.** Funnel plot for all studies reporting modulus, demonstrating the standardised mean differences versus standard error, with result for Egger's test and adjusted SMDs based on the methods in Vevea & Woods (2005).



Standardised Mean Difference

Eggers: intercept = 6.39, t = 5.99, p < 0.001

Original SMD: 0.82, 95%CI 0.58 - 1.07

Adjusted SMD – moderate bias: 0.65, 95% CI 0.39 – 0.92

Reference: Vevea JL, Woods CM. Publication bias in research synthesis: Sensitivity analysis using a priori weight functions. Psychol Methods. 2005;10(4):428–43.

<u>S4.</u> Funnel plot for all studies reporting cross-sectional area, demonstrating the standardised mean differences versus standard error, with result for Egger's test and adjusted SMDs based on the methods in Vevea & Woods (2005).



Standardised Mean Difference

Eggers: intercept = -1.56, t = -2.27, p = 0.026

Original SMD: 0.22, 95%CI 0.12 - 0.33

Adjusted SMD – moderate: 0.14, 95% CI 0.04 - 0.24

Reference: Vevea JL, Woods CM. Publication bias in research synthesis: Sensitivity analysis using a priori weight functions. Psychol Methods. 2005;10(4):428–43.

# **<u>S5.</u>** Study characteristics (extended).

| Source                          | Participants                                          | Intervention                                  |                                                                                                                                                                             | Tendon                                                                                                                                                                                                                                                                                       |        |
|---------------------------------|-------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Author                          | Group                                                 | Duration<br>(weeks),<br>Frequency<br>per week | Exercise Parameters/Activity Descriptor                                                                                                                                     | Outcome measures - method                                                                                                                                                                                                                                                                    | Tissue |
| Albracht et<br>al., 2013 [5]    | Exercise                                              | 14, 4                                         | Unilat iso PF @ 5° DF (knee extended)<br>5 x 4 @ 90% MVC<br>3s contract, 3s rest                                                                                            | Stiffness: ramped iso PF MVC on isokinetic dynamometer with 2D US to assess<br>elongation of distal GaM fascicles and apon<br>Modulus: not assessed<br>CSA: not assessed                                                                                                                     | AT     |
|                                 | Control (rec<br>active)                               |                                               | Continued own endurance training (running, $\ge$ 3 x p/wk)                                                                                                                  |                                                                                                                                                                                                                                                                                              |        |
| Arampatzis et<br>al., 2007 [19] | Low strain limb                                       | 14, 4                                         | Unilat iso PF @ 85° DF (knee extended)<br>Low strain: 5 x 7 @ 55% MVC = 2.85 ± 0.99% strain                                                                                 | Stiffness: ramped iso PF MVC on isokinetic dynamometer with 2D US to assess elongation of distal GaM fascicles and apon                                                                                                                                                                      | AT     |
| u., 2007 [13]                   | High strain limb                                      |                                               | High strain: 5 x 4 @ 90% MVC = 4.55 ± 1.38% strain<br>3s contract, 3s rest                                                                                                  | Modulus: calculated from linear regression of the tendon stress-tendon/aponeurosis strain relationship between 50-100% of maximum tendon stress CSA: T1 MRI; 10% intervals along length                                                                                                      |        |
|                                 | Control *                                             |                                               | No exercise intervention                                                                                                                                                    |                                                                                                                                                                                                                                                                                              |        |
| Arampatzis et<br>al., 2010 [20] | Low strain limb                                       | 14, 4                                         | Unilat iso PF @ 85° DF (knee extended)<br>Low strain: 5 x 20 @ 55% MVC @ 2.97 ± 0.47% strain<br>High strain: 5 x 12 @ 90% MVC @ 4.72 ± 1.08% strain<br>1s contract. 1s rest | Stiffness: ramped iso PF MVC on isokinetic dynamometer with 2D US to assess<br>elongation of distal GaM fascicles and apon<br>Modulus: calculated from linear regression of the tendon stress-tendon/aponeurosis<br>strain relationship between 50-100% of maximum tendon stress             | AT     |
|                                 | High strain limb                                      |                                               |                                                                                                                                                                             | CSA: T1 MRI; 10% intervals along length                                                                                                                                                                                                                                                      |        |
| Baptista et                     | Concentric limb                                       | 12, 2                                         | Unilat con or ecc knee extension                                                                                                                                            | Stiffness: not assessed                                                                                                                                                                                                                                                                      | РТ     |
| ai., 2010 [95]                  | Eccentric limb                                        |                                               | Ecc: 2 x 10 @ ~80% 5RM<br>0.5 s load acceptance + 3 s con or ecc                                                                                                            | CSA: 2D US; 50% of distance between patella apex and tibial insertion                                                                                                                                                                                                                        |        |
| Bohm et al.,<br>2014 [21]       | High strain rate<br>limb & Reference<br>protocol limb | 14, 4                                         | Unilat hops<br>High strain rate: 5 x 72 @ 90% MVC = 6.63 ± 1.24%<br>maximum strain                                                                                          | Stiffness: iso PF MVC on isokinetic dynamometer with 2D US to assess elongation at GaM MTJ, calculated from linear regression of the tendon force-tendon elongation ratio between 50-100% maximum tendon force Modulus: calculated from linear regression of the tendon stress-tendon strain | AT     |
|                                 | Long strain<br>duration limb &                        |                                               | Unilat iso PF<br>Long strain duration: $E = 12c = 0.00\%$ MVC = $6.04 \pm 1.54\%$                                                                                           | relationship between 50-100% maximum stress<br>CSA: MRI, 10% intervals along length                                                                                                                                                                                                          |        |
|                                 | protocol limb                                         |                                               | maximum strain                                                                                                                                                              |                                                                                                                                                                                                                                                                                              |        |
|                                 | Control *                                             |                                               | Reference protocol (completed on non-intervention limb):<br>Unilat iso PF @ 5° DF (knee extended): 5 x 4 (3s contract, 3s<br>rest) @ 90% MVC<br>No exercise intervention    |                                                                                                                                                                                                                                                                                              |        |

| Bohm et al.,<br>2021 [17]         | Intervention                               | 14, 3-4 | Unilat iso PF<br>5 x 4 @ 90% MVC<br>3 s contract, 3 s rest                                                                                                                                                                                     | Stiffness: ramped iso PF MVC on isokinetic dynamometer with 2D US to assess<br>elongation at GaM MTJ, calculated between 50-100% max tend force and strain<br>Modulus: not assessed<br>CSA: not assessed                                                        | AT |
|-----------------------------------|--------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                   | Control (rec<br>active)                    |         | Continued own endurance training (running, $\ge 2 \times p/wk$ )                                                                                                                                                                               |                                                                                                                                                                                                                                                                 |    |
| Carroll et al.,<br>2011 [62]      | Placebo (control =<br>extracted group)     | 12, 3   | Bilat con:ecc knee extension<br>3 x 10 @ 74 ± 1% 1RM (mean)<br>120s inter-set rest                                                                                                                                                             | Stiffness: ramped iso MVC in seated, force recorded via strain-gauge, with 2D US used to assess displacement of patella and tibial insertions, calculated from final 10% of force-elongation curve<br>Modulus: calculated from final 10% of stress-strain curve | РТ |
|                                   | Acetaminophen                              |         | Resistance training + 4000 mg acetaminophen (daily)                                                                                                                                                                                            | CSA: MRI; proximal, middle and distal regions                                                                                                                                                                                                                   |    |
|                                   | Ibuprofen                                  |         | Resistance training + 1200 mg ibuprofen (daily)                                                                                                                                                                                                |                                                                                                                                                                                                                                                                 |    |
| Centner et<br>al., 2019 [71]      | Heavy load<br>(extracted group)            | 14, 3   | Standing and seated con:ecc PF<br>3 x 6-12 each exercise @ 70-85% 1RM<br>60 s inter-set rest<br>180 s inter-exercise rest                                                                                                                      | Stiffness: ramped iso PF on isokinetic dynamometer with 2D US to assess elongation<br>at GaM MTJ, calculated as the slope of the force-elongation curve between 50-80%<br>MVC<br>Modulus: slope of the stress-strain curve between 50-80% MVC                   | AT |
|                                   | Low load + BFR                             |         | Exercises above @ 20% $\rightarrow$ 35% 1RM<br>First set: 1 x 30<br>Subsequent sets: 3 x 15<br>@ 50% limb occlusive pressure                                                                                                                   | aspect Gastrocnemius)                                                                                                                                                                                                                                           |    |
|                                   | Control (rec<br>active)                    |         | No exercise intervention                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 |    |
| Dalgaard et<br>al., 2019<br>[104] | Non-<br>contraceptive<br>(extracted group) | 10, 3   | Con:ecc Knee extension and incline leg press<br>Wk 1: 3x12 @ 15RM → Wk 6-10: 4x10 @10RM.                                                                                                                                                       | Stiffness: not assessed<br>Modulus: not assessed<br>CSA: T1 MRI; proximal, middle and distal regions                                                                                                                                                            | РТ |
|                                   | Contraceptive                              |         |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                 |    |
| Duclay et al.,<br>2009 [105]      | Eccentric training                         | 7, 3    | Exercises as above + oral contraceptives<br>Unilat ecc calf raise<br>6 x 6 @ 120% concentric 1RM<br>180s inter-set rest<br>1 x session per week seated (calf machine) @ 90 knee°<br>flexion, other sessions supine (sled)<br>18 sessions total | Stiffness: ramped iso PF MVC on isokinetic dynamometer in prone lying, with 2D US to assess elongation at GaM at distal myotendinous junction; assessed at 10% intervals of MVC torque Modulus: not assessed CSA: not assessed                                  | AT |
|                                   | Control (rec<br>active)                    |         | No exercise intevention                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 |    |

| Eriksen et al.,<br>2018 [63]  | Old heavy<br>resistance<br>Very old heavy<br>resistance | 12, 3 | Knee con:ecc extension, leg press & leg curls<br>Wk 1: 3 x 12 @ 12RM (~70% 1RM) $\rightarrow$ Wk 10: 5 x 6 @ 6RM<br>(~90% 1RM) $\rightarrow$ Wk 11: 3 x 6 @ 6RM $\rightarrow$ Wk 12: 2 x 6<br>@6RM                 | Stiffness: iso knee extension MVC in seated, force recorded via strain-gauge, with 2D<br>US to assess elongation of PT between patella and tibial tendon insertions, calculated<br>from the final 10% of force-elongation curve.<br>Modulus: calculated from final 10% of stress-strain curve (inferred from citations)<br>CSA: T1 MRI; proximal, middle and distal regions | РТ |
|-------------------------------|---------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                               | Control<br>(sedentary)                                  |       | No exercise intervention                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                             |    |
| Eriksen et al.,<br>2019 [64]  | Heavy resistance<br>(extracted group)                   | 52, 3 | Knee con:ecc extension & leg press<br>6-8 wk of 3 x 15 @ $\sim$ 50-60 %1RM.<br>8 wk blocks (1 wk inter-block break).<br>3 x 12 @ 70% $\rightarrow$ 3 x 6 @ 85% 1RM                                                 | Stiffness: iso knee extension in seated, force recorded via dynamometer, with 2D US to assess elongation of PT between patella and tibial tendon insertions, calculated from the final 10% of the force-elongation curve<br>Modulus: calculated from the final 10% of the stress-strain curve<br>CSA: T1 MBI: provinal middle and distal regions                            | PT |
|                               | Moderate<br>resistance                                  |       | Unsupervised, home-based circuit + elastic band activity                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                             |    |
|                               | Control (habitual<br>activity)                          |       | No exercise intervention                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                             |    |
| Farup et al.,<br>2014 [106]   | Placebo<br>Concentric limb<br>Placebo Eccentric<br>limb | 12, 3 | Unilat con:ecc knee extension<br>$6 \times 10-15 \text{RM} \rightarrow 8 \times 6-10 \text{RM}$<br>Eccentric = 120% concentric load<br>Concentric = 2s, Eccentric = 2s<br>120s inter-set rest<br>33 sessions total | Stiffness: not assessed<br>Modulus: not assessed<br>CSA: T1 MRI; proximal, middle and distal regions                                                                                                                                                                                                                                                                        | PT |
|                               | Whey hydrolysate<br>(not extracted)                     |       | Exercise above + high-leucine whey protein hydrolysate + carbohydrate supplementation                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                             |    |
| Fletcher et<br>al., 2010 [60] | Isometric                                               | 8, 3  | Unilat iso PF<br>4 x 20s @ 80% MVC                                                                                                                                                                                 | Stiffness: ramped iso PF MVC on isokinetic dynamometer in prone lying, with 2D US to assess elongation at GaM deep apon; assessed between 25-45%, 30-70% and 50-100% of MVC force                                                                                                                                                                                           | AT |
|                               | Control (activo)                                        |       | K: $70-170$ km/wk                                                                                                                                                                                                  | CSA: not assessed                                                                                                                                                                                                                                                                                                                                                           |    |
|                               | control (active)                                        |       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                             |    |
| Fouré et al.,<br>2009 [107]   | Training/Jump                                           | 8, 2  | SJ, CMJ, DJ, hurdles (DL to SL combos)<br>150-280 jumps per session<br>Progressive increase in number of jumps and heights over<br>first 5 wk (detail n/s)                                                         | Stiffness: iso PF MVC on isokinetic dynamometer in prone lying, with 2D US to assess<br>elongation at Ga MTJ, calculated as the slope of force-elongation values<br>Modulus: not assessed<br>CSA: not assessed                                                                                                                                                              | AT |
|                               | Control (rec<br>active)                                 |       | No exercise intervention – habitual exercise                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                             |    |

| Fouré et al.,<br>2010 [49]        | Training/Jump           | 14, n/s | SJ, CMJ, DJ (@ 40cm, 60cm, or 80cm), hurdle hops/jumps.<br>200-600 jumps/session ≈ 6800 jumps total in programme<br>34 sessions total                                                                                                                                                | Stiffness: iso PF MVC on isokinetic dynamometer in prone lying, with 2D US to assess elongation at GaM MTJ, calculated as the slope of the force-elongation curve between 50-90% maximum force Modulus: not assessed                                                                                                     | AT |
|-----------------------------------|-------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                   | Control (rec<br>active) |         | No exercise intervention – habitual exercise                                                                                                                                                                                                                                         | CSA: 2D US, level with medial malleolus                                                                                                                                                                                                                                                                                  |    |
| Fouré et al.,<br>2011 [50]        | Training/Jump           | 14, n/s | SJ, CMJ, DJ (@ 35cm, 50cm, 65cm), hurdle hops/jumps<br>(40cm hurdle)<br>200-600 jumps/session<br>Progressive increase in number of exercises, jumps, and/or<br>height (detail n/s)<br>34 sessions total                                                                              | Stiffness: not assessed<br>Modulus: not assessed<br>CSA: 2D US, level with medial malleolus                                                                                                                                                                                                                              | AT |
|                                   | Control (rec<br>active) |         | No exercise intervention – habitual exercise                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |    |
| Fouré et al.,<br>2012 [51]        | Jump                    | 14, n/s | SJ, CMJ, DJ (@ 40cm, 60cm, or 80cm), hurdle hops/jumps.<br>200-600 jumps/session ≈ 6800 jumps total in programme<br>34 sessions total                                                                                                                                                | Stiffness: not assessed<br>Modulus: not assessed<br>CSA: 2D US, level with medial malleolus                                                                                                                                                                                                                              | AT |
|                                   | Control (rec<br>active) |         | No exercise intervention – habitual exercise                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |    |
| Fouré et al.,<br>2013 [108]       | Eccentric               | 14, n/s | Unilat ecc heel drops + jump/landings from 35/50/65cm<br>box (landing: unilateral or bilateral).<br>Progressive increase in number of PF actions or height of<br>jump (increments n/s)<br>200-600 ecc actions/session ≈ 6800 contractions total in<br>programme<br>34 sessions total | Stiffness: iso PF MVC on isokinetic dynamometer in prone lying, with 2D US to assess<br>elongation at GaM MTJ, calculated as the slope of the force-elongation curve<br>between 50-90% maximum force<br>Modulus: not assessed<br>CSA: 2D US, level with medial malleolus                                                 | AT |
|                                   | Control (rec<br>active) |         | No exercise intervention – habitual exercise                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |    |
| Geremia et<br>al., 2018 [72]      | Eccentric               | 12, 2   | Unilat ecc calf raises<br>3-5 x 10 @ 100% MVC<br>60 s inter-set rest<br>23 sessions total                                                                                                                                                                                            | Stiffness: ramped iso PF MVC on isokinetic dynamometer, with 2D US to assess<br>elongation at GaM MTJ, calculated as the slope of the force-elongation curve from<br>50-100% MVC<br>Modulus: calculated as the slope of the stress-strain curve from 50-100% MVC<br>CSA: 2D US at 2, 4 and 6 cm from calcaneal insertion | AT |
| Hirayama et<br>al., 2017<br>[109] | Training                | 12, 3   | Unilat sled depth jumps<br>10 x 10 @ 100%<br>30 s inter-rep rest                                                                                                                                                                                                                     | Stiffness: iso PF MVC on myometer in prone lying, with 2D US to assess displacement<br>of GaM fascicle intersection at deep apon, calculated as the slop of the force-<br>elongation curve from 50-100% peak torque<br>Modulus: not assessed                                                                             | AT |
|                                   | Control (rec<br>active) |         | No exercise intervention                                                                                                                                                                                                                                                             | CSA: not assessed                                                                                                                                                                                                                                                                                                        |    |

| Houghton et<br>al., 2013 [73]      | Plyometric<br>Control (rec<br>active)                | 8, 2  | Various unilat/bilat horizontal and lateral jump exercises.<br>Varying intensity.<br>15 sessions total<br>No exercise intervention – habitual exercise          | Stiffness: ramped iso PF MVC on isokinetic dynamometer in prone lying, with 2D US to assess elongation at GaM MTJ, calculated as the gradient of linear regressions against the force-elongation curve between 0-40% and 50-90% MVC Modulus: calculated as the gradient of linear regression against the stress-strain curve between 50-90% peak stress CSA: 2D US, 2cm superior to line between medial and lateral malleoli | AT            |
|------------------------------------|------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Kay et al.,<br>2016 [110]          | Training                                             | 6, 2  | Unilat PF @ 20° PF, sustained contraction with passive DF<br>to 10° (i.e., 30° ROM) = induced ecc<br>5 x 12 @ 100%<br>1 s inter-rep rest<br>60 s inter-set rest | Stiffness: ramped iso PF MVC on isokinetic dynamometer, with 2D US to assess<br>elongation at GaM MTJ, calculated as change in PF moment from 50-90% MVC<br>divided by elongation<br>Modulus: not assessed<br>CSA: not assessed                                                                                                                                                                                              | AT            |
| Kongsgaard<br>et al., 2007<br>[65] | Heavy Resistance<br>limb<br>Light Resistance<br>limb | 12, 3 | Unilat con:ecc knee extension<br>Heavy: 10 x 8 @ 70% 1RM<br>180 s inter-set rest<br>Light: 10 x 36 @ equivalent load (not reported)<br>30 s inter-set rest      | Stiffness: ramped iso knee extension MVC using strain gauge, with 2D US to assess<br>elongation of PT between patella and tibial insertions, calculated in final 10% of<br>force-elongation curve<br>Modulus: calculated in the final 10% of stress-strain curve<br>CSA: T1 MRI; proximal, middle and distal regions                                                                                                         | PT            |
| Kubo et al.,<br>2001 [51]          | Short duration<br>limb                               | 12, 4 | Unilat iso knee extension @ 80° knee flexion<br>Short duration: 3 x 50 rapid contraction @ 70% MVC<br>2 s inter-rep rest<br>60 s inter-set rest                 | Stiffness: ramped iso knee extension MVC on isokinetic dynamometer, with 2D US to<br>assess elongation of VL apon at 50% length of thigh visualising fascicle insertion into<br>apon, calculated as the slope of linear regression over 50-100% MVC<br>Modulus: not assessed<br>CSA: T1 MRI, prone lying, immediate superior to patella and 10mm from patella                                                                | QT<br>VL apon |
|                                    | Long duration<br>limb                                |       | Long duration: 4 x 20s @ 70% MVC<br>60 s inter-rep rest.                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
| Kubo et al.,<br>2001 [52]          | Isometric                                            | 12, 4 | Unilat iso knee extension @ 80° knee flexion<br>4 x 20s @ 70% MVC<br>60 s inter-rep rest                                                                        | Stiffness: ramped iso knee extension MVC on isokinetic dynamometer, with 2D US to<br>assess elongation of VL apon at 50% length of thigh visualising fascicle insertion into<br>apon, calculated as the slope of linear regression over 50-100% MVC<br>Modulus: not assessed<br>CSA: T1 MRL propervises immediate superior to patella and 10mm from patella                                                                  | QT<br>VL Apon |
| Kubo et al.,<br>2002 [111]         | Resistance<br>Training<br>(extracted group)          | 8, 4  | Unilat con:ecc PF on leg press<br>5 x 10 @ 70% 1RM                                                                                                              | Stiffness: ramped iso PF MVC on isokinetic dynamometer, with 2D US 30% length of lower leg (proximal to distal) to assess displacement of GaM fascicle intersection with deep apon, calculated as the slope of linear regression over 50-100% MVC                                                                                                                                                                            | AT            |
|                                    | Resistance<br>training + static<br>stretching        |       | Exercises above + 5 x 45 s stretches for PF group                                                                                                               | CSA: T1 MRI, immediately superior to calcaneus and 10mm from calcaneus                                                                                                                                                                                                                                                                                                                                                       |               |
| Kubo et al.,<br>2006 [112]         | Isometric                                            | 12, 4 | Bilat iso leg press<br>10 x 15s @ 70% MVC<br>60 s inter-set rest                                                                                                | Stiffness: ramped iso knee extension MVC on isokinetic dynamometer, with 2D US to assess elongation of VL apon at 50% length of thigh visualising fascicle insertion into apon and PT at apex of patella, calculated as the slope of linear regression over 50-100% MVC                                                                                                                                                      | PT<br>VL Apon |
|                                    | Control (rec<br>active)                              |       | No exercise intervention                                                                                                                                        | Modulus: not assessed<br>CSA: T1 MRI; assessed 10, 20 and 30 mm inferior to patella                                                                                                                                                                                                                                                                                                                                          |               |

| Kubo et al.,<br>2006 [113] | Short length limb              | 12, 4 | Unilat iso knee extension<br>Short: 6 x 15s @ 50-70% MVC @ 50° knee flexion<br>30 s inter-rep rest                           | Stiffness: ramped iso knee extension MVC on isokinetic dynamometer, with 2D US to assess elongation of VL apon at 50% length of thigh visualising fascicle insertion into apon, calculated as the slope of linear regression over 50-100% MVC Modulus: not assessed                                                                                                   | QT<br>VL Apon |
|----------------------------|--------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                            | Long length limb               |       | Long: 6 x 15s @ 50-70% MVC @ 100° knee flexion<br>30 s inter-rep rest.                                                       | CSA: T1 MRI, prone lying, immediate superior to patella and 10mm from patella                                                                                                                                                                                                                                                                                         |               |
| Kubo et al.,<br>2006 [96]  | High load<br>(extracted group) | 12, 3 | Unilat con:ecc knee extension<br>0 - 90° knee flexion<br>4 x 10 @ 80% 1RM<br>Con = 1 s, Ecc = 3 s<br>Inter-set rest = 60 s   | Stiffness: ramped iso knee extension MVC on isokinetic dynamometer, with 2D US to<br>assess elongation of VL apon at 50% length of thigh visualising fascicle insertion into<br>apon and PT at apex of patella, calculated as the slope of linear regression over 50-<br>100% MVC<br>Modulus: not assessed<br>CSA: 2D US; assessed at 25, 50 and 75% length of the PT | PT<br>VL Apon |
|                            | BEK                            |       | Exercise above @ 20% 1RM<br>4 sets: 25/18/15/12 reps                                                                         |                                                                                                                                                                                                                                                                                                                                                                       |               |
| Kubo et al.,<br>2007 [85]  | Plyometric/ Jump<br>limb       | 12, 4 | Unilat Hop and DJ from 20cm;<br>Each exercise: 5 x 10 @ 40% 1RM PF<br>30 s inter-set rest                                    | Stiffness: ramped iso PF MVC on isokinetic dynamometer, with 2D US to assess<br>elongation at GaM MTJ, calculated as the slope of linear regression over 50-100%<br>MVC<br>Modulus: not assessed                                                                                                                                                                      | AT            |
|                            | Weight training<br>limb        |       | Unilat con:ecc 5 x 10 PF @ 80% 1RM<br>Con = 1 s, Ecc = 3s<br>60 s inter-set rest                                             | CSA: T1 MRI, immediately superior to calcaneus and 10mm from calcaneus                                                                                                                                                                                                                                                                                                |               |
| Kubo et al.,<br>2009 [114] | Isometric                      | 12, 4 | Unilat iso knee extension @ 90° knee flexion<br>10 x 15s @ 70% MVC<br>30 s inter-rep rest                                    | Stiffness: ramped iso knee extension MVC on isokinetic dynamometer, with 2D US to assess elongation of VL apon at 50% length of thigh visualising fascicle insertion into apon and PT at apex of patella, calculated as the slope of linear regression over 50-100% MVC                                                                                               | PT<br>VL Apon |
|                            | Con:Ecc                        |       | Unilat con:ecc knee extension between 0-90°<br>5 x 10 @ 80% 1RM<br>Con = ~1s, Ecc = ~3s<br>60 s inter-set rest               | Modulus: not assessed<br>CSA: 2D US; assessed at 25, 50 and 75% length of the PT                                                                                                                                                                                                                                                                                      |               |
| Kubo et al.,<br>2010 [115] | PF                             | 12, 4 | Unilat con:ecc PF<br>5 x 10 @ 80% 1RM<br>60 s inter-set rest<br>Con = 1 s, Ecc = 3 s                                         | Stiffness: ramped iso knee extension and PF MVC on isokinetic dynamometer, with 2D US to assess elongation at the patella apex and GaM MTJ Modulus: not assessed CSA: T1 MRI; assessed immediately inferior to the patella and 20mm distal to patella, and immediately superior to calcaneus and 10mm superior to calcaneus                                           | PT<br>AT      |
|                            | Knee extension                 |       | Unilat con:ecc knee extension between 0-90°<br>5 x 10 @ 80% 1RM<br>Concentric = ~1 s, Eccentric: ~3 s<br>60 s inter-set rest | ,                                                                                                                                                                                                                                                                                                                                                                     |               |

| Kubo et al. <i>,</i><br>2010 [88] | Isometric               | 12, 4 | Unilat iso knee extension @ 90° knee flexion<br>10 x 15 s @ 70% MVC<br>30 s inter-rep rest                                        | Stiffness: ramped iso knee extension MVC on isokinetic dynamometer, with 2D US to assess elongation of VL apon at 50% length of thigh visualising fascicle insertion into apon, calculated as the slope of linear regression over 50-100% MVC Modulus: not assessed | PT<br>VL Apon |
|-----------------------------------|-------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                   | Control (rec<br>active) |       | No exercise intervention                                                                                                          | CSA: T1 MRI;10, 20 and 30 mm inferior to patella                                                                                                                                                                                                                    |               |
| Kubo et al.,<br>2012 [89]         | Isometric               | 12, 4 | Unilat iso PF @ 0° DF (knee extended)<br>15 x 15 s @ 80% MVC<br>30 s inter-rep rest.                                              | Stiffness: ramped iso PF MVC on isokinetic dynamometer, with 2D US to assess<br>elongation at GaM MTJ, calculated as the slope of linear regression over 50-100%<br>MVC<br>Modulus: not assessed                                                                    | AT            |
|                                   | Control (rec<br>active) |       | No exercise intervention                                                                                                          | CSA: T1 MRI; assessed every three images                                                                                                                                                                                                                            |               |
| Kubo et al.,<br>2017 [86]         | Isometric               | 12, 3 | Unilat iso PF (prone lying) @ 0° DF (knee extended)<br>10 x 15 s @ 80% MVC<br>30 s inter-rep rest                                 | Stiffness: ramped iso PF MVC on isokinetic dynamometer, with 2D US to assess elongation at GaM visualising fascicle intersection at deep apon at 30% lower leg length (proximal to distal), calculated as the slope of linear regression over 50-100% MVC           | AT            |
|                                   | Plyometric              |       | Unilat hops/drop jumps on sled<br>5 x 10 @ 40%<br>30 s inter-set rest                                                             | Modulus: not assessed<br>CSA: 2D US; level with lateral malleolus                                                                                                                                                                                                   |               |
| Kubo et al.,<br>2017 [116]        | Concentric              | 12, 3 | Unilat con or ecc knee extn between 0-90° flexion<br>5 x 10 @ 80% 1RM                                                             | Stiffness: ramped iso knee extension MVC on isokinetic dynamometer, with 2D US to assess elongation between patella and tibial insertions, calculated as the slope of                                                                                               | РТ            |
|                                   | Eccentric               |       | Con = 1 s (unloaded ecc = 3 s)<br>Ecc = 3 s (unloaded con = 1 s)<br>60 s inter-set rest                                           | linear regression over 50-100% MVC<br>Modulus: not assessed<br>CSA: 2D US; assessed at 50% PT length                                                                                                                                                                |               |
|                                   | Control (rec<br>active) |       | No exercise intervention                                                                                                          |                                                                                                                                                                                                                                                                     |               |
| Laurent et al.,<br>2020 [117]     | Knee extended           | 10, 2 | Bilat vertical hop and DJ variations (30-40cm)<br>6-8 exercises per session x 10 repetitions per exercise<br>~90 s inter-set rest | Stiffness: iso PF MVC using ankle ergometer with force transducer, with 2D US to assess elongation at GaM MTJ, calculated as slope of torque-elongation curve between 20-80% MVC                                                                                    | AT            |
|                                   | Knee flexed             |       | ~180 s inter-exercise rest<br>200 $\rightarrow$ 400 foot contacts p/wk in either knee extended or<br>flexed position              | Modulus: not assessed<br>CSA: 2D US; 4cm superior to AT calcaneal insertion                                                                                                                                                                                         |               |
|                                   | Control (rec<br>active) |       | No exercise intervention                                                                                                          |                                                                                                                                                                                                                                                                     |               |

| Malliaras et<br>al., 2013 [61] | Concentric                                 | 12, 3 | 4 x 7-8 @ 80% con:ecc 1RM knee extension<br>Con phase = unilat, Ecc phase = bilat                                                                                                    | Stiffness: iso knee extension MVC on isokinetic dynamometer, with 2D US to assess elongation at patella apex, calculated between 50-75% and 75-100% maximum torque                                                                                                                                                                                                                                                | РТ            |
|--------------------------------|--------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                | Eccentric                                  |       | 4 x 12-15 @ 80% con:ecc 1RM knee extension<br>Con phase = bilat, Ecc phase = unilat<br>5 s ecc through 0-90° knee flexion                                                            | Modulus: calculated by multiplying stiffness between 50-75% and 75-100% MVC by ratio of tendon length to CSA CSA: 2D US; 50% length of PT                                                                                                                                                                                                                                                                         |               |
|                                | High load<br>eccentric                     |       | 4 x 7-8 @ 80% ecc 1RM knee extension<br>Con phase = bilat, Ecc phase = unilat<br>5 s ecc through 0-90° knee flexion                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
|                                | Control *                                  |       | No exercise intervention                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
| Massey et al.,<br>2018 [66]    | Explosive<br>contraction                   | 12, 3 | Unilat iso knee extension<br>Explosive: 4 x 10 @ >80% maximal torque<br>5 s inter-rep rest<br>120 s inter-set rest                                                                   | Stiffness: ramped iso knee extension MVC using strain gauge, with 2D US to assess<br>elongation of VL apon at 50% length of the thigh by visualising fascicle intersection<br>with deep apon and of PT via displacement of patella and tibial insertions, calculated<br>as slope of force-elongation curve over 70-80% MVT<br>Modulus: calculated as slope of stress-strain curve over stress range corresponding | PT<br>VL apon |
|                                | Sustained contraction                      |       | Sustained: 4 x 10 @ 75% maximal torque<br>Contraction: 1 s ramp, 3 s plateau<br>2 s inter-rep rest<br>120 s inter-set rest                                                           | to 70-80% MVT<br>CSA: T1 MRI; contiguous images from 2cm superior to patella apex to 2cm inferior to<br>tibial insertion                                                                                                                                                                                                                                                                                          |               |
|                                | Control *                                  |       | No exercise intervention – habitual exercise                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
| McMahon et<br>al., 2013 [67]   | Short range                                | 8, 3  | 4 x con:ecc exercises p/session (2 x squat variations, 1 x<br>machine, 1 x Sampson chair), from: exercises = barbell back<br>squat, Bulgarian split squat, leg press, leg extension, | Stiffness: ramped iso knee extension on isokinetic dynamometer, with 2D US to assess elongation at the patella apex, calculated as slope of force-elongation curve of 10% MVC intervals                                                                                                                                                                                                                           | РТ            |
|                                | Long range                                 |       | dumbbell lunge, static Sampson chair<br>3 x 10 $\rightarrow$ 4 x 8<br>Short = 0-50° knee flexion @ 80% 1RM                                                                           | Modulus: calculated as stiffness multiplied by the ratio of tendon length to CSA CSA: 2D US; assessed at 25, 50 and 75% PT length                                                                                                                                                                                                                                                                                 |               |
|                                | Full range                                 |       | Long range = 40-90° knee flexion @ 55% 1RM<br>Full range = 0-90° knee flexion @ 80% 1RM                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
|                                | Control (rec<br>active)                    |       | No exercise intervention – habitual exercise                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
| McMahon et<br>al., 2018 [68]   | Trained males                              | 8, 3  | 4 x con:ecc exercises p/session (barbell back squat,<br>Bulgarian split squat, leg press, leg extension, dumbbell                                                                    | Stiffness: ramped iso knee extension on isokinetic dynamometer, with 2D US to assess elongation at the patella apex, calculated as the average stiffness value from                                                                                                                                                                                                                                               | РТ            |
|                                | i raineu iemaies                           |       | $3 \times 10 \rightarrow 4 \times 8 @ 80\% 1 \text{RM}$                                                                                                                              | Modulus: calculated as stiffness multiplied by the ratio of tendon length to CSA CSA: 2D US; assessed at 25, 50 and 75% PT length                                                                                                                                                                                                                                                                                 |               |
|                                | Control (males,<br>females; rec<br>active) |       | No exercise intervention                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                   |               |

| Mouraux et<br>al., 2000<br>[118]  | Eccentric<br>Control limb                      | 6, 3  | Unilat ecc DF on isokinetic dynamometer<br>3-6 x 10 @ 30-80% peak torque<br>Untrained contralateral limb                                                                        | Stiffness: not assessed<br>Modulus: not assessed<br>CSA: T2 MRI; assessed 2 cm proximally to calcaneal insertion                                                                                                                                                                                                           | AT |
|-----------------------------------|------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Ogiso et al.,<br>2020 [119]       | Non-muscle<br>stimulation<br>(extracted group) | 3, 3  | 3 x 10 reactive jump + 20 maximum effort reactive jumps                                                                                                                         | Stiffness: iso PF MVC on isokinetic dynamometer, with 2D US to assess elongation at<br>GaM MTJ<br>Modulus: not assessed                                                                                                                                                                                                    | AT |
|                                   | Electrical muscle stimulation                  |       | Exercises above + electrical muscle stimulation                                                                                                                                 | C3A. HUT dssesseu                                                                                                                                                                                                                                                                                                          |    |
|                                   | Control (rec                                   |       | No exercise intervention                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                            |    |
| Onambélé et<br>al., 2008<br>[120] | Resistance<br>training                         | 12, 3 | Bilat con:ecc knee extension and ankle rotator<br>Resistance: 1-4 x 8-12 @ 80% 1RM                                                                                              | Stiffness: ramped iso PF MVC on isokinetic dynamometer, with 2D US to assess elongation (location n/s)                                                                                                                                                                                                                     | AT |
|                                   | Inertial flywheel<br>training                  |       | Bilat con:ecc YOYO leg extension flywheel and ankle rotator<br>Flywheel: 1-4 x 8-12 @ 100% power output                                                                         | CSA: not assessed                                                                                                                                                                                                                                                                                                          |    |
|                                   |                                                |       | 5 min inter-set rest                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                            |    |
| Quinlan et al.,<br>2021 [121]     | Young con<br>Young ecc                         | 8, 3  | Bilat → unilat con or ecc leg press<br>Con: 4 x 15 @ 60% Con 1RM<br>Ecc: 4 x 15 @ 60% Ecc 1RM                                                                                   | Stiffness: ramped iso knee extension MVC on isokinetic dynamometer, with 2D US to assess elongation of PT between patella and tibial insertions, calculated as the gradient of force-elongation curve between 90-100% maximal force                                                                                        | РТ |
|                                   | Old con                                        |       | 3 s contraction<br>120 s inter-set rest                                                                                                                                         | Modulus: calculated as tendon stiffness multiplied by the ratio of tendon length to tend CSA                                                                                                                                                                                                                               |    |
|                                   | Old ecc                                        |       |                                                                                                                                                                                 | CSA: 31 Miki, every 1cm along length of P1                                                                                                                                                                                                                                                                                 |    |
| Reeves et al.,<br>2003 [69]       | Training                                       | 14, 3 | Bilat con:ecc leg press + leg extension (+ five other non-PT<br>loading/general strength exercises)<br>2 x ~10 @ ~60-80% 5RM<br>Con = ~2s<br>Ecc = ~3s<br>~180 s inter-set rest | Stiffness: ramped iso knee extension MVC on isokinetic dynamometer, with 2D US to<br>assess elongation of the PT, calculated as the gradient over 10% intervals of tendon<br>force<br>Modulus: calculated as stiffness multiplied the ratio of tendon length to CSA<br>CSA: 2D US; 25, 50 and 75% of patella tendon length | PT |
|                                   | Control *                                      |       | No exercise intervention – habitual activity                                                                                                                                    |                                                                                                                                                                                                                                                                                                                            |    |

| Reeves et al.,<br>2003 [122]        | Training                | 14, 3   | Bilat con:ecc leg extension + leg press (+ five non-PT<br>loading/general strength exercises)<br>2 x 10 @ ~60-80% 5RM<br>Con = ~2s<br>Ecc = ~3s.<br>~180 s inter-set rest | Stiffness: iso knee extension MVC on isokinetic dynamometer, with 2D US to assess<br>elongation at patella apex, calculated as gradient of force-elongation curve between<br>60-100% MVC<br>Modulus: not assessed<br>CSA: not assessed                      | РТ      |
|-------------------------------------|-------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                     | Control *               |         | No exercise intervention – habitual activity                                                                                                                              |                                                                                                                                                                                                                                                             |         |
| Sanz-López et<br>al., 2016<br>[123] | Eccentric overload      | 6, 2    | Bilat con:ecc YoYo flywheel squats to parallel<br>4 x 7 @ 80% 1RM<br>120 s inter-set rest                                                                                 | Stiffness: not assessed<br>Modulus: not assessed<br>CSA: 2D US; 3cm proximal to calcaneal insertion                                                                                                                                                         | AT      |
|                                     | Control (rec<br>active) |         | No resistance training intervention                                                                                                                                       |                                                                                                                                                                                                                                                             |         |
| Seynnes et<br>al., 2009 [70]        | Training                | 9, 3    | Unilat con:ecc knee extension (Technogym)<br>4 x 10 @ 80% 1RM<br>120 s inter-set rest                                                                                     | Stiffness: ramped iso knee extension on isokinetic dynamometer, with 2D US to<br>assess elongation at patella apex<br>Modulus: calculated as tendon stiffness multiplied by ratio of tendon length to mean<br>CSA<br>CSA: T1 MRI; assessed at 10% intervals | РТ      |
| Standley et<br>al., 2013<br>[124]   | Aerobic cycling         | 12, 3-4 | 20-45 min cyc @ 60-80% heart rate reserve @ 70-90 rpm<br>42 sessions total                                                                                                | Stiffness: not assessed<br>Modulus: not assessed<br>CSA: MRI; average of all slices                                                                                                                                                                         | ΡΤ      |
| Tillin et al.,<br>2012 [125]        | Trained limb            | 4, 4    | Unilat iso explosive knee extension<br>4 x 10 @ ≥90% MVC<br>5 s inter-rep rest<br>120 s inter-set rest                                                                    | Stiffness: ramped iso knee extension MVC via strain gauge, with 2D US to assess displacement of fascicle intersection at VL apon, calculated as slope of force-<br>elongation curve between 10-50% and 50-90% MVC Modulus: not assessed CSA: not assessed   | VL Apon |
|                                     | Control limb            |         | No exercise intervention                                                                                                                                                  |                                                                                                                                                                                                                                                             |         |

| Vikmoen et<br>al., 2016 [59]        | Cc Endurance +<br>strength<br>(extracted group) | 11, 2 | Strength: Smith machine half squat, unilat leg press, unilat cable hip flexion, calf raises 3 x 10RM $\rightarrow$ 4RM (each exercise)<br>Con = ~1 s<br>Ecc = 2-3 s | Stiffness: ramped iso knee extension MVC via force cell, with 2D US to assess displacement of patellar apex relative to tibial plateau; calculated the slope of force-<br>elongation curves between 90-100% MVC<br>Modulus: calculated as stiffness multiplied by ratio of patella length and mean CSA<br>CSA: 2D US; assessed at proximal, middle and distal regions | РТ      |
|-------------------------------------|-------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                     | Endurance<br>(habitual)                         |       | Endurance training (cyc/R, not prescribed): completed on<br>separate day<br>~ 4 x sessions/wk<br>60-100% heart rate                                                 |                                                                                                                                                                                                                                                                                                                                                                       |         |
| Wakahara et<br>al., 2015 [75]       | Training                                        | 12, 3 | Unilat con:ecc knee extension @ 20-100° knee flexion<br>5 x 8 @ 80% 1RM<br>Con = 2s<br>Ecc = 2s<br>90 s inter-set rest                                              | Stiffness: not assessed<br>Modulus: not assessed<br>CSA: T1 MRI; mean value from all slices with visible apon                                                                                                                                                                                                                                                         | VL apon |
|                                     | Control<br>(sedentary/rec<br>active)            |       | No exercise intervention – habitual activity                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |         |
| Walker et al. <i>,</i><br>2020 [58] | Traditional<br>training                         | 10, 2 | Bilat con:ecc leg press, unilat knee extension, bilat knee<br>flexion<br>Each wk: Session 1 = 3 x 6RM, session 2 = 3 x 10RM                                         | Stiffness: ramped iso knee extension on custom dynamometer, with 2D US to assess elongation between patellar apex and tibial insertion, calculated as the slope of force-elongation curve from 50-100% MVC                                                                                                                                                            | PT      |
|                                     | Accentuated eccentric training                  |       | Accentuated ecc = con load + 40%                                                                                                                                    | Modulus: not assessed<br>CSA: not assessed                                                                                                                                                                                                                                                                                                                            |         |
|                                     |                                                 |       | Concentric = 2s, Eccentric = 2s                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                       |         |
|                                     | Control (active)                                |       | No exercise intervention – own resistance training                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |         |
| Waugh et al.,<br>2014 [74]          | Training                                        | 10, 2 | Circuit of team-based activity + 1 x station with 45° con:ecc incline calf raise. 2 x 8-15 RM $\rightarrow$ 3 x 8-15RM                                              | Stiffness: iso PF on isokinetic dynamometer, with 2D US to assess displacement of GaM MTJ, calculated as the slope of linear force-elongation curve between 10-90% MVC Modulus: calculated as slope of stress-strain relationship between 10-90% peak                                                                                                                 | AT      |
|                                     | Control *                                       |       | No exercise intervention                                                                                                                                            | stress<br>CSA: 2D US; assessed ~25 mm from proximal calcaneus                                                                                                                                                                                                                                                                                                         |         |
| Waugh et al.,<br>2018 [54]          | Long rest                                       | 12, 3 | Unilat iso PF<br>5 x 10 x 3 s @ 90% MVC                                                                                                                             | Stiffness: ramped iso PF on isokinetic dynamometer, with 2D US to assess displacement of GaM MTJ, calculated as the slope of the linear force-alongation                                                                                                                                                                                                              | AT      |
|                                     | Short rest                                      |       | Long: 10 s inter-rep rest<br>Short: 3 s inter-rep rest<br>90 s inter-set rest                                                                                       | curve between 25-90% MVC<br>Modulus: calculated as the slope of the stress-strain curve between 25-90% peak<br>stress<br>CSA: 3D UTC transverse images at 1, 2, 3 and 4 cm proximal to tendon insertion                                                                                                                                                               |         |

| Waugh et al.,<br>2021 [55]         | Long rest<br>Short rest   | 12, 3 | Unilat iso PF<br>5 x 10 x 3 s @ 90% MVC<br>Long: 10 s inter-rep rest<br>Short: 3 s inter-rep rest<br>90 s inter-set rest                                                                                                                                                                                                                                                                                                                                                            | Stiffness: ramped iso PF on isokinetic dynamometer, with 2D US to assess<br>displacement of GaM MTJ, calculated as the slope of the linear force-alongation<br>curve between 25-90% MVC<br>Modulus: calculated as the slope of the stress-strain curve between 25-90% peak<br>stress<br>CSA: 3D UTC transverse images at 1, 2, 3 and 4 cm proximal to tendon insertion | AT |
|------------------------------------|---------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Werkhausen<br>et al., 2018<br>[56] | Isometric<br>Control (rec | 10, 3 | Unilat iso PF in standing<br>4 x 10 explosive (~1 s) @ 80% MVC<br>5 s inter-rep rest<br>No exercise intervention – habitual exercise                                                                                                                                                                                                                                                                                                                                                | Stiffness: ramped iso PF on isokinetic dynamometer, with 2D US to assess<br>displacement at GaM MTJ, calculated as the slope of the force-elongation curve<br>between 50-80% MVC<br>Modulus: not assessed<br>CSA: not assessed                                                                                                                                         | AT |
| Werkhausen<br>et al., 2019<br>[57] | active)<br>Training       | 10, 3 | Unilat iso PF in standing<br>4 x 10 explosive (~1 s) @ 80% MVC<br>5 s inter-rep rest                                                                                                                                                                                                                                                                                                                                                                                                | Stiffness: ramped iso PF on isokinetic dynamometer, with 2D US to assess<br>displacement at GaM MTJ, calculated as the slope of the force-elongation curve<br>between 50-80% MVC<br>Modulus: not assessed                                                                                                                                                              | AT |
|                                    | Control (rec<br>active)   |       | Control (rec active)                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CSA: not assessed                                                                                                                                                                                                                                                                                                                                                      |    |
| Wu et al.,<br>2010 [126]           | Training/Jump             | 8, 2  | Wk 1-2 (low intensity): SJ (10x2); split SJ (10x2); cycled split<br>SJ (10x2)<br>Wk 3-4 (low/med): Split SJ (10x2); pike jump (10x2); double<br>leg tuck jump (10x2)<br>Wk 5-6 (med): Pike jump (10x3); double leg tuck jump<br>(10x3); double leg zigzag hop (10x3); double leg hop (10x3)<br>Wk 7-8 (med/high): Double leg zigzag hop (10x3); double<br>leg hop (10x3); depth jump (10x3); box jump (10x3)<br>30s inter-set rest<br>120s inter-exercise rest<br>Box height = 45cm | Stiffness: ramped iso PF MVC via load cell, with 2D US to assess displacement of GaM<br>MTJ, calculated as slope of ascending phase of muscle contraction between 60-100%<br>MVC (on stress-displacement loop)<br>Modulus: not assessed<br>CSA: not assessed                                                                                                           | AT |
|                                    | Control *                 |       | General stretch activity for upper limb and back, 2 x p/wk                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                        |    |

Notes/abbreviations: AT = Achilles tendon; Bilat = bilateral; Cc = concurrent training; Con = concentric; Con:Ecc = concentric: cccentric; Cyc = cycling; DF = dorsiflexion; Ecc = eccentric; CMJ = countermovement jump; DJ = drop jump; F = female; GaM Apon = Gastronemius medialis aponeurosis; GRF = ground reaction force; Iso = isometric; M = Male; min = minute; MRI = magnetic resonance imaging; MTJ = myo/musculotendinous junction; MVC = maximal voluntary contraction; MVT = maximal voluntary torque; n/s = not specified; PF = plantarflexion; PT = patellar tendon; QT = Quadriceps tendon; R = running; rec active = recreationally active; rpm = revolutions per minute; SJ = squat jump; SSC = stretch shortening cycle; Unilat = unilateral; UTC = ultrasound tissue characterisation; VL Apon = Vastus lateralis aponeurosis; Wk = week(s); 2D US = two-dimensional ultrasound; nRM = repetition maximum of n; n x p/wk = number of sessions per week; \* = healthy control participants, no activity status (i.e., not active, recreationally active, trained athlete) not specified;  $\rightarrow = progressing$  to

|                                   |   |   |   |   |   | Criter | ia |   |   |    |    |       |                  |
|-----------------------------------|---|---|---|---|---|--------|----|---|---|----|----|-------|------------------|
| Author                            | 1 | 2 | 3 | 4 | 5 | 6      | 7  | 8 | 9 | 10 | 11 | Total | Relative score % |
| Albracht et al., 2013 [5]         | 1 | 0 | 0 | 0 | - | -      | 0  | 1 | 1 | 0  | 1  | 3     | 38               |
| Arampatzis<br>et al. 2007<br>[19] | 0 | 1 | 0 | 1 | - | -      | 0  | 1 | 1 | 1  | 1  | 6     | 75               |
| Arampatzis<br>et al. 2010<br>[20] | 0 | 1 | 0 | 1 | - | -      | 0  | 1 | 1 | 1  | 1  | 6     | 75               |
| Baptista et<br>al. 2016 [95]      | 0 | 1 | 0 | 1 | - | -      | 1  | 1 | 0 | 1  | 1  | 6     | 75               |
| Bohm et al.<br>2014 [21]          | 0 | 1 | 0 | 1 | - | -      | 0  | 1 | 1 | 1  | 1  | 6     | 75               |
| Bohm et al.,<br>2021 [17]         | 1 | 1 | 0 | 1 | - | -      | 0  | 0 | 1 | 1  | 1  | 5     | 62.5             |
| Carroll et al.<br>2011 [62]       | 1 | 1 | 0 | 0 | - | -      | 1  | 1 | 0 | 1  | 1  | 5     | 63               |
| Centner et<br>al., 2019 [71]      | 1 | 1 | 1 | 1 | - | -      | 1  | 0 | 1 | 1  | 1  | 7     | 88               |
| Dalgaard et<br>al. 2019<br>[104]  | 1 | 0 | 0 | 1 | - | -      | 1  | 1 | 1 | 0  | 1  | 5     | 63               |
| Duclay et al.,<br>2009 [105]      | 1 | 0 | 0 | 1 | - | -      | 0  | 1 | 1 | 0  | 1  | 4     | 50               |
| Eriksen et al.<br>2018 [63]       | 1 | 1 | 0 | 0 | - | -      | 1  | 0 | 1 | 1  | 1  | 5     | 63               |
| Eriksen et al.<br>2019 [64]       | 1 | 1 | 1 | 1 | - | -      | 0  | 1 | 1 | 1  | 1  | 7     | 88               |
| Farup et al.,<br>2014 [106]       | 1 | 0 | 0 | 1 | - | -      | 1  | 0 | 1 | 1  | 1  | 5     | 63               |
| Fletcher et al., 2010 [60]        | 1 | 1 | 0 | 1 | - | -      | 0  | 1 | 1 | 1  | 1  | 6     | 75               |
| Fouré et al.<br>2009 [107]        | 0 | 1 | 0 | 1 | - | -      | 0  | 0 | 0 | 0  | 1  | 3     | 38               |
| Fouré et al.<br>2010 [49]         | 0 | 1 | 0 | 1 | - | -      | 0  | 1 | 1 | 0  | 1  | 5     | 63               |
| Fouré et al.<br>2011 [50]         | 0 | 1 | 0 | 1 | - | -      | 0  | 0 | 0 | 0  | 1  | 3     | 38               |
| Fouré et al.<br>2012 [51]         | 0 | 0 | 0 | 1 | - | -      | 0  | 1 | 1 | 0  | 1  | 4     | 50               |
| Fouré et al.<br>2013 [108]        | 0 | 1 | 0 | 1 | - | -      | 0  | 0 | 0 | 0  | 1  | 3     | 38               |

**<u>S6</u>**. Quality analysis using the PEDro scale, showing individual criteria scores, total score and adjusted relative score (i.e., using number of criteria applicable to study design as the denominator).

| Geremia et<br>al., 2018 [72]<br>* | 1 | - | - | - | - | - | 0 | 0 | 1 | - | 1 | 2 | 50  |
|-----------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|-----|
| Hirayama et<br>al. 2017<br>[109]  | 0 | 1 | 0 | 1 | - | - | 0 | 0 | 0 | 0 | 1 | 3 | 38  |
| Houghton et al., 2013 [73]        | 1 | 0 | 0 | 0 | - | - | 0 | 0 | 0 | 1 | 1 | 2 | 25  |
| Kay et al.<br>2016 [110] *        | 0 | - | - | - | - | - | 0 | 0 | 0 | - | 1 | 1 | 25  |
| Kongsgaard<br>et al. 2007<br>[65] | 0 | 1 | 0 | 1 | - | - | 1 | 0 | 0 | 1 | 1 | 5 | 63  |
| Kubo et al.<br>2001 [51]          | 0 | 1 | 0 | 1 | - | - | 0 | 0 | 0 | 1 | 1 | 4 | 50  |
| Kubo et al.<br>2001 [52] *        | 0 | - | - | - | - | - | 0 | 0 | 0 | - | 1 | 1 | 25  |
| Kubo et al.<br>2002 [111]         | 0 | 1 | 0 | 1 | - | - | 0 | 0 | 0 | 1 | 1 | 4 | 50  |
| Kubo et al.<br>2006 [112]         | 0 | 0 | 0 | 1 | - | - | 0 | 1 | 1 | 1 | 1 | 5 | 63  |
| Kubo et al.<br>2006 [113]         | 0 | 1 | 0 | 1 | - | - | 0 | 0 | 0 | 1 | 1 | 4 | 50  |
| Kubo et al.,<br>2006 [96]         | 0 | 1 | 0 | 1 | - | - | 0 | 0 | 0 | 1 | 1 | 4 | 50  |
| Kubo et al.<br>2007 [85]          | 0 | 1 | 0 | 0 | - | - | 0 | 0 | 0 | 0 | 1 | 2 | 25  |
| Kubo et al.<br>2009 [114]         | 0 | 1 | 0 | 1 | - | - | 0 | 0 | 0 | 0 | 1 | 3 | 38  |
| Kubo et al.,<br>2010 [115]        | 0 | 1 | 0 | 1 | - | - | 0 | 0 | 0 | 1 | 1 | 4 | 50  |
| Kubo et al.<br>2010 [88]          | 0 | 1 | 0 | 0 | - | - | 0 | 1 | 1 | 0 | 1 | 4 | 50  |
| Kubo et al.<br>2012 [89]          | 0 | 1 | 0 | 0 | - | - | 0 | 0 | 0 | 0 | 1 | 2 | 25  |
| Kubo et al.,<br>2017 [86]         | 0 | 1 | 0 | 1 | - | - | 0 | 0 | 0 | 1 | 1 | 4 | 50  |
| Kubo et al.,<br>2017 [116]        | 0 | 1 | 0 | 0 | - | - | 0 | 0 | 0 | 0 | 1 | 2 | 25  |
| Laurent et al.<br>2020 [117]      | 0 | 1 | 0 | 1 | - | - | 0 | 1 | 1 | 1 | 1 | 6 | 75  |
| Malliaras et<br>al. 2013 [61]     | 1 | 1 | 1 | 1 | - | - | 1 | 1 | 1 | 1 | 1 | 8 | 100 |
| Massey et al.<br>2018 [66]        | 0 | 1 | 0 | 1 | - | - | 0 | 1 | 1 | 1 | 1 | 6 | 75  |
| McMahon et al. 2013 [67]          | 1 | 1 | 0 | 0 | - | - | 0 | 0 | 0 | 1 | 1 | 3 | 38  |
| McMahon et<br>al. 2018 [68]       | 1 | 1 | 0 | 1 | - | - | 0 | 1 | 1 | 1 | 1 | 6 | 75  |

|                                     | 43 | 79 | 7 | 82 | - | - | 18 | 41 | 48 | 64 | 100 |   |    |
|-------------------------------------|----|----|---|----|---|---|----|----|----|----|-----|---|----|
| Wu et al.<br>2010 [126]             | 1  | 1  | 0 | 1  | - | - | 0  | 1  | 1  | 0  | 1   | 5 | 63 |
| Werkhausen<br>et al., 2019<br>[57]  | 1  | 0  | 0 | 1  | - | - | 0  | 0  | 0  | 1  | 1   | 3 | 38 |
| Werkhausen<br>et al. 2018<br>[56]   | 0  | 0  | 0 | 1  | - | - | 0  | 0  | 0  | 1  | 1   | 3 | 38 |
| Waugh et al.,<br>2021 [55]          | 1  | 1  | 0 | 1  | - | - | 0  | 0  | 0  | 1  | 1   | 4 | 50 |
| Waugh et al.<br>2018 [54]           | 0  | 1  | 1 | 1  | - | - | 1  | 0  | 1  | 1  | 1   | 7 | 88 |
| Waugh et al.<br>2014 [74]           | 0  | 1  | 0 | 1  | - | - | 0  | 1  | 1  | 1  | 1   | 6 | 75 |
| Walker et al.,<br>2020 [58]         | 1  | 0  | 0 | 0  | - | - | 0  | 0  | 0  | 1  | 1   | 2 | 25 |
| Wakahara et<br>al., 2015 [75]       | 0  | 1  | 0 | 1  | - | - | 0  | 0  | 0  | 0  | 1   | 3 | 38 |
| Vikmoen et<br>al., 2016 [59]        | 1  | 1  | 0 | 1  | - | - | 0  | 0  | 0  | 1  | 1   | 4 | 50 |
| Tillin et al.,<br>2012 [125]        | 1  | 1  | 0 | 1  | - | - | 0  | 1  | 0  | 1  | 1   | 5 | 63 |
| Standley et<br>al., 2013<br>[124] * | 0  | -  | - | -  | - | - | 1  | 0  | 1  | -  | 1   | 3 | 75 |
| Seynnes et<br>al. 2009 [70]<br>*    | 1  | -  | - | -  | - | - | 0  | 0  | 0  | -  | 1   | 1 | 25 |
| Sanz-López<br>et al. 2016<br>[123]  | 1  | 0  | 0 | 1  | - | - | 1  | 1  | 1  | 0  | 1   | 4 | 50 |
| Reeves et al.<br>2003 [122]         | 0  | 1  | 0 | 1  | - | - | 0  | 1  | 1  | 0  | 1   | 5 | 63 |
| Reeves et al.<br>2003 [69]          | 0  | 1  | 0 | 1  | - | - | 0  | 0  | 0  | 0  | 1   | 3 | 38 |
| Quinlan et<br>al., 2021<br>[121]    | 1  | 1  | 0 | 1  | - | - | 0  | 1  | 1  | 1  | 1   | 6 | 75 |
| Onambélé et<br>al., 2008<br>[120]   | 0  | 1  | 0 | 1  | - | - | 0  | 1  | 1  | 1  | 1   | 6 | 75 |
| Ogiso et al.,<br>2020 [119]         | 1  | 1  | 0 | 1  | - | - | 0  | 0  | 0  | 0  | 1   | 3 | 38 |
| al., 2000<br>[118]                  | 1  | 0  | 0 | 1  | - | - | 0  | 0  | 0  | 1  | 1   | 3 | 38 |

Note: Relative score = total score/maximum possible score for the study design (Multiple group, experimental = 8, Single group = 4). Dash/hyphen denotes criterion is not applicable for study design. PEDro score does not use Criterion 1 for calculating total and subsequently is also not included in the calculation of the relative score. Studies with a single group (\*) cannot achieve criteria 2-4 or 10 which have also been removed from

calculation of the relative score for those papers and the percentage of papers meeting the criteria. ITT = Intention to treat; Criteria: 1) Eligibility criteria specified; 2) Random allocation to groups; 3) Allocation concealment; 4) Groups are similar at baseline; 5) Blinding of subjects to allocation/condition; 6) Blinding of therapist delivering condition; 7) Blinding of assessor of key outcome; 8) Key outcome recorded for >85% of participants; 9) All subjects received the condition, or an intention to treat analysis was used; 10) Betweengroups statistics documented; 11) Point measures and variability provided for outcomes.

| Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                                | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Post<br>SD                                                                                                                                                                                                                                                                                                                                                                                                       | n                                                                                                                                                                                                                               | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pre<br>SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | SMD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [95% CI]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Weight                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Concurrent training<br>Fletcher et al. 2010 [60]<br>Vikmoen et al. 2016 [59]<br>Random effects model<br>Heterogeneity: $I^2 = 55\%$ , $p < 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6<br>11<br>17                                                    | 434<br>2483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 122<br>733                                                                                                                                                                                                                                                                                                                                                                                                       | 6<br>11<br>17                                                                                                                                                                                                                   | 366<br>2752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56<br>402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | 0.66<br>-0.44<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [-0.52; 1.84]<br>[-1.29; 0.41]<br>[-1.03; 1.10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9%<br>1.4%<br>2.2%                                                                                                                                                                                                                |
| Jump-based training<br>Bohm et al. 2014 [21]<br>Foure et al. 2009 [107]<br>Foure et al. 2010 [49]<br>Hirayama et al. 2017 [109]<br>Houghton et al. 2013 [73]<br>Kubo et al. 2007 [85]<br>Kubo et al. 2007 [86]<br>Laurent et al. 2020 [117]<br>Digiso et al. 2020 [117]<br>Ogiso et al. 2020 [119]<br>Wu et al. 2010 [126]<br>Random effects model<br>Heterogeneity: $I^2 = 0\%$ , $p = 0.90$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14<br>6<br>9<br>8<br>7<br>10<br>11<br>11<br>11<br>9<br>11<br>107 | 475<br>43<br>283<br>260<br>856<br>154<br>23<br>7<br>6<br>17<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 254<br>18<br>137<br>67<br>564<br>55<br>5<br>2<br>2<br>5<br>35                                                                                                                                                                                                                                                                                                                                                    | 14<br>6<br>9<br>8<br>7<br>10<br>11<br>11<br>11<br>9<br>11<br>107                                                                                                                                                                | 339<br>41<br>223<br>193<br>940<br>129<br>23<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 114<br>3<br>87<br>52<br>473<br>36<br>6<br>1<br>2<br>3<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | 0.67<br>0.12<br>0.50<br>1.06<br>-0.15<br>0.51<br>0.12<br>0.89<br>0.41<br>0.43<br>0.68<br>0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $      \begin{bmatrix} -0.10; 1.43 \\ -1.01; 1.26 \\ -0.44; 1.44 \\ -0.01; 2.12 \\ -1.20; 0.90 \\ -0.38; 1.41 \\ -0.71; 0.96 \\ -0.36; 1.47 \\ -0.43; 1.26 \\ -0.50; 1.37 \\ -0.19; 1.54 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.77 \\ -0.22; 0.75 \\ -0.22; 0.75 \\ -0.22; 0.75 \\ -0.22; 0.75 \\ -0.22; 0.75 \\ -0.22; 0.75 \\ -0.22; 0.75 \\ -0.22; 0.75 \\ -0.22; 0.75 \\ -0.22; 0.75 \\ -0.22; 0.75 \\ -0.22;$ | 1.6%<br>0.9%<br>1.2%<br>1.0%<br>1.3%<br>1.4%<br>1.3%<br>1.4%<br>1.2%<br>1.3%<br>1.3%<br>1.3%                                                                                                                                        |
| Resistance training<br>Albracht et al. 2013 [5]<br>Arampatzis et al. 2007 [19]<br>Arampatzis et al. 2007 [19]<br>Arampatzis et al. 2010 [20]<br>Bohm et al. 2014 [21]<br>Bohm et al. 2019 [71]<br>Duclay et al. 2009 [105]<br>Eriksen et al. 2018 [63]<br>Eriksen et al. 2018 [72]<br>Kay et al. 2016 [110]<br>Kongsgaard et al. 2007 [65]<br>Kongsgaard et al. 2007 [65]<br>Kubo et al. 2002 [111]<br>Kubo et al. 2006 [112]<br>Kubo et al. 2006 [113]<br>Kubo et al. 2006 [113]<br>Kubo et al. 2006 [113]<br>Kubo et al. 2006 [113]<br>Kubo et al. 2006 [114]<br>Kubo et al. 2009 [114]<br>Kubo et al. 2009 [114]<br>Kubo et al. 2009 [114]<br>Kubo et al. 2009 [114]<br>Kubo et al. 2010 [15]<br>Kubo et al. 2017 [85]<br>Kubo et al. 2010 [15]<br>Kubo et al. 2017 [16]<br>Kubo et al. 2017 [16]<br>Kubo et al. 2017 [16]<br>Kubo et al. 2013 [61]<br>Malliaras et al. 2013 [61]<br>McMahon et al. 2013 [67]<br>McMahon et al. 2013 [68]<br>Maskey et al. 2014 [74]<br>Waugh et al. 2014 [75] | 13 1 1 1 1 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1                         | $\begin{array}{c} 315\\ 201\\ 228\\ 261\\ 302\\ 457\\ 539\\ 579\\ 111\\ 3335\\ 565\\ 2911\\ 3335\\ 565\\ 2911\\ 3335\\ 1900\\ 4220\\ 251\\ 350\\ 122\\ 1819\\ 596\\ 122\\ 1819\\ 596\\ 122\\ 1819\\ 596\\ 166\\ 1833\\ 1253\\ 106\\ 1833\\ 1253\\ 106\\ 1833\\ 1253\\ 106\\ 1833\\ 1253\\ 1221\\ 110\\ 96\\ 411\\ 96\\ 104\\ 277\\ 2512\\ 2336\\ 2508\\ 3122\\ 3239\\ 595\\ 687\\ 1221\\ 1124\\ 1167\\ 1517\\ 887\\ 409\\ 2314\\ 2376\\ 2236\\ 2256\\ 3610\\ 2288\\ 697\\ 1893\\ 1582\\ 178\\ 456\\ 461\\ 459\\ \end{array}$ | $\begin{array}{c} 53\\ 41\\ 40\\ 56\\ 57\\ 122\\ 40\\ 172\\ 9\\ 1334\\ 158\\ 2430\\ 693\\ 1079\\ 59\\ 30\\ 1251\\ 330\\ 660\\ 24\\ 40\\ 710\\ 233\\ 106\\ 624\\ 40\\ 710\\ 233\\ 106\\ 632\\ 40\\ 106\\ 632\\ 575\\ 101\\ 2854\\ 471\\ 353\\ 306\\ 232\\ 466\\ 635\\ 575\\ 101\\ 2854\\ 471\\ 3530\\ 305\\ 232\\ 466\\ 635\\ 769\\ 1476\\ 1215\\ 103\\ 676\\ 40\\ 147\\ 147\\ 147\\ 147\\ 147\\ 147\\ 147\\ 147$ | 13 11 11 11 12 14 12 13 12 14 10 9 12 10 11 15 13 12 12 8 8 8 8 9 9 9 9 9 10 10 10 10 10 10 8 9 9 9 11 9 10 10 14 15 14 15 10 11 11 8 8 12 12 8 10 9 8 7 9 15 10 10 10 14 14 11 12 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14 | 272<br>187<br>168<br>276<br>258<br>370<br>336<br>3775<br>2928<br>402<br>249<br>100<br>3676<br>192<br>107<br>3676<br>192<br>107<br>3676<br>192<br>107<br>3676<br>192<br>107<br>3676<br>108<br>1071<br>997<br>81<br>1676<br>406<br>128<br>1071<br>997<br>72<br>322<br>69<br>1803<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1099<br>107<br>1099<br>107<br>1076<br>1087<br>1099<br>1077<br>1099<br>1077<br>2025<br>1090<br>1077<br>2025<br>1090<br>1077<br>2025<br>1090<br>1077<br>2025<br>1090<br>1077<br>2025<br>1090<br>1077<br>2025<br>1090<br>1087<br>1087<br>1087<br>1087<br>1087<br>1099<br>1077<br>2025<br>2025<br>1090<br>1087<br>1099<br>1077<br>2025<br>2091<br>1087<br>1087<br>1087<br>1087<br>1087<br>1099<br>1077<br>2025<br>1090<br>1087<br>1099<br>1077<br>2025<br>1090<br>1077<br>2025<br>1090<br>1077<br>2025<br>1090<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>1087<br>10 | $\begin{array}{c} 48\\ 38\\ 37\\ 53\\ 51\\ 132\\ 89\\ 106\\ 1320\\ 103\\ 9\\ 1530\\ 1530\\ 1530\\ 1530\\ 1530\\ 22\\ 21\\ 662\\ 19\\ 559\\ 22\\ 22\\ 1306\\ 662\\ 19\\ 559\\ 22\\ 22\\ 662\\ 19\\ 559\\ 22\\ 26\\ 662\\ 19\\ 559\\ 22\\ 26\\ 662\\ 19\\ 559\\ 22\\ 26\\ 662\\ 19\\ 559\\ 22\\ 21\\ 662\\ 19\\ 559\\ 22\\ 21\\ 662\\ 19\\ 559\\ 22\\ 21\\ 662\\ 19\\ 559\\ 22\\ 22\\ 136\\ 662\\ 19\\ 20\\ 579\\ 388\\ 360\\ 444\\ 118\\ 773\\ 898\\ 360\\ 444\\ 118\\ 773\\ 898\\ 360\\ 444\\ 118\\ 773\\ 53\\ 146\\ 597\\ 425\\ 428\\ 113\\ 1813\\ 867\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 146\\ 37\\ 353\\ 353\\ 146\\ 37\\ 353\\ 353\\ 353\\ 353\\ 353\\ 353\\ 353\\$ |                                 | 0.82<br>0.362<br>1.52<br>-0.25<br>0.79<br>0.64<br>1.04<br>1.37<br>0.52<br>0.30<br>1.19<br>0.30<br>1.19<br>0.32<br>1.17<br>0.20<br>0.25<br>1.17<br>0.20<br>0.25<br>1.17<br>0.20<br>0.25<br>1.17<br>0.20<br>0.41<br>0.38<br>-0.23<br>1.31<br>0.38<br>-0.23<br>1.37<br>0.20<br>0.41<br>0.38<br>-0.23<br>1.17<br>0.20<br>0.41<br>0.38<br>-0.25<br>1.17<br>0.20<br>0.62<br>1.17<br>0.20<br>0.62<br>1.17<br>0.20<br>0.62<br>1.17<br>0.20<br>0.62<br>1.17<br>0.20<br>0.62<br>1.17<br>0.20<br>0.62<br>1.17<br>0.20<br>0.62<br>1.17<br>0.20<br>0.62<br>1.17<br>0.20<br>0.62<br>1.17<br>0.20<br>0.62<br>1.17<br>0.20<br>0.65<br>1.12<br>1.06<br>0.32<br>1.17<br>0.03<br>0.75<br>0.65<br>1.22<br>1.06<br>0.56<br>0.56<br>0.56<br>0.98<br>0.72<br>0.56<br>0.65<br>1.24<br>0.65<br>1.44<br>0.69<br>0.56<br>0.65<br>1.25<br>0.98<br>0.72<br>0.56<br>0.65<br>1.25<br>0.98<br>0.72<br>0.56<br>0.65<br>1.24<br>0.65<br>1.25<br>0.98<br>0.72<br>0.56<br>0.65<br>1.25<br>0.98<br>0.72<br>0.65<br>1.17<br>0.03<br>0.62<br>0.65<br>1.25<br>0.98<br>0.72<br>0.56<br>0.65<br>1.24<br>0.65<br>1.24<br>0.65<br>1.25<br>0.98<br>0.72<br>0.56<br>0.65<br>1.25<br>0.98<br>0.72<br>0.56<br>0.65<br>1.24<br>0.65<br>1.24<br>0.75<br>0.98<br>0.72<br>0.56<br>0.65<br>1.24<br>0.75<br>0.98<br>0.72<br>0.56<br>0.65<br>1.24<br>0.75<br>0.98<br>0.72<br>0.56<br>0.65<br>1.24<br>0.71<br>0.31<br>1.10<br>1.51<br>0.31<br>0.31<br>0.31<br>0.31<br>0.41<br>0.80<br>0.51<br>0.31<br>0.31<br>0.31<br>0.31<br>0.41<br>0.80<br>0.51<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31 | $ \begin{bmatrix} 0.02; 1.63 \\ [-0.49; 1.20] \\ [-0.9; 0.59] \\ [-0.09; 1.66] \\ [-0.18; 1.47] \\ [-0.27; 1.30] \\ [-0.27; 1.30] \\ [-0.51; 1.10] \\ [-0.33; 1.58] \\ [-0.65; 0.95] \\ [-0.60; 1.16] \\ [-0.45; 1.24] \\ [-0.33; 1.58] \\ [-0.65; 0.95] \\ [-0.60; 1.16] \\ [-0.45; 1.24] \\ [-0.33; 1.57] \\ [-0.27; 1.94] \\ [-0.43; 1.19] \\ [-1.04; 0.57] \\ [-0.27; 1.94] \\ [-0.43; 1.19] \\ [-1.04; 0.57] \\ [-0.20; 2.42] \\ [-0.33; 1.57] \\ [-0.23; 1.83] \\ [-0.33; 1.57] \\ [-0.33; 1.57] \\ [-0.33; 1.57] \\ [-0.33; 1.57] \\ [-0.33; 1.57] \\ [-0.69; 1.28] \\ [-0.69; 1.28] \\ [-0.69; 1.28] \\ [-0.69; 1.28] \\ [-0.69; 1.28] \\ [-0.69; 1.28] \\ [-0.69; 1.28] \\ [-0.69; 1.28] \\ [-0.69; 1.28] \\ [-0.69; 1.28] \\ [-0.69; 1.28] \\ [-0.69; 2.42] \\ [-0.69; 1.28] \\ [-0.73; 1.13] \\ [-0.33; 1.57] \\ [-0.73; 1.13] \\ [-0.33; 1.57] \\ [-0.73; 1.13] \\ [-0.33; 1.57] \\ [-0.60; 1.170] \\ [-0.61; 1.26] \\ [-0.61; 1.26] \\ [-0.61; 1.26] \\ [-0.61; 1.26] \\ [-0.61; 2.20] \\ [-0.61; 2.20] \\ [-0.61; 2.20] \\ [-0.61; 2.20] \\ [-0.5; 2.09] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.24] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21] \\ [-0.34; 2.21]$                   | 1.5%<br>1.4%<br>1.3%<br>1.4%<br>1.3%<br>1.5%<br>1.5%<br>1.5%<br>1.4%<br>1.5%<br>1.4%<br>1.5%<br>1.4%<br>1.5%<br>1.4%<br>1.5%<br>1.4%<br>1.5%<br>1.4%<br>1.5%<br>1.4%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2 |
| Heterogeneity: $l^2 = 33\%$ , $p < 0.01$<br>Residual heterogeneity: $l^2 = 29\%$ , $p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o < 0.01                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 -2 0 2 4<br>Decrease Increase |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |

<u>S7.</u> Forest plot for the meta-analysis of stiffness subdivided by training intervention type showing standardised mean differences (SMD) and 95% confidence intervals (CI).

| <u>S8.</u> | Forest plot for | r the meta-and | alysis of modul | us subdivided b | by training | intervention t | type showing |
|------------|-----------------|----------------|-----------------|-----------------|-------------|----------------|--------------|
| stan       | dardised mear   | differences    | (SMD) and 95%   | 6 confidence in | tervals (CI | ).             |              |

|                                               |         |      | Post |     |      | Pre  |                   |        |               |        |
|-----------------------------------------------|---------|------|------|-----|------|------|-------------------|--------|---------------|--------|
| Study                                         | n       | Mean | SD   | n   | Mean | SD   |                   | SMD    | [95% CI]      | Weight |
| 0                                             |         |      |      |     |      |      | 13                |        |               |        |
| Concurrent training                           | 44      | 005  | 100  | 44  | 1000 | 104  |                   | 0.01   | [ 1 47: 0 25] | 0.00/  |
| Vikmoen et al. 2016 [59]                      | 11      | 925  | 162  | 11  | 1038 | 194  |                   | -0.61  | [-1.47; 0.25] | 2.8%   |
| Hotorogonoity: not applicable                 | 11      |      |      | 11  |      |      | <u> </u>          | -0.01  | [-1.47, 0.25] | 2.070  |
| Heterogeneity, not applicable                 |         |      |      |     |      |      |                   |        |               |        |
| Jump-based training                           |         |      |      |     |      |      |                   |        |               |        |
| Bohm et al 2014 [21]                          | 14      | 1140 | 486  | 14  | 920  | 299  |                   | 0.53   | [-0 23·1 28]  | 3.0%   |
| Houghton et al. 2013 [73]                     | 7       | 2000 | 1300 | 7   | 2500 | 1300 |                   | -0.36  | [-1 42: 0 70] | 2 4%   |
| Random effects model                          | 21      | 2000 | 1000 | 21  | 2000 | 1000 |                   | 0.17   | [-0.69: 1.02] | 5.4%   |
| Heterogeneity: $l^2 = 44\%$ , $p = 0.18$      |         |      |      |     |      |      |                   |        | L             |        |
|                                               |         |      |      |     |      |      |                   |        |               |        |
| Resistance training                           |         |      |      |     |      |      |                   |        |               |        |
| Arampatzis et al. 2007 [19]                   | 11      | 400  | 293  | 11  | 420  | 401  |                   | -0.05  | [-0.89; 0.78] | 2.9%   |
| Arampatzis et al. 2007 [19]                   | 11      | 680  | 355  | 11  | 440  | 278  |                   | 0.72   | [-0.14; 1.59] | 2.8%   |
| Arampatzis et al. 2010 [20]                   | 11      | 970  | 265  | 11  | 1010 | 199  |                   | -0.16  | [-1.00; 0.67] | 2.9%   |
| Arampatzis et al. 2010 [20]                   | 11      | 1130 | 332  | 11  | 970  | 232  |                   | 0.54   | [-0.32; 1.39] | 2.8%   |
| Bohm et al. 2014 [21]                         | 12      | 1050 | 277  | 12  | 890  | 277  |                   | 0.56   | [-0.26; 1.38] | 2.9%   |
| Bohm et al. 2014 [21]                         | 14      | 1430 | 636  | 14  | 910  | 262  |                   | 1.04   | [ 0.24; 1.83] | 2.9%   |
| Bohm et al. 2014 [21]                         | 12      | 1410 | 381  | 12  | 970  | 277  |                   | 1.28   | [ 0.38; 2.17] | 2.7%   |
| Carroll et al. 2011 [62]                      | 12      | 1220 | 450  | 12  | 1030 | 416  |                   | 0.42   | [-0.39; 1.23] | 2.9%   |
| Centner et al. 2019 [71]                      | 14      | 1848 | 481  | 14  | 1540 | 492  |                   | 0.61   | [-0.15; 1.38] | 3.0%   |
| Eriksen et al. 2018 [63]                      | 9       | 1330 | 690  | 9   | 1230 | 390  |                   | 0.17   | [-0.76; 1.10] | 2.7%   |
| Eriksen et al. 2018 [63]                      | 12      | 735  | 263  | 12  | 703  | 253  |                   | 0.12   | [-0.68; 0.92] | 2.9%   |
| Eriksen et al. 2019 [64]                      | 10      | 1560 | 443  | 10  | 1510 | 474  | - <b></b>         | 0.10   | [-0.77; 0.98] | 2.8%   |
| Geremia et al. 2018 [/2]                      | 15      | 1292 | 436  | 15  | 695  | 160  |                   | 1.//   | [ 0.91; 2.63] | 2.8%   |
| Kongsgaard et al. 2007 [65]                   | 12      | 1650 | 554  | 12  | 1470 | 589  |                   | 0.30   | [-0.50; 1.11] | 2.9%   |
| Kongsgaard et al. 2007 [65]                   | 12      | 1360 | 658  | 12  | 1420 | 121  |                   | -0.08  | [-0.88; 0.72] | 2.9%   |
| Kubo et al. 2001 [52]                         | 8       | 433  | 35   | 8   | 288  | 26   |                   | - 4.45 | [2.42; 6.47]  | 1.1%   |
| Malliaras et al. 2013 [61]                    | 9       | 942  | 279  | 9   | 620  | 223  |                   | 1.22   | [0.19; 2.24]  | 2.4%   |
| Malliaras et al. 2013 [61]                    | 10      | 1022 | 339  | 10  | 131  | 390  |                   | 0.75   | [-0.17; 1.66] | 2.7%   |
|                                               | 10      | 1400 | 436  | 10  | 570  | 191  |                   | 1.25   | [0.28; 2.23]  | 2.5%   |
| Massey et al. 2018 [66]                       | 14      | 1490 | 270  | 14  | 1230 | 180  |                   | 1.10   | [0.30; 1.90]  | 2.9%   |
| McMabon et al. 2013 [67]                      | 10      | 1100 | 120  | 10  | 820  | 270  |                   | 2.44   | [-0.15, 1.51] | 0.1%   |
| McMahon et al. 2013 [67]                      | 11      | 990  | 110  | 11  | 740  | 90   |                   | 2.44   | [1.22, 3.03]  | 2.1/0  |
| McMahon et al. 2013 [67]                      | 11      | 1150 | 110  | 11  | 780  | 100  |                   | 2.00   | [2.00:4.77]   | 1.8%   |
| McMahon et al. 2018 [68]                      | 8       | 990  | 255  | 8   | 780  | 170  |                   | 0.92   | [_0 13: 1 96] | 2.4%   |
| McMahon et al. 2018 [68]                      | 8       | 600  | 226  | 8   | 420  | 113  |                   | 0.95   | [-0.10; 2.00] | 2.4%   |
| Quinlan et al 2021 [121]                      | 8       | 1280 | 230  | 8   | 710  | 130  | T                 | 2 88   | [137:440]     | 1.6%   |
| Quinlan et al. 2021 [121]                     | 10      | 1510 | 440  | 10  | 1160 | 290  |                   | 0.90   | [-0.03: 1.83] | 2.6%   |
| Quinlan et al. 2021 [121]                     | 9       | 1460 | 350  | 9   | 1050 | 270  |                   | 1.25   | [ 0.22: 2.28] | 2.4%   |
| Quinlan et al. 2021 [121]                     | 8       | 1430 | 570  | 8   | 800  | 250  |                   | 1.35   | [ 0.23; 2.47] | 2.3%   |
| Reeves et al. 2003 [69]                       | 9       | 2200 | 800  | 9   | 1300 | 300  |                   | 1.42   | [ 0.36; 2.48] | 2.4%   |
| Seynnes et al. 2009 [70]                      | 15      | 1160 | 1201 | 15  | 980  | 1162 |                   | 0.15   | [-0.57; 0.87] | 3.1%   |
| Waugh et al. 2014 [74]                        | 10      | 799  | 150  | 10  | 642  | 171  | -                 | 0.94   | [ 0.00; 1.87] | 2.6%   |
| Waugh et al. 2018 [54]                        | 14      | 1586 | 611  | 14  | 1261 | 459  | +                 | 0.58   | [-0.18; 1.34] | 3.0%   |
| Waugh et al. 2018 [54]                        | 14      | 1529 | 459  | 14  | 1242 | 420  |                   | 0.63   | [-0.13; 1.39] | 3.0%   |
| Random effects model                          | 389     |      |      | 389 |      |      | \$                | 0.90   | [ 0.65; 1.15] | 91.8%  |
| Heterogeneity: $I^2 = 61\%$ , $p = NA$        |         |      |      |     |      |      |                   |        |               |        |
| Random effects model                          | 421     |      |      | 421 |      |      | •                 | 0.82   | [ 0.58; 1.07] | 100.0% |
| Heterogeneity: $I^2 = 63\%$ , $p < 0.01$      | 13 40   |      |      |     |      |      |                   | 1      |               |        |
| Residual heterogeneity: I <sup>2</sup> = 61%, | p < 0.0 | 1    |      |     |      |      | -6 -4 -2 0 2 4    | 6      |               |        |
|                                               |         |      |      |     |      |      | Decrease Increase |        |               |        |

**<u>S9.</u>** Forest plot for the meta-analysis of cross-sectional area subdivided by training type showing standardised mean differences (SMD) and 95% confidence intervals (CI).

| Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean                                                                                                                                                                                                                                                                                                         | Post<br>SD                                                                                                                                                                                                                                                                 | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pre<br>SD                                                                                 |                                  | SMD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [95% CI]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aerobic training<br>Standley et al. 2013 [124]<br>Random effects model<br>Heterogeneity: not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92                                                                                                                                                                                                                                                                                                           | 18                                                                                                                                                                                                                                                                         | 9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                                        |                                  | 0.11<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [-0.81; 1.04]<br>[-0.81; 1.04]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2%<br>1.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Concurrent training<br>Vikmoen et al. 2016 [59]<br>Random effects model<br>Heterogeneity: not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>11</b><br>11                                                                                                                                                                                                                                                                                                                                                                                                                                           | 69                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                          | <mark>11</mark><br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                         |                                  | 0.45<br>0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [-0.40; 1.30]<br>[-0.40; 1.30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.4%<br>1.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Jump-based training<br>Bohm et al. 2014 [21]<br>Foure et al. 2010 [49]<br>Houghton et al. 2013 [73]<br>Kubo et al. 2007 [85]<br>Kubo et al. 2017 [86]<br>Laurent et al. 2020 [117]<br>Random effects model<br>Heterogeneity: $J^2 = 0\%$ , $p = NA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14<br>9<br>7<br>10<br>11<br>11<br>73                                                                                                                                                                                                                                                                                                                                                                                                                      | 82<br>57<br>79<br>59<br>65<br>62<br>56                                                                                                                                                                                                                                                                       | 13<br>13<br>9<br>7<br>11<br>10                                                                                                                                                                                                                                             | 14<br>9<br>7<br>10<br>11<br>11<br>73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80<br>56<br>70<br>57<br>66<br>62<br>56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15<br>12<br>7<br>9<br>8<br>11<br>10                                                       |                                  | 0.14<br>0.13<br>- 1.12<br>0.20<br>-0.13<br>0.00<br>0.00<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [-0.60; 0.88]<br>[-0.80; 1.05]<br>[-0.04; 2.28]<br>[-0.67; 1.08]<br>[-0.97; 0.71]<br>[-0.84; 0.84]<br>[-0.84; 0.84]<br>[-0.19; 0.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9%<br>1.2%<br>0.8%<br>1.3%<br>1.5%<br>1.5%<br>9.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Resistance training<br>Arampatzis et al. 2007 [19]<br>Arampatzis et al. 2010 [20]<br>Arampatzis et al. 2010 [20]<br>Baptista et al. 2016 [95]<br>Bohm et al. 2014 [21]<br>Bohm et al. 2014 [21]<br>Carnoll et al. 2014 [21]<br>Fixsen et al. 2018 [63]<br>Eriksen et al. 2018 [63]<br>Eriksen et al. 2018 [63]<br>Eriksen et al. 2014 [106]<br>Foure et al. 2015 [72]<br>Kongsgaard et al. 2007 [65]<br>Kubo et al. 2000 [51]<br>Kubo et al. 2000 [51]<br>Kubo et al. 2000 [51]<br>Kubo et al. 2000 [113]<br>Kubo et al. 2000 [113]<br>Kubo et al. 2000 [114]<br>Kubo et al. 2000 [114]<br>Kubo et al. 2010 [115]<br>Kubo et al. 2017 [116]<br>Kubo et al. 2013 [61]<br>Malliaras et al. 2013 [61]<br>MorMahon et al. 2013 [67]<br>McMahon et al. 2013 [67]<br>McMahon et al. 2013 [67]<br>McMahon et al. 2013 [67]<br>McMahon et al. 2014 [121]<br>Quinlan et al. 2021 [12 | 11<br>11<br>11<br>12<br>23<br>22<br>14<br>12<br>14<br>14<br>9<br>11<br>01<br>11<br>11<br>11<br>12<br>12<br>8<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>10<br>010<br>10<br>8<br>9<br>9<br>9<br>9<br>11<br>9<br>10<br>11<br>11<br>11<br>11<br>12<br>12<br>8<br>8<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>10<br>10<br>10<br>11<br>11<br>11<br>11<br>12<br>12<br>14<br>12<br>12<br>14<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | $\begin{array}{c} 53\\ 53\\ 60\\ 56\\ 10\\ 10\\ 82\\ 83\\ 79\\ 115\\ 74\\ 97\\ 129\\ 123\\ 124\\ 149\\ 67\\ 722\\ 121\\ 118\\ 213\\ 215\\ 59\\ 73\\ 205\\ 78\\ 68\\ 68\\ 81\\ 74\\ 66\\ 118\\ 120\\ 98\\ 73\\ 77\\ 76\\ 81\\ 70\\ 257\\ 90\\ 85\\ 87\\ 89\\ 84\\ 82\\ 107\\ 37\\ 76\\ 61\\ 60\\ \end{array}$ | $\begin{array}{c}15\\14\\35\\6\\1\\2\\22\\19\\10\\11\\4\\33\\22\\2\\29\\10\\11\\4\\33\\22\\29\\10\\11\\4\\33\\22\\29\\10\\11\\4\\33\\22\\29\\10\\10\\8\\8\\8\\8\\8\\8\\8\\22\\10\\9\\8\\9\\19\\19\\8\\13\\14\\9\\16\\13\\22\\6\\9\\5\\11\\22\\23\\4\\6\\17\\14\end{array}$ | 11<br>11<br>11<br>12<br>23<br>22<br>14<br>12<br>14<br>14<br>19<br>12<br>10<br>11<br>11<br>11<br>11<br>12<br>12<br>8<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>10<br>10<br>10<br>10<br>8<br>9<br>9<br>9<br>9<br>11<br>9<br>10<br>10<br>14<br>11<br>11<br>11<br>12<br>23<br>12<br>4<br>12<br>14<br>14<br>19<br>12<br>10<br>11<br>11<br>11<br>11<br>11<br>12<br>12<br>12<br>14<br>14<br>19<br>12<br>10<br>11<br>11<br>11<br>11<br>11<br>12<br>12<br>12<br>14<br>14<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | $\begin{array}{c} 50\\ 48\\ 58\\ 69\\ 9\\ 9\\ 78\\ 0\\ 75\\ 117\\ 700\\ 86\\ 2102\\ 211\\ 117\\ 140\\ 138\\ 68\\ 2117\\ 116\\ 2102\\ 261\\ 73\\ 204\\ 202\\ 78\\ 59\\ 66\\ 0\\ 72\\ 74\\ 559\\ 66\\ 0\\ 72\\ 74\\ 59\\ 66\\ 0\\ 72\\ 74\\ 59\\ 66\\ 0\\ 72\\ 74\\ 59\\ 66\\ 0\\ 84\\ 87\\ 89\\ 84\\ 64\\ 103\\ 62\\ 58\\ 84\\ 64\\ 103\\ 62\\ 58\\ 84\\ 64\\ 103\\ 62\\ 58\\ 84\\ 64\\ 103\\ 62\\ 58\\ 84\\ 64\\ 103\\ 62\\ 58\\ 84\\ 64\\ 103\\ 62\\ 58\\ 84\\ 64\\ 103\\ 62\\ 58\\ 84\\ 64\\ 103\\ 62\\ 58\\ 84\\ 64\\ 103\\ 62\\ 58\\ 84\\ 64\\ 103\\ 62\\ 58\\ 84\\ 64\\ 103\\ 62\\ 58\\ 84\\ 64\\ 103\\ 62\\ 58\\ 84\\ 64\\ 103\\ 62\\ 58\\ 84\\ 64\\ 103\\ 62\\ 58\\ 84\\ 86\\ 84\\ 87\\ 88\\ 84\\ 86\\ 84\\ 86\\ 86\\ 86\\ 86\\ 86\\ 86\\ 86\\ 86\\ 86\\ 86$ | $\begin{array}{c} 15 \\ 13 \\ 34 \\ 38 \\ 1 \\ 3 \\ 1 \\ 1 \\ 3 \\ 1 \\ 1 \\ 3 \\ 1 \\ 1$ |                                  | 0.14<br>0.30<br>0.02<br>0.82<br>0.21<br>0.34<br>-0.06<br>0.33<br>0.34<br>-0.06<br>0.34<br>-0.07<br>0.06<br>0.34<br>-0.07<br>0.06<br>0.34<br>-0.07<br>0.44<br>0.56<br>-0.11<br>1.011<br>0.28<br>0.10<br>0.15<br>-0.22<br>0.01<br>0.15<br>-0.22<br>0.01<br>0.15<br>-0.22<br>0.01<br>0.15<br>-0.22<br>0.01<br>0.15<br>-0.22<br>0.01<br>0.15<br>-0.22<br>0.01<br>0.15<br>-0.22<br>0.01<br>0.15<br>-0.22<br>0.01<br>0.15<br>-0.22<br>0.01<br>0.15<br>-0.22<br>0.01<br>0.15<br>-0.22<br>0.01<br>0.15<br>-0.22<br>0.01<br>0.15<br>-0.22<br>0.01<br>0.15<br>-0.22<br>0.01<br>0.15<br>-0.22<br>0.01<br>0.16<br>0.08<br>0.21<br>0.06<br>0.08<br>0.21<br>0.06<br>0.03<br>0.21<br>0.06<br>0.33<br>0.21<br>0.06<br>0.33<br>0.21<br>0.22<br>0.00<br>0.08<br>0.21<br>0.00<br>0.08<br>0.21<br>0.00<br>0.08<br>0.21<br>0.00<br>0.08<br>0.21<br>0.00<br>0.08<br>0.21<br>0.00<br>0.08<br>0.21<br>0.00<br>0.08<br>0.21<br>0.00<br>0.03<br>0.21<br>0.22<br>0.00<br>0.03<br>0.21<br>0.22<br>0.00<br>0.03<br>0.21<br>0.22<br>0.00<br>0.03<br>0.21<br>0.22<br>0.01<br>0.22<br>0.01<br>0.06<br>0.03<br>0.21<br>0.22<br>0.03<br>0.03<br>0.21<br>0.22<br>0.03<br>0.21<br>0.22<br>0.03<br>0.21<br>0.22<br>0.03<br>0.21<br>0.22<br>0.03<br>0.21<br>0.22<br>0.03<br>0.21<br>0.22<br>0.03<br>0.21<br>0.22<br>0.03<br>0.21<br>0.22<br>0.03<br>0.21<br>0.22<br>0.03<br>0.21<br>0.22<br>0.03<br>0.21<br>0.22<br>0.03<br>0.21<br>0.22<br>0.00<br>0.22<br>0.03<br>0.21<br>0.22<br>0.03<br>0.21<br>0.22<br>0.08<br>0.10<br>0.22<br>0.03<br>0.21<br>0.22<br>0.08<br>0.10<br>0.22<br>0.08<br>0.10<br>0.22<br>0.08<br>0.10<br>0.22<br>0.08<br>0.10<br>0.22<br>0.08<br>0.10<br>0.22<br>0.08<br>0.14<br>0.22<br>0.08<br>0.10<br>0.21<br>0.22<br>0.08<br>0.104<br>0.01<br>0.02<br>0.08<br>0.01<br>0.00<br>1.04<br>1.04<br>0.23<br>0.21<br>0.22<br>0.08<br>0.10<br>0.21<br>0.02<br>0.08<br>0.10<br>0.21<br>0.02<br>0.08<br>0.01<br>0.02<br>0.03<br>0.03<br>0.01<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.01<br>0.00<br>0.04<br>0.14<br>0.23<br>0.21<br>0.22<br>0.08<br>0.14<br>0.22<br>0.08<br>0.14<br>0.22<br>0.08<br>0.14<br>0.22<br>0.08<br>0.14<br>0.23<br>0.21<br>0.22<br>0.20<br>0.21<br>0.22<br>0.22<br>0.22<br>0.23<br>0.24<br>0.24<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0 | $ \begin{bmatrix} -0.70; 0.98] \\ [-0.55; 1.14] \\ [-0.79; 0.88] \\ [-0.82; 0.85] \\ [0.22; 1.42] \\ [-0.37; 0.79] \\ [-0.45; 1.16] \\ [-0.52; 0.97] \\ [-0.45; 1.16] \\ [-0.52; 0.97] \\ [-0.47; 1.14] \\ [-0.86; 0.74] \\ [-0.56; 0.92] \\ [-0.22; 1.29] \\ [-0.22; 1.29] \\ [-0.22; 1.29] \\ [-0.22; 1.29] \\ [-0.23; 1.29] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.30; 1.42] \\ [-0.70; 0.91] \\ [-0.70; 0.91] \\ [-0.73; 1.08] \\ [-0.77; 0.99] \\ [-0.77; 0.99] \\ [-0.76; 0.99] \\ [-0.76; 0.99] \\ [-0.76; 0.99] \\ [-0.76; 0.99] \\ [-0.76; 0.97] \\ [-0.67; 1.09] \\ [-0.76; 1.09] \\ [-0.76; 1.09] \\ [-0.76; 1.16] \\ [-0.65; 1.22] \\ [-1.04; 0.45] \\ [-0.67; 1.30] \\ [-0.72; 1.04] \\ [-0.95; 0.99] \\ [-0.72; 1.04] \\ [-0.95; 0.99] \\ [-0.72; 1.04] \\ [-0.95; 0.99] \\ [-0.72; 1.04] \\ [-0.92; 0.93] \\ [0.38; 1.71] \\ [0.24; 1.77] \\ [-0.84; 0.67] \\ [-0.60; 0.88] \\ [0.12; 0.34] \\ \end{bmatrix}$ | 1.5%<br>1.5%<br>1.5%<br>1.5%<br>2.9%<br>3.1%<br>1.6%<br>1.9%<br>1.6%<br>1.9%<br>1.6%<br>1.5%<br>1.4%<br>1.5%<br>1.4%<br>1.5%<br>1.4%<br>1.5%<br>1.4%<br>1.5%<br>1.4%<br>1.5%<br>1.4%<br>1.1%<br>1.9%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.4%<br>1.3%<br>1.4%<br>1.3%<br>1.4%<br>1.5%<br>1.4%<br>1.2%<br>1.4%<br>1.5%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.4%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.2%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.9%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.9%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>1.5% |
| Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $p = 1.00$<br>Residual heterogeneity: $l^2 = 0\%$ , $p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 <b>51</b><br>= 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                            | 752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           | -2 -1 0 1 2<br>Decrease Increase | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [ U.12; 0.33]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

**<u>S10.</u>** Descriptive statistics for sub-group analyses in Figure 6, showing mean, 95% confidence intervals and range of quantitative grouping variables.

| Variable         | Sub-group | Ν  | Mean    | 95%CI             | Range        |
|------------------|-----------|----|---------|-------------------|--------------|
| Intensity (%)    | Low       | 7  | 57.86   | 55.88 - 59.84     | 55 - 60      |
|                  | High      | 54 | 82.02   | 79.54 - 84.50     | 70 - 120     |
| Strain (%)       | Low       | 2  | 2.99    | 2.96 - 3.01       | 2.97 - 3.00  |
|                  | High      | 6  | 6.12    | 5.33 - 6.91       | 4.72 - 6.90  |
| Volume (au)      | Low       | 23 | 1715.87 | 1332.73 - 2099.01 | 280 - 3060   |
|                  | High      | 33 | 5692.73 | 3936.78 - 7448.68 | 3200 - 32400 |
| Duration (weeks) | <12       | 12 | 7.33    | 6.42 - 8.25       | 4 - 10       |
|                  | ≥12       | 40 | 13.40   | 11.44 - 15.36     | 12 - 52      |

<u>S11.</u> Forest plot for the meta-analysis of stiffness subdivided by protocol intensity (high versus low) showing standardised mean differences (SMD) and 95% confidence intervals (CI) of resistance training studies.

| High Intervalip<br>Arampatize et al. 2010 [2]         13         315         53         13         272         48           Arampatize et al. 2010 [2]         11         228         40         11         168         37         152         1052 [249]         157           Bohm et al. 2014 [21]         14         339         254         14         336         158         14         136         158         14         136         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144 <td< th=""><th>Study</th><th>n</th><th>Mean</th><th>Post<br/>SD</th><th>n</th><th>Mean</th><th>Pre<br/>SD</th><th></th><th>SMD</th><th>[95% CI]</th><th>Weight</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Study                                                                                  | n        | Mean       | Post<br>SD | n   | Mean | Pre<br>SD |             | SMD    | [95% CI]                                                                                                        | Weight            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------|------------|------------|-----|------|-----------|-------------|--------|-----------------------------------------------------------------------------------------------------------------|-------------------|
| Abracht erial 2013 [5]       13       315       53       13       272       48       0.82       0.022       163       187         Arampatzie erial 2007 [19]       11       228       40       11       168       37       0.79       169       166       1.77       166       1.77       166       1.77       166       1.77       166       1.77       166       1.77       166       2.77       170       170       170       171       183       187       2.82       1.02       1.77       166       1.77       167       2.77       170       171       183       187       171       183       187       123       2.82       1.20       0.30       1.51       1.81       1.77       166       1.77       176       171       16       1.81       1.91       1.92       1.92       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93       1.93 </td <td>High Intensity</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | High Intensity                                                                         |          |            |            |     |      |           |             |        |                                                                                                                 |                   |
| Arampatis et al. 2007 [19]         11         238         40         11         168         37         -         152         1625 [249]         157           Bohm ettal. 2014 [21]         12         457         132         12         2370         132         17         12         158         17         141         158         157         168         177         168         177         168         177         168         177         168         177         168         177         168         177         168         177         168         177         168         177         168         177         168         177         168         177         168         177         168         177         168         177         168         177         168         168         177         168         178         168         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Albracht et al. 2013 [5]                                                               | 13       | 315        | 53         | 13  | 272  | 48        |             | 0.82   | [ 0.02; 1.63]                                                                                                   | 1.9%              |
| Adampaize etal. 2010 [c2]         11         302         52         11         258         32         0.78         10.88         100         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.43         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44         11.44 <t< td=""><td>Arampatzis et al. 2007 [19]</td><td>11</td><td>228</td><td>40</td><td>11</td><td>168</td><td>37</td><td></td><td>1.52</td><td>[ 0.55; 2.49]</td><td>1.5%</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arampatzis et al. 2007 [19]                                                            | 11       | 228        | 40         | 11  | 168  | 37        |             | 1.52   | [ 0.55; 2.49]                                                                                                   | 1.5%              |
| Dotm         etal.         Dots         Etal.         District         Total.         Total. <thtotal.< th=""></thtotal.<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Arampatzis et al. 2010 [20]<br>Rohm et al. 2014 [21]                                   | 11       | 302        | 57         | 11  | 258  | 51<br>132 |             | 0.79   | [-0.09; 1.66]                                                                                                   | 1.7%              |
| Dorb         Caroli et al. 2014 [21]         12         579         772         12         377         106           Caroli et al. 2011 [62]         12         333         133         112         2228         1320         0.30         0.52         [0.57]         1.10         119           Caroli et al. 2011 [63]         10         291         125         10         240         90         0.33         0.28         [0.37]         1.19         [0.38]         1.19         [0.38]         1.19         [0.38]         1.19         [0.38]         1.19         [0.38]         1.19         [0.38]         1.19         [0.38]         1.19         [0.38]         1.19         [0.38]         1.19         [0.38]         1.19         [0.38]         1.19         [0.38]         1.19         [0.38]         1.19         [0.38]         1.11         [0.38]         1.11         [0.38]         1.11         [0.38]         1.11         [0.38]         1.11         [0.48]         1.11         [0.48]         1.11         [0.48]         1.11         [0.48]         1.11         [0.48]         1.11         [0.48]         1.11         [0.48]         1.11         [0.48]         1.11         [0.48]         1.11         [0.48] <td< td=""><td>Bohm et al. 2014 [21]</td><td>14</td><td>539</td><td>254</td><td>14</td><td>336</td><td>89</td><td></td><td>1.04</td><td>[-0.10, 1.47]</td><td>1.0%</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bohm et al. 2014 [21]                                                                  | 14       | 539        | 254        | 14  | 336  | 89        |             | 1.04   | [-0.10, 1.47]                                                                                                   | 1.0%              |
| Behm etal. 2021 [17]<br>Carnoli etal. 2021 [17]<br>Carnoli etal. 2021 [17]<br>Carnoli etal. 2021 [17]<br>Enksen etal. 2016 [17]<br>Enksen etal. 2018 [16]<br>Duday etal. 2021 [16]<br>Enksen etal. 2018 [16]<br>Enksen etal. 2018 [16]<br>10 420 1075<br>11 406 130<br>Enksen etal. 2018 [16]<br>10 422 112<br>Enksen etal. 2018 [16]<br>10 422 112<br>11 10 422 112<br>Enksen etal. 2018 [16]<br>10 422 112<br>Enksen etal. 2008 [16]<br>10 423 148<br>10 42<br>10 42 | Bohm et al. 2014 [21]                                                                  | 12       | 579        | 172        | 12  | 377  | 106       |             | 1.37   | [ 0.46; 2.27]                                                                                                   | 1.7%              |
| Carroll et al. 2011 [62] 12 3333 1334 12 2928 1320<br>Carroll et al. 2016 [71] 14 666 158 14 402 103<br>Ducky et al. 2006 [16] 10 291 125 10 249 99<br>Carroll et al. 2016 [63] 19 240 103 9 260 1530<br>Enksen et al. 2016 [63] 12 12 1800 633 11 160 656 1<br>Carroll et al. 2016 [72] 15 350 15 15 12 03 4 16 12 356 1<br>Carroll et al. 2016 [72] 15 350 15 15 12 03 4 16 12 356 1<br>Carroll et al. 2016 [73] 18 106 12 356 1<br>Carroll et al. 2007 [16] 18 106 13 3 8 66 21 1<br>Carroll et al. 2007 [16] 18 106 13 3 8 66 21 1<br>Carroll et al. 2007 [17] 18 106 13 38 66 21 1<br>Carroll et al. 2007 [17] 18 106 13 8 66 2 1<br>Carroll et al. 2007 [17] 18 106 13 8 66 2 1<br>Carroll et al. 2007 [17] 18 106 13 8 66 2 1<br>Carroll et al. 2007 [17] 18 106 13 8 66 2 1<br>Carroll et al. 2007 [17] 18 106 13 8 66 2 1<br>Carroll et al. 2007 [17] 18 106 13 8 66 2 1<br>Carroll et al. 2007 [17] 18 106 13 8 66 2 1<br>Carroll et al. 2007 [17] 18 106 13 8 66 2 1<br>Carroll et al. 2007 [17] 18 106 13 8 66 2 1<br>Carroll et al. 2007 [17] 18 106 13 8 66 2 1<br>Carroll et al. 2007 [17] 18 106 13 8 67 12 2<br>Carroll et al. 2007 [17] 18 106 13 8 67 10 22<br>Carroll et al. 2008 [12] 28 178 66 8 179 559<br>Carroll et al. 2008 [12] 18 178 66 8 179 559<br>Carroll et al. 2008 [13] 9 86 36 9 79 2 21<br>Carroll et al. 2008 [14] 10 166 44 10 128 26<br>Carroll et al. 2008 [14] 10 166 64 10 128 26<br>Carroll et al. 2008 [14] 10 166 67 19<br>Carroll et al. 2008 [14] 10 16 66 10 67 19<br>Carroll et al. 2008 [14] 10 18 36 892 10 1071 639<br>Carroll et al. 2008 [14] 10 18 36 892 10 1071 639<br>Carroll et al. 2008 [14] 10 183 892 10 1071 639<br>Carroll et al. 2008 [14] 10 183 892 10 1071 639<br>Carroll et al. 2008 [14] 10 183 892 110 1071 639<br>Carroll et al. 2017 [16] 9 1447 440 9 1289 544<br>Carroll et al. 2018 [17] 10 241 77 115 9 183 45<br>Carroll et al. 2018 [18] 10 250 860 10 1327 5<br>Carroll et al. 2018 [18] 11 273 11 1277 117 12 12 10 34 14 13 10 32 5<br>Carroll et al. 2018 [17] 10 251 12 271 15 12 271 15 12 271 17 15 10 177<br>Carroll et al. 2018 [17] 10 250 166 10 1367 360<br>Carroll et al. 2018 [17] 10 250 166 10 1367 360<br>Carroll                                                                                                                                                                                                                                                                                                                                                     | Bohm et al. 2021 [17]                                                                  | 13       | 111        | 59         | 13  | 85   | 36        |             | 0.52   | [-0.27; 1.30]                                                                                                   | 1.9%              |
| Centron et al. 2001 [17] 14 955 158 14 402 103 151 10 231 125 10 249 350 103 126 128 127 128 17 25 10 249 350 1052 103 128 100 1051 128 17 26 128 17 26 17 10 102 14 102 015 11 10 102 14 102 015 11 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 14 10 102 15 14 10 102 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 15 14 10 102 14 11 11 15 12 14 11 15 12 14 11 15 12 14 11 15 12 14 11 15 12 14 11 15 12 14 14 10 102 14 11 11 15 12 14 14 10 102 14 11 11 15 12 14 14 10 102 14 11 11 15 12 14 14 10 102 14 11 11 15 12 14 14 10 102 14 11 11 15 12 14 14 10 102 14 11 11 15 12 14 14 10 102 14 11 11 15 12 14 14 10 102 14 11 11 15 12 14 14 11 15 12 14 14 11 15 12 14 14 11 15                                                                                                                                                                                                                                                                                                                                                                                                                                         | Carroll et al. 2011 [62]                                                               | 12       | 3335       | 1334       | 12  | 2928 | 1320      |             | 0.30   | [-0.51; 1.10]                                                                                                   | 1.9%              |
| Draws         Hat         Dotation         Dist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Centner et al. 2019 [71]                                                               | 14       | 565        | 158        | 14  | 402  | 103       |             | 1.19   | [0.38; 2.01]                                                                                                    | 1.9%              |
| Eriksen et al. 2018 [63]       12       1900       693       12       1800       624         Eriksen et al. 2018 [64]       10       420       975       10       460       1360         Kongsgaard et al. 2007 [65]       12       4213       1406       12       3676       1306       0.38       [0.43; 119]       137         Kubo et al. 2002 [111]       8       196       24       8       51       22       0.29       [0.66; 112]       1.31       [0.42; 119]       1.65         Kubo et al. 2006 [112]       8       196       6.66       8       1730       559       -0.02       [0.68; 112]       1.65         Kubo et al. 2006 [113]       9       22       40       9       81       22       -0.29       [0.66; 117]       1.65         Kubo et al. 2006 [13]       9       122       40       9       81       26       -1.17       [0.15; 2.18]       1.55         Kubo et al. 2006 [13]       9       199       7.67       6.62       -0.02       [-0.37; 1.13]       1.65       Kubo et al. 2006 [14]       10       1.65       Kubo et al. 2006 [14]       10       1.65       Kubo et al. 2006 [14]       10       1.65       Kubo et al. 2007 [16]       1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Friksen et al. 2009 [103]                                                              | 9        | 3890       | 2430       | 9   | 249  | 1530      |             | 0.30   | [-0.33: 1.58]                                                                                                   | 1.7%              |
| Enksen et al. 2019 [rd]<br>Enksen et al. 2018 [rd]<br>Enksen et al. 2018 [rd]<br>Enksen et al. 2018 [rd]<br>Enksen et al. 2018 [rd]<br>Enksen et al. 2001 [sf]<br>Kube et al. 2002 [sf]<br>B 106 33 8 66 21<br>Enksen et al. 2002 [sf]<br>B 106 33 8 66 21<br>Enksen et al. 2002 [sf]<br>B 106 33 8 66 21<br>Enksen et al. 2002 [sf]<br>B 106 33 8 66 21<br>Enksen et al. 2002 [sf]<br>B 106 61 8 18<br>Enksen et al. 2006 [sf]<br>B 106 61 8 18<br>Enksen et al. 2006 [sf]<br>B 106 61 8 18<br>Enksen et al. 2006 [sf]<br>B 122 423 8 144<br>Enksen et al. 2007 [sf]<br>B 122 423 8 14<br>Enksen et al. 2008 [sf]<br>B 122 42 8 8 51<br>Enksen et al. 2008 [sf]<br>B 122 42 8 8 51<br>Enksen et al. 2008 [sf]<br>B 122 42 8 8 51<br>Enksen et al. 2008 [sf]<br>B 122 42 8 8 51<br>Enksen et al. 2008 [sf]<br>B 122 42 8 8 51<br>Enksen et al. 2008 [sf]<br>B 122 42 8 8 51<br>Enksen et al. 2008 [sf]<br>B 122 42 8 8 51<br>Enksen et al. 2008 [sf]<br>B 122 42 8 8 51<br>Enksen et al. 2008 [sf]<br>B 122 42 8 8 51<br>Enksen et al. 2008 [sf]<br>B 122 42 8 8 51<br>Enksen et al. 2008 [sf]<br>B 122 42 8 8 51<br>Enksen et al. 2008 [sf]<br>B 122 42 8 8 51<br>Enksen et al. 2008 [sf]<br>B 122 42 8 9 44<br>Enksen et al. 2009 [sf]<br>H 10 10 36 10 67<br>19 467<br>Enksen et al. 2009 [sf]<br>H 10 10 36 10 67<br>19 467<br>Enksen et al. 2009 [sf]<br>H 10 110 36 10 67<br>19 467<br>Enksen et al. 2009 [sf]<br>H 10 125 20<br>H 11 10 255<br>Enksen et al. 2009 [sf]<br>B 104 37 10 72 20<br>H 128 54<br>Enksen et al. 2018 [sf]<br>B 104 37 10 72 20<br>H 128 54<br>Enksen et al. 2018 [sf]<br>H 11 32 9 11 24<br>S 20<br>H 11 32 9 11 24<br>S 20<br>H 11 32 9 11 24<br>S 20<br>H 20                                                                                         | Eriksen et al. 2018 [63]                                                               | 12       | 1900       | 693        | 12  | 1800 | 624       | -           | 0.15   | [-0.65; 0.95]                                                                                                   | 1.9%              |
| Geremia et al. 2018 [72] 15 350 59 15 192 36<br>Kay et al. 2016 [51] 13 13 3 13 10 2<br>Kubo et al. 2002 [51] 8 106 12 3676 1306<br>Kubo et al. 2002 [51] 8 106 33 8 66 21<br>1.31 [0.20, 242] 1.33<br>Kubo et al. 2002 [11] 8 34 10 8 26 9<br>Kubo et al. 2006 [112] 8 159 24 8 51 22<br>0.29 [0.68; 1.29] 1.55<br>Kubo et al. 2006 [113] 9 86 660 8 1790 559<br>4 8 51 22<br>0.29 [0.68; 1.29] 1.55<br>Kubo et al. 2006 [113] 9 162 40 8 61 29<br>0.050 [113] 9 164 660 8 1790 559<br>0.050 [113] 9 164 71 0 9 46 12<br>0.050 [113] 9 164 71 0 9 46 12<br>0.050 [114] 10 116 38 100 67 19<br>0.050 [114] 10 116 38 100 67 19<br>0.051 [0.050 [114] 10 168 100 67 19<br>0.052 [0.075 [0.161 67] 177<br>Kubo et al. 2009 [114] 10 116 38 100 1071 639<br>0.058 [0.40; 1.41 10, 1.41 11 18<br>Kubo et al. 2009 [114] 10 1253 410 10 999 426<br>Kubo et al. 2009 [114] 10 11253 410 10 999 426<br>Kubo et al. 2009 [114] 10 11253 410 10 999 426<br>Kubo et al. 2009 [114] 10 1253 410 10 999 426<br>Kubo et al. 2010 [115] 10 41 13 10 32 5<br>0.68 [0.42; 1.44] 177<br>Kubo et al. 2010 [115] 10 41 37 8 69 19<br>1.12 [0.42; 2.04 1.43<br>Kubo et al. 2017 [116] 9 144 4355 9 104 4384<br>1.06 [0.05; 2.06 1.55<br>Kubo et al. 2017 [116] 9 144 4355 9 104 4384<br>1.06 [0.05; 2.06 1.55<br>Kubo et al. 2017 [161] 9 2438 635 10 1642 898<br>0.78 [0.31; 7.7] 1.66<br>Mailaras et al. 2017 [161] 9 2438 635 10 1642 898<br>0.78 [0.31; 7.7] 1.66<br>Mailaras et al. 2017 [161] 10 2508 1066 10 1387 360<br>0.74 [0.13; 1.70] 1.67<br>Mailaras et al. 2017 [161] 10 2508 1066 10 1387 360<br>0.74 [0.31; 1.70] 1.67<br>Mailaras et al. 2017 [161] 10 2508 1066 10 1387 360<br>0.74 [0.31; 1.70] 1.67<br>Mailaras et al. 2018 [66] 15 667 265 15 560 177<br>0.77 [0.22; 1.51] 2.23<br>Mailaras et al. 2018 [66] 15 667 265 15 560 177<br>0.36 [0.49; 1.20] 1.67<br>Mailaras et al. 2018 [66] 15 667 265 15 560 177<br>0.36 [0.49; 1.20] 1.67<br>Mailaras et al. 2018 [66] 15 667 265 15 560 177<br>0.66 [0.70; 1.22] 1.75<br>Mailaras et al. 2018 [66] 15 6                                                                                                                                                                                                                                                                                                                         | Eriksen et al. 2019 [64]                                                               | 10       | 4420       | 1075       | 10  | 4060 | 1360      |             | 0.28   | [-0.60; 1.16]                                                                                                   | 1.7%              |
| Kay et al. 2001 [110]       13       3       13       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <th10< th="">       10       10       <th1< td=""><td>Geremia et al. 2018 [72]</td><td>15</td><td>350</td><td>59</td><td>15</td><td>192</td><td>36</td><td></td><td>3.15</td><td>[ 2.03; 4.26]</td><td>1.3%</td></th1<></th10<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Geremia et al. 2018 [72]                                                               | 15       | 350        | 59         | 15  | 192  | 36        |             | 3.15   | [ 2.03; 4.26]                                                                                                   | 1.3%              |
| Nubspace         Part of the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kay et al. 2016 [110]                                                                  | 13       | 13         | 1406       | 13  | 10   | 1206      |             | 1.10   | [0.27; 1.94]                                                                                                    | 1.8%              |
| kub et al.         2002 [111]         B         34         10         B         28         9         0         0         [0.32] (1.3]         1.4           Kub et al.         2006 [112]         B         579         24         66         1.790         559           Kub et al.         2006 [113]         9         186         36         9         79         21         -0.20         [.0.33, 17.3]         166           Kub et al.         2006 [163]         9         122         40         9         81         26         -0.21         [.0.33, 17.3]         166           Kub et al.         2006 [96]         9         159         23         9         46         19         -0.62         [.0.33, 17.3]         166           Kub et al.         2009 [141]         10         110         36         10         67         19         -1.43         [.0.43, 2.44]         155           Kub et al.         2009 [141]         10         1133         10         32         5         -0.66         [.0.02, 17.7]         166         10.72         20         -0.75         [.0.61, 17.7]         16.8         16.0         10.72         20         -0.75         [.0.61, 17.7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Kubo et al. 2001 [51]                                                                  | 8        | 106        | 33         | 8   | 68   | 21        |             | 1.31   | [-0.43, 1.13]                                                                                                   | 1.3%              |
| kubo et al.         2006 [112]         8         59         24         8         51         22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kubo et al. 2002 [111]                                                                 | 8        | 34         | 10         | 8   | 26   | 9         |             | 0.80   | [-0.23; 1.83]                                                                                                   | 1.4%              |
| Kubo et al.         2006 [112]         8         1786         660         8         1790         559          -0.01         [-0.09, 0.37]         1.5.           Kubo et al.         2006 [113]         9         122         40         9         81         26          0.25         [-0.09, 0.37]         1.6.           Kubo et al.         2006 [96]         9         1819         710         9         1676         6622          0.20         [-0.33, 1.31]         166           Kubo et al.         2009 [141]         10         100         36         10         67         19           0.75         [-0.06, 16.77]         17.7         I60         17.7         I60         17.7         I60         16.71         17.7         I60         17.7         I60         16.71         17.7         I60         17.7         I60         17.7         I60         17.7         I60         17.7         I60         17.8         I60         17.7         I60         I60.71         17.7         I60         I60         I60.75         I60         I60.75         I60         I60.75         I60         I60.75         I60         I60         I60.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kubo et al. 2006 [112]                                                                 | 8        | 59         | 24         | 8   | 51   | 22        |             | 0.29   | [-0.69; 1.28]                                                                                                   | 1.5%              |
| Kubo et al.         Zobe [113]         9         8b         3b         9         7         21         7         0.25         [208]         1.11         1.5           Kubo et al.         Zobe [96]         9         59         23         9         46         19         662         0.25         [208]         1.11         1.65           Kubo et al.         Zobe [96]         9         59         23         9         46         19         676         662         0.26         [-0.073]         1.13         1.66           Kubo et al.         Zobe [141]         10         10         36         67         19         -1.43         10.43         10.43         10.43         10.43         10.43         10.43         10.43         10.43         10.44         10.65         10.66         10.71         17.6         10.66         10.71         17.6         10.66         10.44         10.66         10.71         17.6         10.66         10.71         17.6         10.65         10.66         10.71         17.6         10.65         10.66         10.71         17.6         10.66         10.05         10.66         10.71         10.76         10.71         10.76         10.71 <t< td=""><td>Kubo et al. 2006 [112]</td><td>8</td><td>1786</td><td>660</td><td>8</td><td>1790</td><td>559</td><td></td><td>-0.01</td><td>[-0.99; 0.97]</td><td>1.5%</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kubo et al. 2006 [112]                                                                 | 8        | 1786       | 660        | 8   | 1790 | 559       |             | -0.01  | [-0.99; 0.97]                                                                                                   | 1.5%              |
| Nube et al. 2006 [16]912910201.11[10, 13, 2.16]1.23Kubo et al. 2006 [86]91819710916766620.20[0, 73, 1.13]168Kubo et al. 2007 [85]101664410128260.20[0, 73, 1.13]168Kubo et al. 2008 [114]1011036106719143[0, 43, 2.44]1.75Kubo et al. 2008 [114]1018338921010716390.94[0, 01, 1.88]1.66Kubo et al. 2010 [115]104113103250.85[0, 08, 1.77]1.66Kubo et al. 2010 [115]104113103250.85[0, 08, 1.77]1.67Kubo et al. 2010 [115]10414355910043841.66[0.05, 2.06]1.56Kubo et al. 2017 [116]9147744012895440.32[0, 61, 1.76]1.77Kubo et al. 2017 [166]1132911245-1.77[0, 25, 2.09]Maliaras et al. 2013 [61]102536850101822898-0.78[0, 31, 1.70]1.67Maliaras et al. 2013 [66]14595101145921180.31[0, 31, 1.70]1.67Massey et al. 2018 [66]14312263214260446-0.771.0021.67Massey et al. 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kubo et al. 2006 [113]                                                                 | 9        | 122        | 36         | 9   | 79   | 21        |             | 0.25   | [-0.68; 1.17]                                                                                                   | 1.6%              |
| Kubo etal. 2006 [66]91819710916766620.200.2010.7311318Kubo etal. 2007 [14]10166441012826-1.0110.07, 186]1.85Kubo etal. 2008 [114]1010361077200.75[-0.16, 167]1.75Kubo etal. 2008 [114]101283892101076390.75[-0.16, 167]1.75Kubo etal. 2009 [114]101283410109994260.88[-0.32, 148]1.77Kubo etal. 2010 [115]1096371072200.75[-0.16, 167]1.77Kubo etal. 2010 [115]1096371072200.75[-0.16, 167]1.77Kubo etal. 2017 [116]9144744091289544-0.32[-0.61, 126]1.55Kubo etal. 2017 [16]9145744091289544-0.32[-0.61, 126]1.55Kubo etal. 2017 [16]9145744091289544-0.32[-0.61, 126]1.56Maliaras etal. 2013 [61]1025081066101387360-1.35[-0.36, 2.34]1.55Maliaras etal. 2013 [66]1455210114552186-0.32[-0.71, 0.77]2.05Massey etal. 2018 [66]1431226324740.36 <td>Kubo et al. 2006 [113]</td> <td>9</td> <td>59</td> <td>23</td> <td>9</td> <td>46</td> <td>19</td> <td></td> <td>0.62</td> <td>[-0.33: 1.57]</td> <td>1.5%</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kubo et al. 2006 [113]                                                                 | 9        | 59         | 23         | 9   | 46   | 19        |             | 0.62   | [-0.33: 1.57]                                                                                                   | 1.5%              |
| kubo etal. 2007 [85]10166441012826Kubo etal. 2009 [114]109637107220Kubo etal. 2009 [114]1018389210107639Kubo etal. 2009 [114]101253410109994260.75 $0.011$ : 1.88Kubo etal. 2010 [115]10411310325 $0.86$ $0.021$ : 1.481.77Kubo etal. 2010 [115]104137869191.12 $0.06$ ; 2.061.55Kubo etal. 2017 [116]91447355910043841.06 $0.065$ ; 2.061.55Kubo etal. 2017 [116]91447355910043841.06 $0.065$ ; 2.061.55Kubo etal. 2017 [116]9144744012829887.8 $0.03$ ; 2.031.55Maliaras etal. 2013 [61]1025368501018229887.8 $0.03$ ; 2.031.55Maliaras etal. 2013 [61]10253615550177 $0.52$ $0.21$ ; 1.252.17Massey etal. 2018 [66]15552118 $0.03$ $0.67$ ; 1.0772.00Massey etal. 2018 [66]15329575152.88444 $0.03$ $0.071$ ; 0.7712.00Massey etal. 2018 [66]16322544 $0.03$ $0.71$ ; 0.7712.00 $0.98$ $0.08$ $0.03$ ; 2.03 $1.771$ Massey etal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kubo et al. 2006 [96]                                                                  | 9        | 1819       | 710        | 9   | 1676 | 662       |             | 0.20   | [-0.73; 1.13]                                                                                                   | 1.6%              |
| Kubo etal. 2009 [114]1011036106719111010133802107220Kubo etal. 2009 [114]1018338921010716390.94(0.01; 1.88]167Kubo etal. 2010 [115]104113103250.94(0.01; 1.88]167Kubo etal. 2010 [115]104113103250.98(0.01; 1.88]167Kubo etal. 2010 [115]109637107220-0.75(-0.6; 1.67]177Kubo etal. 2010 [115]914435591004384-0.85(-0.08; 1.77]178Kubo etal. 2017 [116]9144744091289544-0.82(-0.6; 1.67]177Kubo etal. 2017 [16]9145744091289544-0.32(-0.6; 1.67]Maliaras etal. 2013 [61]1025.081066101387360-0.78(-0.13; 1.70]Massey etal. 2013 [61]1025.081066101387360-0.78(-0.13; 1.70]Massey etal. 2018 [66]1453255560177-0.52(-0.21; 1.52]2.10Massey etal. 2018 [66]15323575152835444-0.77(-0.22; 1.61]2.00Mohahon etal. 2018 [66]15323575152835444-0.77(-0.21; 1.51]2.00 <td>Kubo et al. 2007 [85]</td> <td>10</td> <td>166</td> <td>44</td> <td>10</td> <td>128</td> <td>26</td> <td></td> <td>1.01</td> <td>[ 0.07; 1.96]</td> <td>1.6%</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Kubo et al. 2007 [85]                                                                  | 10       | 166        | 44         | 10  | 128  | 26        |             | 1.01   | [ 0.07; 1.96]                                                                                                   | 1.6%              |
| Kubo et al. 2009 [114]109637107220Kubo et al. 2009 [114]10125341010999426Kubo et al. 2010 [115]10411310325Kubo et al. 2010 [115]109637107220Kubo et al. 2010 [115]109637107220Kubo et al. 2010 [88]81043786919Kubo et al. 2012 [89]9277111918345Kubo et al. 2017 [116]9144135591004384Kubo et al. 2017 [116]914474401288544Kubo et al. 2017 [86]1132911245Maliaras et al. 2013 [61]102536850101822888Maliaras et al. 2013 [61]10253610114592117Massey et al. 2018 [66]1459510114592118Massey et al. 2018 [66]1431226371552605146Massey et al. 2018 [66]14312263716283Massey et al. 2018 [66]14312263716283Massey et al. 2018 [66]14312263716283Massey et al. 2018 [66]14312263716283Massey et al. 2018 [66]14312637305641Mokhon et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kubo et al. 2009 [114]                                                                 | 10       | 110        | 36         | 10  | 67   | 19        |             | 1.43   | [ 0.43; 2.44]                                                                                                   | 1.5%              |
| Nubbe etal. 2009 [114]1016336521010106336531010633Kubbe etal. 2010 [115]104113103250.65 $[-0.02, 14.8]$ 17.7Kubb etal. 2010 [115]1096371072200.75 $[-0.61, 16.7]$ Kubb etal. 2012 [89]9927.7111913345-10.6 $[0.05, 22.6]$ 1.5Kubb etal. 2017 [116]9144435591004384-10.6 $[0.05, 22.6]$ 1.6Kubb etal. 2017 [16]9144744091289544-00.3 $[-0.61, 16.7]$ Kubb etal. 2017 [16]9123363891560793-11.3 $[0.03, 22.03]$ 1.5Mallaras etal. 2013 [61]1025081066101387360-71.35 $[0.36, 2.34]$ 1.5Mallaras etal. 2013 [66]143122625155601770.52 $[-0.21, 1.12]$ 2.1Massey etal. 2018 [66]1431226254440.77 $[0.22, 1.51]$ 2.0Massey etal. 2018 [66]1431226254440.77 $[0.22, 1.51]$ 2.0Moklahon etal. 2013 [67]10122159410916441-0.56 $[-0.34, 1.46]$ 1.77Moklahon etal. 2018 [66]88673058619204-0.77 $[0.22, 1.51]$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kubo et al. 2009 [114]                                                                 | 10       | 96         | 37         | 10  | 72   | 20        |             | 0.75   | [-0.16; 1.67]                                                                                                   | 1.7%              |
| Lubo et al. 2010 [115]101012.33103252Kubo et al. 2010 [115]109637107220 $0.75$ $[-0.16; 1.67]$ 17.7Kubo et al. 2012 [189]9277111918345 $-1.06$ $[0.05; 2.06]$ 1.55Kubo et al. 2017 [116]9141435591004384 $$ $1.06$ $[0.05; 2.06]$ 1.55Kubo et al. 2017 [16]9145744091289544 $$ $0.32$ $[-0.61; 1.26]$ 166Malliaras et al. 2013 [61]102536850101822888 $$ $1.03$ $[0.03; 2.03]$ 159Malliaras et al. 2013 [61]102536850101822888 $$ $1.35$ $[-0.71; 0.77]$ $2.02$ Massey et al. 2018 [66]1459510114592118 $$ $0.36$ $[-0.21; 1.25]$ $2.17$ Massey et al. 2018 [66]155239575152825444 $-0.77$ $0.52$ $[-0.21; 1.25]$ $2.17$ Mokahon et al. 2018 [66]143122632142605446 $0.77$ $0.52$ $[-0.21; 1.25]$ $2.17$ Mokahon et al. 2018 [66]8151739081132294 $-0.56$ $[-0.34; 1.46]$ $1.79$ Mokahon et al. 2018 [68]887058619204 $0.72$ $[-0.51; 0.93]$ $2.11$ Mokahon et al. 2018 [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kubo et al. 2009 [114]                                                                 | 10       | 1253       | 410        | 10  | 999  | 426       |             | 0.94   | [ 0.01, 1.00]<br>[-0.32:1.48]                                                                                   | 1.0%              |
| kubo et al. 2010 [115]109637107220 $  0.75$ $[-0.16; 1.67]$ $1.75$ Kubo et al. 2010 [88]81043786919 $ 1.12$ $[0.04; 2.00]$ $1.43$ Kubo et al. 2017 [116]9144135591004384 $ 1.06$ $[1.05; 2.06]$ $1.55$ Kubo et al. 2017 [16]9144744091289544 $ 0.32$ $[-0.6; 1.67]$ $1.75$ Malliaras et al. 2013 [61]102536850101822898 $ 0.78$ $[-0.13; 1.70]$ $1.66$ Malliaras et al. 2013 [61]102536850101822898 $ 0.78$ $[-0.13; 1.70]$ $1.66$ Malliaras et al. 2013 [66]14355101822898 $ 0.78$ $[-0.13; 1.70]$ $1.66$ Malliaras et al. 2018 [66]14312262515560 $1.77$ $0.52$ $[-0.21; 1.25]$ $2.17$ Massey et al. 2018 [66]14312262514 $2.254$ 444 $ 0.52$ $[-0.21; 1.25]$ $2.17$ McMahon et al. 2018 [66]143122525152.835444 $ 0.56$ $[-0.34; 1.46]$ $1.79$ McMahon et al. 2018 [67]10122159410916441 $ 0.56$ $[-0.23; 1.16]$ $1.42$ $0.26$ $[-0.34; 1.46]$ McMahon et al. 2018 [54]14<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kubo et al. 2010 [115]                                                                 | 10       | 41         | 13         | 10  | 32   |           |             | 0.85   | [-0.08; 1.77]                                                                                                   | 1.6%              |
| Kubo et al. 2010 [88]81043786919Kubo et al. 2017 [86]92771119183451.02 $[0.05, 2.06]$ 1.55Kubo et al. 2017 [116]91447355910043840.05 $[0.05, 2.06]$ 1.55Kubo et al. 2017 [61]1025368501018228981.03 $[0.05, 2.06]$ 1.55Malliaras et al. 2013 [61]1025368501018228981.03 $[0.05, 2.03]$ 1.56Maliaras et al. 2013 [61]1025368501018228981.35 $[0.36, 2.34]$ 1.56Massey et al. 2018 [66]14455101145921180.52 $[-0.21; 1.25]$ 2.15Massey et al. 2018 [66]1431226321426054460.92 $[1.03, 1.70]$ 1.96Massey et al. 2018 [66]15687285155601770.52 $[-0.21; 1.25]$ 2.15Massey et al. 2018 [66]143122633111167353117652421.28McMahon et al. 2018 [67]101221594109164410.76 $[-0.01; 2.12]$ 1.44McMahon et al. 2018 [68]88730081132294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kubo et al. 2010 [115]                                                                 | 10       | 96         | 37         | 10  | 72   | 20        |             | 0.75   | [-0.16; 1.67]                                                                                                   | 1.7%              |
| Kubo et al. 2017 [116]9141435591004384Kubo et al. 2017 [116]9141435591004384Kubo et al. 2017 [16]9141435591004384Kubo et al. 2017 [16]9143744091289544Kubo et al. 2017 [16]1132911245Malliaras et al. 2013 [61]10253863691560793Malliaras et al. 2013 [61]102538666101822898Malliaras et al. 2018 [66]1459510114592118Massey et al. 2018 [66]145871066101387360Massey et al. 2018 [66]1431226321426054460.92[0.13, 1.70]1.97Massey et al. 2018 [66]1532395751528354440.77[0.02, 1.51]2.01McMahon et al. 2013 [67]10122159410916441-0.56[-0.34; 1.46]1.77McMahon et al. 2018 [68]888730586192040.98[-0.08, 2.03]1.49Onambélé et al. 2008 [120]124023122613-0.72[-0.11; 1.55]1.65Vaugh et al. 2018 [64]14523531435953-0.28[-0.44; 1.22]1.83Kordsogaard et al. 2018 [67]11 <td< td=""><td>Kubo et al. 2010 [88]</td><td>8</td><td>104</td><td>37</td><td>8</td><td>69</td><td>19</td><td></td><td>1.12</td><td>[ 0.04; 2.20]</td><td><mark>1.4%</mark></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kubo et al. 2010 [88]                                                                  | 8        | 104        | 37         | 8   | 69   | 19        |             | 1.12   | [ 0.04; 2.20]                                                                                                   | <mark>1.4%</mark> |
| Nubb et al. 2017 [116]9144733591004364Kubb et al. 2017 [16]9145744091289544-1.05[0.05, 2.06]1.65Malliaras et al. 2013 [61]102536850101822898-1.07[0.05, 2.06]1.65Malliaras et al. 2013 [61]102536850101822898-0.78[-0.13; 1.70]1.65Malliaras et al. 2013 [66]1459510114592118-0.33[-0.71; 0.77]2.00Massey et al. 2018 [66]143122632142605446-0.92[0.13; 1.70]1.97Massey et al. 2018 [66]15687285155601770.52[-0.31; 1.70]1.97Massey et al. 2018 [66]15323957152835444-0.77[0.02; 1.51]2.00McMahon et al. 2013 [67]10122159410916441-0.56[-0.34; 1.46]1.77McMahon et al. 2018 [68]8151739081132294-1.05[-0.11; 1.55]1.48Seymes et al. 2008 [102]124023122613-0.27[-0.11; 1.55]1.48Seymes et al. 2008 [54]14523531435953-0.28[-0.49; 1.20]1.44Waugh et al. 2018 [54]1454149<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Kubo et al. 2012 [89]                                                                  | 9        | 277        | 111        | 9   | 183  | 45        |             | 1.06   | [ 0.05; 2.06]                                                                                                   | 1.5%              |
| Nubbe et al. 2017 [66]11321631701231245Malliaras et al. 2013 [61]1025366501018228981.03 $[.0.03, 2.03]$ 1.55Malliaras et al. 2013 [61]1025368501018228980.78 $[.0.13, 1.70]$ 1.66Malliaras et al. 2018 [66]14595101145921180.03 $[.0.32, 2.34]$ 1.55Massey et al. 2018 [66]1431226321426054460.92 $[.0.13, 1.70]$ 1.99Massey et al. 2018 [66]15687285155601770.52 $[.0.21, 1.25]$ 2.17Massey et al. 2018 [66]1431226321426054440.660.021, 1.122.09MeMahon et al. 2013 [67]101221594109164410.66 $[-0.34, 1.46]$ 1.77McMahon et al. 2018 [68]88730586192040.38 $[-0.08, 2.03]$ 1.46Onambélé et al. 2008 [70]152288211515186418130.72 $[-0.11, 1.55]$ 1.65Seynnes et al. 2018 [54]14541491439035 $[-0.22, 1.51]$ 1.42Waugh et al. 2018 [54]14541491439035 $[-0.44, 1.22]$ 1.48Mallaras et al. 2017 [15]11201411118738 $-0.23$ $[-1.04, 0.57]$ 1.98 <td>Kubo et al. 2017 [116]</td> <td>9</td> <td>1414</td> <td>300</td> <td>9</td> <td>1004</td> <td>544</td> <td></td> <td>0.32</td> <td>[0.05; 2.06]</td> <td>1.5%</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Kubo et al. 2017 [116]                                                                 | 9        | 1414       | 300        | 9   | 1004 | 544       |             | 0.32   | [0.05; 2.06]                                                                                                    | 1.5%              |
| Mailiaras et al. 2013 [61]       9       2338       638       9       1560       793       -       1.03       [0.03; 2.03]       1.53         Mailiaras et al. 2013 [61]       10       2536       850       10       1822       898       -       1.03       [0.03; 2.03]       1.53         Massey et al. 2018 [66]       14       595       101       14       592       118       0.33       [-0.13; 1.70]       1.63         Massey et al. 2018 [66]       14       3122       632       14       2605       446       0.32       [-0.21; 1.25]       2.13         Massey et al. 2018 [66]       15       3239       575       15       2835       444       0.77       [0.02; 1.51]       2.01         McMahon et al. 2013 [67]       11       1167       353       11       765       242       1.28       [0.34; 2.21]       1.66         McMahon et al. 2018 [68]       8       157       390       8       1132       294       -       0.56       [-0.01; 2.12]       1.44         Onambélé et al. 2008 [70]       15       2288       2115       15       1864       1813       0.21       [-0.71; 2.86]       1.44       90       3.43       2.21; [-0.51; 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Kubo et al. 2017 [86]                                                                  | 11       | 32         | 9          | 11  | 24   | 5         |             | 1.17   | [0.25: 2.09]                                                                                                    | 1.6%              |
| Maliaras et al. 2013 [61]       10       2536       850       10       1822       898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Malliaras et al. 2013 [61]                                                             | 9        | 2338       | 638        | 9   | 1560 | 793       | - <b>-</b>  | 1.03   | [ 0.03; 2.03]                                                                                                   | 1.5%              |
| Malliaras et al. 2013 [61]       10       2508       1066       10       1387       360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Malliaras et al. 2013 [61]                                                             | 10       | 2536       | 850        | 10  | 1822 | 898       | +           | 0.78   | [-0.13; 1.70]                                                                                                   | 1.6%              |
| Massey et al. 2016 [66]14393101143921180.03 $[-0.7], 0.7/1$ 2.00Massey et al. 2018 [66]1431226321426054460.92 $[0.13; 1.70]$ 1.99Massey et al. 2018 [66]1532395751528354440.77 $[0.02; 1.51]$ 2.01McMahon et al. 2013 [67]111167353117652421.86 $[0.34; 2.21]$ 1.69McMahon et al. 2018 [68]8877300811322940.38 $[0.04; 2.03]$ 1.46McMahon et al. 2018 [68]888730586192040.88 $[0.04; 2.03]$ 1.46Onambélé et al. 2008 [120]1240231226130.72 $[-0.11; 1.55]$ 1.89Seynnes et al. 2018 [68]14523531439035 $[-0.47; 4.12]$ 1.38Waugh et al. 2018 [54]14523531435953 $-2.99$ $[1.87; 4.12]$ 1.38Warkhause et al. 2018 [56]1145914711397146 $-0.25$ $[-0.49; 1.20]$ 1.88Arampatzis et al. 2007 [19]11201411118738 $-0.23$ $[-0.49; 0.57]$ 1.88Kongsgaard et al. 2013 [67]1111244711187779 $-0.25$ $[-1.09; 0.59]$ 1.88Kongsgaard et al. 2021 [121]9251263591769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Malliaras et al. 2013 [61]                                                             | 10       | 2508       | 1066       | 10  | 1387 | 360       |             | 1.35   | [0.36; 2.34]                                                                                                    | 1.5%              |
| Massey et al. 2018 [66]153239575152835444Massey et al. 2018 [66]153239575152835444McMahon et al. 2013 [67]10122159410916441McMahon et al. 2018 [68]8151739081132294McMahon et al. 2018 [68]8151739081132294McMahon et al. 2018 [68]88673058619204Onambélé et al. 2008 [120]124023122613Onambélé et al. 2018 [68]145211518641813Onambélé et al. 2018 [54]14541491439035Waugh et al. 2018 [54]14523531435953Wardh et al. 2018 [54]14523531435953Wardh et al. 2018 [56]1145914711397146Arampatzis et al. 2007 [19]11201411118738Arampatzis et al. 2007 [65]12337512511237161569Quinlan et al. 2021 [121]0237608101769462Quinlan et al. 2021 [121]9251263591782570Quinlan et al. 2021 [121]8231446681267260Quinlan et al. 2021 [121]8231446681267260Quinlan et al. 2021 [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Massey et al. 2016 [66]                                                                | 14       | 595        | 285        | 14  | 592  | 177       |             | 0.03   | [-0.71; 0.77]                                                                                                   | 2.0%              |
| Massey et al. 2018 [66]15 $3239$ $575$ 15 $2835$ $444$ McMahon et al. 2013 [67]101221 $594$ 10916 $441$ McMahon et al. 2018 [67]111167 $353$ 11 $765$ $242$ McMahon et al. 2018 [68]81517 $390$ 8 $1132$ $294$ McMahon et al. 2018 [68]8887 $305$ 8 $619$ $204$ Onambélé et al. 2008 [120]12 $40$ $23$ $12$ $26$ $13$ Seynnes et al. 2009 [70]15 $2288$ $2115$ $15$ $1864$ $1813$ Tillin et al. 2018 [54]14 $523$ $53$ $14$ $359$ $53$ Waugh et al. 2018 [54]14 $523$ $53$ $14$ $359$ $53$ Werkhausen et al. 2018 [56]11 $459$ $147$ $11$ $397$ $146$ Random effects model $577$ $577$ $577$ $-0.25$ $[-0.49; 1.20]$ $1.87$ Heterogeneity: $I^2 = 42\%$ , $p < 0.01$ $11$ $201$ $41$ $11$ $187$ $38$ Arampatzis et al. 2007 [19] $11$ $201$ $41$ $11$ $877$ $379$ Quinlan et al. 2021 [121] $0271$ $635$ $9$ $776$ $657$ Quinlan et al. 2021 [121] $82326$ $769$ $8$ $1376$ $428$ Quinlan et al. 2021 [121] $82326$ $769$ $8$ $1376$ $428$ Quinlan et al. 2021 [121] $80$ $80$ $80$ $80$ <t< td=""><td>Massey et al. 2018 [66]</td><td>14</td><td>3122</td><td>632</td><td>14</td><td>2605</td><td>446</td><td></td><td>0.92</td><td>[ 0.13; 1.70]</td><td>1.9%</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Massey et al. 2018 [66]                                                                | 14       | 3122       | 632        | 14  | 2605 | 446       |             | 0.92   | [ 0.13; 1.70]                                                                                                   | 1.9%              |
| McMahon et al. 2013 [67]       10       1221       594       10       916       441         McMahon et al. 2013 [67]       11       1167       353       11       765       242         McMahon et al. 2018 [68]       8       1517       390       8       1132       294         McMahon et al. 2018 [68]       8       867       305       8       619       204         Onambélé et al. 2008 [120]       12       40       23       12       26       13         Seynnes et al. 2009 [70]       15       2288       2115       15       1864       1813         Tillin et al. 2012 [125]       10       697       103       10       520       86         Waugh et al. 2018 [54]       14       523       53       14       359       53         Warkhausen et al. 2018 [56]       11       459       147       11       397       146         Random effects model       577       577       577       577       0.36       [-0.49; 1.20]       1.83         Arampatzis et al. 2007 [19]       11       201       41       1276       53       -0.25       [-1.09; 0.59]       1.83         Kongsgaard et al. 2021 [65]       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Massey et al. 2018 [66]                                                                | 15       | 3239       | 575        | 15  | 2835 | 444       |             | 0.77   | [ 0.02; 1.51]                                                                                                   | 2.0%              |
| McMahon et al. 2013 [67]       11       1167       353       11       765       242        1.28 $[0.34; 2.21]$ 1.65         McMahon et al. 2018 [68]       8       1517       390       8       1132       294        1.05 $[-0.01; 2.12]$ 1.46         McMahon et al. 2018 [68]       8       887       305       8       619       204       0.98 $[-0.01; 2.12]$ 1.46         McMahon et al. 2018 [70]       15       2288       2115       15       1864       1813       0.72 $[-0.11; 1.55]$ 1.88         Seynnes et al. 2018 [54]       14       541       49       14       390       35        3.43 $[2.21; 4.65]$ 1.29         Waugh et al. 2018 [54]       14       523       53       14       359       53        3.43 $[2.21; 4.65]$ 1.29         Warkhausen et al. 2018 [56]       11       459       147       11       397       146        0.41 $[-0.44; 1.25]$ 1.88         Arampatzis et al. 2007 [19]       11       201       41       11       187       38        0.25 $[-1.09; 0.59]$ 1.88 </td <td>McMahon et al. 2013 [67]</td> <td>10</td> <td>1221</td> <td>594</td> <td>10</td> <td>916</td> <td>441</td> <td></td> <td>0.56</td> <td>[-0.34; 1.46]</td> <td>1.7%</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | McMahon et al. 2013 [67]                                                               | 10       | 1221       | 594        | 10  | 916  | 441       |             | 0.56   | [-0.34; 1.46]                                                                                                   | 1.7%              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | McMahon et al. 2013 [67]                                                               | 11       | 1167       | 353        | 11  | 765  | 242       |             | 1.28   | [0.34; 2.21]                                                                                                    | 1.6%              |
| $\begin{array}{c} \text{Normation of et al. 2008 [120]}{\text{Commbolis et al. 2008 [120]}} 12 & 40 & 23 & 12 & 26 & 13 \\ \text{Seynnes et al. 2008 [70]} & 15 & 2288 & 2115 & 15 & 1864 & 1813 \\ \text{Tillin et al. 2012 [125]} & 10 & 697 & 103 & 10 & 520 & 86 \\ \text{Waugh et al. 2018 [54]} & 14 & 541 & 49 & 14 & 390 & 35 \\ \text{Waugh et al. 2018 [54]} & 14 & 523 & 53 & 14 & 359 & 53 \\ \text{Werkhausen et al. 2018 [56]} & 11 & 459 & 147 & 11 & 397 & 146 \\ \text{Random effects model} & 577 & 577 \\ \text{Heterogeneity: } l^2 = 42\%, p < 0.01 \\ \text{Low Intensity} \\ \text{Arampatzis et al. 2007 [19]} & 11 & 201 & 41 & 11 & 187 & 38 \\ \text{Arampatzis et al. 2007 [55]} & 12 & 3375 & 1251 & 12 & 3716 & 1569 \\ \text{Mulahon et al. 2013 [67]} & 11 & 1124 & 471 & 11 & 837 & 379 \\ \text{Quinlan et al. 2021 [121]} & 2512 & 635 & 9 & 1782 & 570 \\ \text{Quinlan et al. 2021 [121]} & 2326 & 769 & 8 & 1376 & 428 \\ \text{Quinlan et al. 2021 [121]} & 8 & 2314 & 466 & 8 & 1267 & 260 \\ \text{Random effects model} & 80 \\ \text{Heterogeneity: } l^2 = 66\%, p < 0.01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | McMahon et al. 2018 [68]                                                               | 8        | 887        | 305        | 0   | 619  | 294       |             | 0.98   | [-0.01, 2.12]                                                                                                   | 1.4%              |
| Seynnes et al. 2009 [70]       15       2288       2115       15       1864       1813         Tillin et al. 2012 [125]       10       697       103       10       520       86         Waugh et al. 2018 [54]       14       541       49       14       390       35         Werkhausen et al. 2018 [56]       11       459       147       11       397       146         Random effects model       577       577       577       577       0.41       [-0.44; 1.25]       1.89         Arampatzis et al. 2007 [19]       11       201       41       11       187       38       -0.25       [-1.09; 0.59]       1.89         Kongsgaard et al. 2007 [65]       12       3375       1251       12       3716       1569       -0.23       [-1.04; 0.57]       1.99         McMahon et al. 2021 [121]       10       2377       608       10       1769       462       -0.23       [-1.04; 0.57]       1.99         Quinlan et al. 2021 [121]       9       2512       635       9       1782       570       1.15       [0.13; 2.23]       1.65         Quinlan et al. 2021 [121]       8       2314       466       8       1267       260       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Onambélé et al. 2008 [120]                                                             | 12       | 40         | 23         | 12  | 26   | 13        |             | 0.72   | [-0.11: 1.55]                                                                                                   | 1.8%              |
| Tillin et al. 2012 [125]       10       697       103       10       520       86         Waugh et al. 2018 [54]       14       541       49       14       390       35         Waugh et al. 2018 [54]       14       523       53       14       359       53         Werkhausen et al. 2018 [56]       11       459       147       11       397       146         Random effects model       577       577       577       0.41       [-0.44; 1.25]       1.89         Arampatzis et al. 2007 [19]       11       201       41       11       187       38       -0.36       [-0.49; 1.20]       1.88         Kongsgaard et al. 2007 [55]       12       3375       1251       12       3716       1569       -0.25       [-1.09; 0.59]       1.89         Kongsgaard et al. 2021 [121]       10       2375       1251       12       3716       1569       -0.25       [-1.09; 0.59]       1.89         Quinlan et al. 2021 [121]       10       2375       1256       9       1769       462       -0.86       [-0.43; 1.2.6]       1.66         Quinlan et al. 2021 [121]       8       2326       769       8       1376       428       -1.44       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Seynnes et al. 2009 [70]                                                               | 15       | 2288       | 2115       | 15  | 1864 | 1813      |             | 0.21   | [-0.51; 0.93]                                                                                                   | 2.1%              |
| Waugh et al. 2018 [54]       14       541       49       14       390       35         Waugh et al. 2018 [54]       14       523       53       14       359       53         Werkhausen et al. 2018 [56]       11       459       11       397       146       0.36 $[-0.44; 1.25]$ 1.88         Random effects model       577       577       577       0.86 $[0.70; 1.02]$ 87.59         Heterogeneity: $l^2 = 42\%$ , $p < 0.01$ 11       201       41       10.41       187       38         Arampatzis et al. 2007 [19]       11       201       41       1265       53       -0.25 $[-1.04; 0.57]$ 1.88         Kongsgaard et al. 2007 [65]       12       3375       1251       12       3716       1569       -0.25 $[-0.49; 0.57]$ 1.99         McMahon et al. 2021 [121]       10       2377       608       10       1769       462       -0.65 $[-0.22; 1.51]$ 1.88         Quinlan et al. 2021 [121]       9       2512       635       9       1782       570       1.15 $[0.13; 2.58]$ 1.33         Quinlan et al. 2021 [121]       8       2314       466       8       1267 </td <td>Tillin et al. 2012 [125]</td> <td>10</td> <td>697</td> <td>103</td> <td>10</td> <td>520</td> <td>86</td> <td></td> <td>1.79</td> <td>[ 0.71; 2.86]</td> <td>1.4%</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tillin et al. 2012 [125]                                                               | 10       | 697        | 103        | 10  | 520  | 86        |             | 1.79   | [ 0.71; 2.86]                                                                                                   | 1.4%              |
| Warkhausen et al. 2018 [56]       11       459       147       11       339       53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Waugh et al. 2018 [54]                                                                 | 14       | 541        | 49         | 14  | 390  | 35        |             | - 3.43 | [ 2.21; 4.65]                                                                                                   | 1.2%              |
| Kandom effects model       577       577       577       577         Heterogeneity: $l^2 = 42\%$ , $p < 0.01$ 577       577       577         Low Intensity       Arampatzis et al. 2007 [19]       11       201       41       11       187       38         Arampatzis et al. 2010 [20]       11       261       56       11       276       53       -0.25       [-1.09; 0.59]       1.89         Kongsgaard et al. 2007 [65]       12       3375       1251       12       3716       1569       -0.23       [-1.04; 0.57]       1.99         McMahon et al. 2021 [67]       11       1124       471       11       837       379       0.65       [-0.22; 1.51]       1.89         Quinlan et al. 2021 [121]       0       2377       608       10       1769       462       1.08       [0.13; 2.03]       1.69         Quinlan et al. 2021 [121]       8       2326       769       8       1376       428       1.44       [0.31; 2.58]       1.33         Quinlan et al. 2021 [121]       8       2314       466       8       1267       260       2.62       [1.19; 4.06]       0.99         Random effects model       80       80       80       80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Werkhausen et al. 2018 [56]                                                            | 14       | 523<br>459 | 147        | 14  | 397  | 146       |             | 0.41   | [ 1.07, 4.12]<br>[-0.44: 1.25]                                                                                  | 1.3%              |
| Heterogeneily: $l^2 = 42\%$ , $p < 0.01$ Low Intensity         Arampatzis et al. 2007 [19]       11       201       41       11       187       38         Arampatzis et al. 2010 [20]       11       261       56       11       276       53         Kongsgaard et al. 2007 [65]       12       3375       1251       12       3716       1569         McMahon et al. 2013 [67]       11       1124       471       11       837       379       0.65       [-0.22; 1.51]       1.88         Quinlan et al. 2021 [121]       0       2377       608       10       1769       462       1.08       [0.13; 2.03]       1.69         Quinlan et al. 2021 [121]       8       2326       769       8       1376       428       1.44       [0.31; 2.58]       1.39         Quinlan et al. 2021 [121]       8       2314       466       8       1267       260       2.62       [1.19; 4.06]       0.99         Random effects model       80       80       80       80       0.74       [0.68; 1.00]       100.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Random effects model                                                                   | 577      | 400        | 141        | 577 | 001  | 140       | •           | 0.86   | [ 0.70; 1.02]                                                                                                   | 87.5%             |
| Low Intensity         Arampatzis et al. 2007 [19]       11       201       41       11       187       38         Arampatzis et al. 2007 [19]       11       201       41       11       187       38         Arampatzis et al. 2007 [19]       11       201       56       11       276       53       -0.25       [-1.04; 0.57]       1.99         Kongsgaard et al. 2007 [65]       12       3375       1251       12       3716       1569       -0.25       [-1.04; 0.57]       1.99         McMahon et al. 2013 [67]       11       1124       471       11       837       379       0.65       [-0.22; 1.51]       1.89         Quinlan et al. 2021 [121]       9       2512       635       9       1782       570       1.15       [0.13; 2.33]       1.66         Quinlan et al. 2021 [121]       8       2326       769       8       1376       428       1.44       [0.31; 2.58]       1.33         Quinlan et al. 2021 [121]       8       2314       466       8       1267       260       7.44       [0.16; 1.31]       12.55         Random effects model       80       80       80       80       0.74       [0.16; 1.31]       12.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Heterogeneity: $I^2 = 42\%$ , $p < 0.01$                                               |          |            |            |     |      |           |             |        | L , 3                                                                                                           |                   |
| Arampatzis et al. 2007 [19]       11       201       41       11       187       38         Arampatzis et al. 2010 [20]       11       261       56       11       276       53       -0.25 $[-0.49; 1.20]$ 1.89         Kongsgaard et al. 2007 [65]       12       3375       1251       12       3716       1569       -0.23 $[-0.49; 0.57]$ 1.99         McMahon et al. 2013 [67]       11       1124       471       11       837       379       0.65 $[-0.22; 1.51]$ 1.89         Quinlan et al. 2021 [121]       10       2377       608       10       1769       462       -0.81 $[0.13; 2.03]$ 1.66         Quinlan et al. 2021 [121]       8       2326       769       8       1376       428       -1.44       [0.31; 2.58]       1.33         Quinlan et al. 2021 [121]       8       2314       466       8       1267       260       -0.74       [0.16; 1.31]       12.55         Random effects model       80       80       -0.74       [0.68; 1.00]       100.99         Random effects model       657       657       -0.84       [0.68; 1.00]       100.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Low Intensity                                                                          |          |            |            |     |      |           |             |        |                                                                                                                 |                   |
| Arampatzis et al. 2010 [20]       11       261       56       11       276       53 $-0.25$ [-1.09; 0.59]       1.88         Kongsgaard et al. 2007 [65]       12       3375       1251       12       3716       1569 $-0.23$ [-1.04; 0.57]       1.99         McMahon et al. 2013 [67]       11       1124       471       11       837       379 $0.65$ [-0.22; 1.51]       1.89         Quinlan et al. 2021 [121]       9       2512       635       9       1782       570       1.15       [0.13; 2.03]       1.69         Quinlan et al. 2021 [121]       8       2326       769       8       1376       428 $-1.44$ [0.31; 2.58]       1.39         Quinlan et al. 2021 [121]       8       2314       466       8       1267       260 $-0.74$ [0.16; 1.31]       12.59         Random effects model       80       80       80 $0.74$ [0.68; 1.00]       100.09         Heterogeneity: $l^2 = 66\%, p < 0.01$ 657       657 $0.84$ [0.68; 1.00]       100.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arampatzis et al. 2007 [19]                                                            | 11       | 201        | 41         | 11  | 187  | 38        |             | 0.36   | [-0.49; 1.20]                                                                                                   | 1.8%              |
| Kongsgaard et al. 2007 [65]       12       3375       1251       12       3776       1569       -0.23       [-1.04; 0.57]       1.99         McMahon et al. 2013 [67]       11       1124       471       11       837       379       -0.65       [-0.22; 1.51]       1.89         Quinlan et al. 2021 [121]       10       2377       608       10       1769       462       -0.65       [-0.22; 1.51]       1.89         Quinlan et al. 2021 [121]       9       2512       635       9       1782       570       -1.15       [0.13; 2.17]       1.59         Quinlan et al. 2021 [121]       8       2326       769       8       1376       428       -1.44       [0.31; 2.58]       1.39         Quinlan et al. 2021 [121]       8       2314       466       8       1267       260       -0.74       [0.16; 1.31]       12.59         Random effects model       80       80       80       80       -0.74       [0.68; 1.00]       100.09         Heterogeneity: $l^2 = 66\%, p < 0.01$ 657       657       9       0.84       [0.68; 1.00]       100.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arampatzis et al. 2010 [20]                                                            | 11       | 261        | 56         | 11  | 276  | 53        |             | -0.25  | [-1.09; 0.59]                                                                                                   | 1.8%              |
| Midmandir et al. 2013 [07]       11       1124       471       11       637       575       0.83 $[-0.22, 1.3]$ 1.03         Quinlan et al. 2021 [121]       10       2377       608       10       1769       462       1.08 $[-0.13; 2.03]$ 1.66         Quinlan et al. 2021 [121]       9       2512       635       9       1782       570       1.15 $[0.13; 2.03]$ 1.67         Quinlan et al. 2021 [121]       8       2326       769       8       1376       428       1.44 $[0.31; 2.58]$ 1.39         Quinlan et al. 2021 [121]       8       2314       466       8       1267       260       2.62 $[1.19; 4.06]$ 0.99         Random effects model       80       80       80       80       0.74 $[0.16; 1.31]$ 12.59         Heterogeneity: $l^2 = 66\%, p < 0.01$ 657       657       9       0.84 $[0.68; 1.00]$ 100.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kongsgaard et al. 2007 [65]                                                            | 12       | 3375       | 1251       | 12  | 3/16 | 1569      |             | -0.23  | [-1.04; 0.57]                                                                                                   | 1.9%              |
| Quinlan et al. 2021 [121]       9       2512       635       9       1782       570         Quinlan et al. 2021 [121]       8       2326       769       8       1376       428         Quinlan et al. 2021 [121]       8       2314       466       8       1267       260         Random effects model       80       80       80       80       0.74       [0.16; 1.31]       12.59         Heterogeneity: $l^2 = 66\%, p < 0.01$ 657       657       0.84       [0.68; 1.00]       100.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quinlan et al. 2013 [07]                                                               | 10       | 2377       | 608        | 10  | 1769 | 462       |             | 1.08   | [0.13:2.03]                                                                                                     | 1.6%              |
| Quinlan et al. 2021 [121]       8       2326       769       8       1376       428         Quinlan et al. 2021 [121]       8       2314       466       8       1267       260         Random effects model       80       80       80       80       0.74       [0.16; 1.31]       12.59         Random effects model       657       657       0.84       [0.68; 1.00]       100.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Quinlan et al. 2021 [121]                                                              | 9        | 2512       | 635        | 9   | 1782 | 570       |             | 1.15   | [ 0.13; 2.17]                                                                                                   | 1.5%              |
| Quinlan et al. 2021 [121]       8       2314       466       8       1267       260 $\blacksquare$ 2.62       [1.19; 4.06]       0.99         Random effects model       80       80       80 $0.74$ [0.16; 1.31]       12.59         Heterogeneity: $l^2 = 66\%, p < 0.01$ 657       657 $0.84$ [0.68; 1.00]       100.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Quinlan et al. 2021 [121]                                                              | 8        | 2326       | 769        | 8   | 1376 | 428       |             | 1.44   | [ 0.31; 2.58]                                                                                                   | 1.3%              |
| Random errects model         SU         SU         SU         U./4         [0.16; 1.31]         12.55           Heterogeneity: l <sup>2</sup> = 66%, p < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quinlan et al. 2021 [121]                                                              | 8        | 2314       | 466        | 8   | 1267 | 260       |             | 2.62   | [ 1.19; 4.06]                                                                                                   | 0.9%              |
| Random effects model 657 657 0.84 [0.68; 1.00] 100.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Heterogeneity: $I^2 = 66\%$ , $p < 0.01$                                               | 80       |            |            | 80  |      |           | $\diamond$  | U.74   | [ 0.16; 1.31]                                                                                                   | 12.5%             |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Random effects model                                                                   | 657      |            |            | 657 |      |           | \$          | 0.84   | [ 0.68; 1.00]                                                                                                   | 100.0%            |
| Heterogeneity: $l^2 = 46\%$ , $p < 0.01$<br>Residual heterogeneity: $l^2 = 46\%$ , $p < 0.01$<br>-4 -2 0 2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heterogeneity: $I^2 = 46\%$ , $p < 0.01$<br>Residual heterogeneity: $I^2 = 46\%$ , $p$ | p < 0.01 |            |            |     |      |           | -4 -2 0 2 4 |        | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |                   |

Decrease Increase

<u>S12.</u> Forest plot for the meta-analysis of modulus subdivided by protocol intensity (high versus low) showing standardised mean differences (SMD) and 95% confidence intervals (CI) of resistance training studies.

| Study                                    | n       | Mean | Post<br>SD | n   | Mean | Pre<br>SD |      |        |            | SMD    | [95% CI]      | Weight   |
|------------------------------------------|---------|------|------------|-----|------|-----------|------|--------|------------|--------|---------------|----------|
| High Intensity                           |         |      |            |     |      |           |      |        | 13         |        | -             | •        |
| Aramostzia at al. 2007 [10]              | 11      | 680  | 255        | 11  | 440  | 279       |      |        |            | 0.72   | [0 14: 1 50]  | 2 20/    |
| Arampatzis et al. 2007 [19]              | 11      | 1130 | 333        | 11  | 970  | 210       |      |        |            | 0.72   | [-0.14, 1.39] | 3 3 2 /0 |
| Rohm et al. 2014 [21]                    | 12      | 1050 | 277        | 12  | 800  | 232       |      |        |            | 0.54   | [-0.32, 1.33] | 3.4%     |
| Bohm et al. 2014 [21]                    | 14      | 1430 | 636        | 14  | 030  | 262       |      |        |            | 1.04   | [-0.20, 1.30] | 3.4%     |
| Bohm et al. 2014 [21]                    | 14      | 1430 | 281        | 12  | 910  | 202       |      |        |            | 1.04   | [0.24, 1.03]  | 3.4%     |
|                                          | 12      | 1220 | 450        | 12  | 1020 | 416       |      |        |            | 0.42   | [0.30, 2.17]  | 3.4%     |
| Control et al. 2011 [02]                 | 14      | 1848 | 430        | 14  | 1540 | 410       |      |        |            | 0.42   | [-0.39, 1.23] | 3.470    |
| Erikson et al. 2019 [71]                 | 14      | 1220 | 401        | 0   | 1040 | 200       |      |        |            | 0.01   | [-0.15, 1.56] | 3.5%     |
| Erikson et al. 2010 [03]                 | 10      | 725  | 262        | 12  | 702  | 350       |      |        |            | 0.17   | [-0.70, 1.10] | 3.170    |
| Eriksen et al. 2010 [63]                 | 12      | 1560 | 203        | 12  | 1510 | 253       |      |        |            | 0.12   | [-0.66, 0.92] | 3.4%     |
|                                          | 10      | 1000 | 443        | 10  | 1510 | 474       |      |        |            | 0.10   | [-0.77; 0.98] | 3.2%     |
| Geremia et al. 2018 [72]                 | 15      | 1292 | 436        | 15  | 695  | 160       |      |        |            | 1.77   | [0.91; 2.63]  | 3.2%     |
| Kongsgaard et al. 2007 [65]              | 12      | 1650 | 554        | 12  | 1470 | 569       |      |        |            | 0.30   | [-0.50, 1.11] | 3.4%     |
| Kubo et al. 2001 [52]                    | 8       | 433  | 35         | 8   | 288  | 26        |      |        |            | - 4.45 | [2.42; 6.47]  | 1.2%     |
| Malliaras et al. 2013 [61]               | 9       | 942  | 279        | 9   | 620  | 223       |      |        |            | 1.22   | [0.19; 2.24]  | 2.8%     |
| Malliaras et al. 2013 [61]               | 10      | 1022 | 339        | 10  | 737  | 390       |      |        |            | 0.75   | [-0.17; 1.66] | 3.1%     |
| Malliaras et al. 2013 [61]               | 10      | 1011 | 436        | 10  | 570  | 191       |      |        |            | 1.25   | [ 0.28; 2.23] | 2.9%     |
| Massey et al. 2018 [66]                  | 14      | 1490 | 270        | 14  | 1230 | 180       |      |        |            | 1.10   | [ 0.30; 1.90] | 3.4%     |
| Massey et al. 2018 [66]                  | 15      | 1510 | 360        | 15  | 1320 | 270       |      |        |            | 0.58   | [-0.15; 1.31] | 3.6%     |
| McMahon et al. 2013 [67]                 | 10      | 1100 | 120        | 10  | 830  | 90        |      |        |            | 2.44   | [ 1.22; 3.65] | 2.4%     |
| McMahon et al. 2013 [67]                 | 11      | 1150 | 110        | 11  | 780  | 100       |      |        |            | 3.39   | [ 2.00; 4.77] | 2.1%     |
| McMahon et al. 2018 [68]                 | 8       | 990  | 255        | 8   | 780  | 170       |      |        |            | 0.92   | [-0.13; 1.96] | 2.8%     |
| McMahon et al. 2018 [68]                 | 8       | 600  | 226        | 8   | 420  | 113       |      |        |            | 0.95   | [-0.10; 2.00] | 2.8%     |
| Seynnes et al. 2009 [70]                 | 15      | 1160 | 1201       | 15  | 980  | 1162      |      |        |            | 0.15   | [-0.57; 0.87] | 3.6%     |
| Waugh et al. 2018 [54]                   | 14      | 1892 | 803        | 14  | 1261 | 459       |      |        |            | 0.94   | [ 0.15; 1.72] | 3.4%     |
| Waugh et al. 2018 [54]                   | 14      | 1720 | 535        | 14  | 1242 | 420       |      |        |            | 0.96   | [ 0.17; 1.75] | 3.4%     |
| Random effects model                     | 290     |      |            | 290 |      |           |      |        | •          | 0.91   | [ 0.63; 1.18] | 77.1%    |
| Heterogeneity: $I^2 = 57\%$ , $p < 0.01$ |         |      |            |     |      |           |      |        |            |        |               |          |
|                                          |         |      |            |     |      |           |      |        |            |        |               |          |
| Low Intensity                            |         |      |            |     |      |           |      |        |            |        |               |          |
| Arampatzis et al. 2007 [19]              | 11      | 400  | 293        | 11  | 420  | 401       |      |        |            | -0.05  | [-0.89; 0.78] | 3.3%     |
| Arampatzis et al. 2010 [20]              | 11      | 970  | 265        | 11  | 1010 | 199       |      |        |            | -0.16  | [-1.00; 0.67] | 3.3%     |
| Kongsgaard et al. 2007 [65]              | 12      | 1360 | 658        | 12  | 1420 | 727       |      |        |            | -0.08  | [-0.88; 0.72] | 3.4%     |
| McMahon et al. 2013 [67]                 | 11      | 990  | 110        | 11  | 740  | 90        |      |        |            | 2.39   | [ 1.25; 3.54] | 2.5%     |
| Quinlan et al. 2021 [121]                | 10      | 1510 | 440        | 10  | 1160 | 290       |      |        | -          | 0.90   | [-0.03; 1.83] | 3.1%     |
| Quinlan et al. 2021 [121]                | 9       | 1460 | 350        | 9   | 1050 | 270       |      |        |            | 1.25   | 0.22: 2.281   | 2.8%     |
| Quinlan et al. 2021 [121]                | 8       | 1430 | 570        | 8   | 800  | 250       |      |        |            | 1.35   | 0.23: 2.471   | 2.6%     |
| Quinlan et al. 2021 [121]                | 8       | 1280 | 230        | 8   | 710  | 130       |      |        |            | 2.88   | [ 1.37; 4.40] | 1.9%     |
| Random effects model                     | 80      |      |            | 80  |      |           |      |        | $\diamond$ | 0.95   | [ 0.23: 1.68] | 22.9%    |
| Heterogeneity: $l^2 = 77\%$ , $p < 0.01$ |         |      |            |     |      |           |      |        |            | 2      | ,,            |          |
| Random effects model                     | 370     |      |            | 370 |      |           |      |        | \$         | 0.91   | [ 0.65: 1.17] | 100.0%   |
| Heterogeneity: $l^2 = 63\%$ $n < 0.01$   |         |      |            |     |      |           |      |        |            | 1      |               |          |
| Residual beterogeneity: $I^2 = 64\%$     | n < 0.0 | 1    |            |     |      |           | -6 - | 4 -2   | 0 2 4      | 6      |               |          |
|                                          | - 0.0   |      |            |     |      |           | De   | ecreas | e Increase | -      |               |          |
|                                          |         |      |            |     |      |           |      |        |            |        |               |          |

<u>S13.</u> Forest plot for the meta-analysis of cross-sectional area subdivided by protocol intensity (high versus low) showing standardised mean differences (SMD) and 95% confidence intervals (CI) of resistance training studies.

|                                                                 |        | -    | Post |     | 7 1-12100F | Pre |                                       |         |                      |        |
|-----------------------------------------------------------------|--------|------|------|-----|------------|-----|---------------------------------------|---------|----------------------|--------|
| Study                                                           | n      | Mean | SD   | n   | Mean       | SD  |                                       | SMD     | [95% CI]             | Weight |
| High Intensity<br>Arampatzis et al. 2007 [10]                   | 11     | 52   | 14   | 11  | 19         | 12  |                                       | 0.30    | L0 55: 1 141         | 2 0%   |
| Arampatzis et al. 2007 [19]                                     | 11     | 56   | 36   | 11  | 40         | 38  |                                       | 0.30    | [-0.33, 1.14]        | 2.0%   |
| Rohm et al. 2014 [21]                                           | 12     | 82   | 12   | 12  | 78         | 11  |                                       | 0.02    | [-0.02, 0.05]        | 2.1/0  |
| Bohm et al. 2014 [21]                                           | 14     | 83   | 14   | 14  | 80         | 13  |                                       | 0.30    | [-0.52: 0.97]        | 2.270  |
| Bohm et al. 2014 [21]                                           | 12     | 79   | 10   | 12  | 75         | 9   |                                       | 0.34    | $[-0.47 \cdot 1.14]$ | 2.0%   |
| Carroll et al. 2011 [62]                                        | 12     | 115  | 33   | 12  | 117        | 35  |                                       | -0.06   | [-0.86: 0.74]        | 2.2%   |
| Centner et al. 2019 [71]                                        | 14     | 74   | 17   | 14  | 70         | 18  |                                       | 0.18    | [-0.56; 0.92]        | 2.6%   |
| Eriksen et al. 2018 [63]                                        | 9      | 129  | 24   | 9   | 131        | 27  |                                       | -0.07   | [-1.00; 0.85]        | 1.7%   |
| Eriksen et al. 2018 [63]                                        | 11     | 123  | 33   | 12  | 121        | 28  |                                       | 0.06    | [-0.76; 0.88]        | 2.1%   |
| Eriksen et al. 2019 [64]                                        | 10     | 124  | 22   | 10  | 117        | 21  |                                       | 0.31    | [-0.57; 1.20]        | 1.8%   |
| Geremia et al. 2018 [72]                                        | 15     | 72   | 11   | 15  | 62         | 8   |                                       | 1.01    | [ 0.24; 1.77]        | 2.4%   |
| Kongsgaard et al. 2007 [65]                                     | 12     | 121  | 14   | 12  | 117        | 14  |                                       | 0.28    | [-0.53; 1.08]        | 2.2%   |
| Kubo et al. 2001 [51]                                           | 8      | 213  | 19   | 8   | 210        | 16  |                                       | 0.16    | [-0.82; 1.14]        | 1.5%   |
| Kubo et al. 2001 [51]                                           | 8      | 215  | 21   | 8   | 212        | 18  |                                       | 0.15    | [-0.84; 1.13]        | 1.5%   |
| Kubo et al. 2002 [111]                                          | 8      | 59   | 8    | 8   | 61         | 9   | <b>_</b>                              | -0.22   | [-1.21; 0.76]        | 1.5%   |
| Kubo et al. 2006 [112]                                          | 8      | 73   | 18   | 8   | 73         | 20  |                                       | 0.01    | [-0.97; 0.99]        | 1.5%   |
| Kubo et al. 2006 [113]                                          | 9      | 207  | 22   | 9   | 204        | 19  |                                       | 0.14    | [-0.79; 1.06]        | 1.7%   |
| Kubo et al. 2006 [113]                                          | 9      | 205  | 17   | 9   | 202        | 13  |                                       | 0.19    | [-0.74; 1.12]        | 1.7%   |
| Kubo et al. 2006 [96]                                           | 10     | 10   | 20   | 10  | 10         | 19  |                                       | -0.02   | [-0.95, 0.90]        | 1.7%   |
| Kubo et al. 2007 [65]                                           | 10     | 63   | 8    | 10  | 60         | 7   |                                       | -0.08   | [-0.96, 0.79]        | 1.9%   |
| Kubo et al. 2009 [114]                                          | 10     | 62   | 8    | 10  | 61         | 7   |                                       | 0.32    | [-0.37, 1.20]        | 1.0%   |
| Kubo et al. 2009 [114]                                          | 10     | 58   | 8    | 10  | 59         | 8   |                                       | -0.08   | [-0.76, 0.36]        | 1.9%   |
| Kubo et al. 2010 [115]                                          | 10     | 68   | 8    | 10  | 66         | 8   |                                       | 0.21    | [-0.67:1.09]         | 1.9%   |
| Kubo et al. 2010 [88]                                           | 8      | 81   | 20   | 8   | 80         | 19  |                                       | 0.04    | [-0.94 1.02]         | 1.5%   |
| Kubo et al. 2012 [89]                                           | 9      | 74   | 28   | 9   | 72         | 33  |                                       | 0.06    | [-0.86: 0.99]        | 1.7%   |
| Kubo et al. 2017 [116]                                          | 9      | 73   | 10   | 9   | 72         | 11  |                                       | 0.08    | [-0.84: 1.01]        | 1.7%   |
| Kubo et al. 2017 [116]                                          | 9      | 74   | 9    | 9   | 74         | 8   | · · · · · · · · · · · · · · · · · · · | 0.03    | [-0.89; 0.96]        | 1.7%   |
| Kubo et al. 2017 [86]                                           | 11     | 66   | 8    | 11  | 65         | 8   |                                       | 0.14    | [-0.70; 0.97]        | 2.0%   |
| Malliaras et al. 2013 [61]                                      | 9      | 118  | 9    | 9   | 112        | 6   |                                       | 0.73    | [-0.23; 1.70]        | 1.5%   |
| Malliaras et al. 2013 [61]                                      | 10     | 120  | 19   | 10  | 116        | 8   |                                       | 0.27    | [-0.61; 1.15]        | 1.8%   |
| Malliaras et al. 2013 [61]                                      | 10     | 120  | 19   | 10  | 114        | 19  |                                       | 0.33    | [-0.55; 1.22]        | 1.8%   |
| Massey et al. 2018 [66]                                         | 14     | 96   | 8    | 14  | 99         | 10  |                                       | -0.30   | [-1.04; 0.45]        | 2.6%   |
| Massey et al. 2018 [66]                                         | 15     | 98   | 13   | 15  | 97         | 13  |                                       | 0.03    | [-0.69; 0.75]        | 2.8%   |
| McMahon et al. 2013 [67]                                        | 10     | 73   | 14   | 10  | 70         | 13  |                                       | 0.21    | [-0.67; 1.09]        | 1.9%   |
| McMahon et al. 2013 [67]                                        | 11     | 76   | 16   | 11  | 71         | 13  |                                       | 0.31    | [-0.53; 1.16]        | 2.0%   |
| McMahon et al. 2018 [68]                                        | 8      | 81   | 13   | 8   | 11         | 13  |                                       | 0.32    | [-0.67; 1.30]        | 1.5%   |
| McManon et al. 2018 [68]                                        | 8      | 70   | 22   | 8   | 66         | 11  |                                       | 0.20    | [-0.78; 1.18]        | 1.5%   |
|                                                                 | 10     | 257  | 01   | 10  | 240        | 49  |                                       | 0.29    | [-0.59; 1.18]        | 1.8%   |
| Sanz-Lopez et al. 2016 [123]                                    | 20     | 107  | 23   | 20  | 102        | 11  |                                       | 1.04    | [0.36; 1.71]         | 3.2%   |
| Wauch et al. 2009 [70]                                          | 14     | 61   | 17   | 14  | 62         | 15  |                                       | -0.08   | [0.24, 1.77]         | 2.4%   |
| Waugh et al. 2010 [54]                                          | 14     | 60   | 14   | 14  | 58         | 13  |                                       | 0.14    | [-0.60; 0.88]        | 2.6%   |
| Random effects model                                            | 466    | 00   | 14   | 467 | 00         | 10  | \$                                    | 0.22    | [ 0.09; 0.35]        | 85.1%  |
| Heterogeneity: $I^2 = 0\%$ , $p = 1.00$                         | 400    |      |      | 401 |            |     |                                       | U. Anda | [ 0.00, 0.00]        | 00.170 |
| Low Intensity                                                   |        |      |      |     |            |     |                                       |         |                      |        |
| Arampatzis et al. 2007 [19]                                     | 11     | 53   | 15   | 11  | 50         | 15  |                                       | 0.14    | [-0.70; 0.98]        | 2.0%   |
| Arampatzis et al. 2010 [20]                                     | 11     | 60   | 35   | 11  | 58         | 34  |                                       | 0.05    | [-0.79; 0.88]        | 2.0%   |
| Kongsgaard et al. 2007 [65]                                     | 12     | 118  | 13   | 12  | 116        | 18  |                                       | 0.10    | [-0.70; 0.91]        | 2.2%   |
| McMahon et al. 2013 [67]                                        | 11     | 77   | 19   | 11  | 72         | 14  |                                       | 0.26    | [-0.58; 1.10]        | 2.0%   |
| Quinlan et al. 2021 [121]                                       | 10     | 85   | 5    | 10  | 84         | 6   |                                       | 0.16    | [-0.72; 1.04]        | 1.9%   |
| Quinlan et al. 2021 [121]                                       | 9      | 87   | 11   | 9   | 87         | 10  |                                       | -0.03   | [-0.95; 0.90]        | 1.7%   |
| Quinlan et al. 2021 [121]                                       | 8      | 89   | 12   | 8   | 89         | 11  |                                       | 0.01    | [-0.97; 0.99]        | 1.5%   |
| Quinlan et al. 2021 [121]                                       | 8      | 90   | 9    | 8   | 90         | 10  |                                       | 0.08    | [-0.90; 1.06]        | 1.5%   |
| Random effects model                                            | 80     |      |      | 80  |            |     | $\Diamond$                            | 0.10    | [-0.21; 0.41]        | 14.9%  |
| meterogeneity: $r^2 = 0\%$ , $p = 0.99$                         |        |      |      |     |            |     |                                       |         |                      |        |
| Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $p = 1.00$ | 546    |      |      | 547 |            |     |                                       | 0.20    | [ 0.08; 0.32]        | 100.0% |
| Residual heterogeneity: $I^2 = 0\%$ , $p$                       | = 1.00 |      |      |     |            |     | -1.5 -1 -0.5 0 0.5 1 1.5              |         |                      |        |

Decrease Increase

<u>S14.</u> Forest plot for the meta-analysis of stiffness subdivided by protocol strain (high versus low) showing standardised mean differences (SMD) and 95% confidence intervals (CI) of resistance training studies.

|                                                                 |         |      | Post |    |      | Pre |                   |        |               |        |
|-----------------------------------------------------------------|---------|------|------|----|------|-----|-------------------|--------|---------------|--------|
| Study                                                           | n       | Mean | SD   | n  | Mean | SD  |                   | SMD    | [95% CI]      | Weight |
| High                                                            |         |      |      |    |      |     |                   |        |               |        |
| Arampatzis et al. 2007 [19]                                     | 11      | 228  | 40   | 11 | 168  | 37  |                   | 1.52   | [ 0.55; 2.49] | 12.5%  |
| Arampatzis et al. 2010 [20]                                     | 11      | 302  | 57   | 11 | 258  | 51  |                   | 0.79   | [-0.09; 1.66] | 14.1%  |
| Bohm et al. 2014 [21]                                           | 12      | 457  | 132  | 12 | 370  | 132 |                   | 0.64   | [-0.18: 1.47] | 15.0%  |
| Bohm et al. 2014 [21]                                           | 14      | 539  | 254  | 14 | 336  | 89  |                   | - 1.04 | [ 0.24: 1.84] | 15.5%  |
| Bohm et al. 2014 [21]                                           | 12      | 579  | 172  | 12 | 377  | 106 |                   | 1.37   | [0.46: 2.27]  | 13.6%  |
| Random effects model                                            | 60      |      | 0.00 | 60 |      |     |                   | 1.04   | [0.65: 1.43]  | 70.7%  |
| Heterogeneity: $l^2 = 0\%$ , $p = 0.32$                         |         |      |      |    |      |     |                   |        | [ 0100] 1110] |        |
| Low                                                             |         |      |      |    |      |     |                   |        |               |        |
| Arampatzis et al. 2007 [19]                                     | 11      | 201  | 41   | 11 | 187  | 38  |                   | 0.36   | [-0.49; 1.20] | 14.6%  |
| Arampatzis et al. 2010 [20]                                     | 11      | 261  | 56   | 11 | 276  | 53  |                   | -0.25  | [-1.09; 0.59] | 14.7%  |
| Random effects model<br>Heterogeneity: $l^2 = 1\%$ , $p = 0.62$ | 22      |      |      | 22 |      |     | $\diamond$        | 0.05   | [-0.55; 0.65] | 29.3%  |
| Random effects model                                            | 82      |      |      | 82 |      |     |                   | 0.76   | [ 0.31; 1.20] | 100.0% |
| Period and hotorogonality: $l^2 = 0.05$                         | n = 0.6 | 20   |      |    |      |     | 2 1 0 1           | 2      |               |        |
| Residual neterogeneity: / = 0%,                                 | p = 0.0 | 00   |      |    |      |     | -2 -1 U I         | 2      |               |        |
|                                                                 |         |      |      |    |      |     | Decrease Inclease | 5      |               |        |

<u>S15.</u> Forest plot for the meta-analysis of modulus subdivided by protocol strain (high versus low) showing standardised mean differences (SMD) and 95% confidence intervals (CI) of resistance training studies.

|                                                                                                                                                                                                                  |                                  |                                     | Post                            |                                  |                                 | Pre                             |                                  |                                                |                                                                                                    |                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Study                                                                                                                                                                                                            | n                                | Mean                                | SD                              | n                                | Mean                            | SD                              |                                  | SMD                                            | [95% CI]                                                                                           | Weight                                             |
| High<br>Arampatzis et al. 2007 [19]<br>Arampatzis et al. 2010 [20]<br>Bohm et al. 2014 [21]<br>Bohm et al. 2014 [21]<br>Bohm et al. 2014 [21]<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $p = 0.86$ | 11<br>11<br>12<br>14<br>12<br>60 | 680<br>1130<br>1050<br>1430<br>1410 | 355<br>332<br>277<br>636<br>381 | 11<br>11<br>12<br>14<br>12<br>60 | 440<br>970<br>890<br>910<br>970 | 278<br>232<br>277<br>262<br>277 |                                  | 0.72<br>0.54<br>0.56<br>1.04<br>- 1.28<br>0.82 | [-0.14; 1.59]<br>[-0.32; 1.39]<br>[-0.26; 1.38]<br>[ 0.24; 1.83]<br>[ 0.38; 2.17]<br>[ 0.44; 1.20] | 13.7%<br>14.0%<br>14.8%<br>15.4%<br>13.2%<br>71.2% |
| Low<br>Arampatzis et al. 2007 [19]<br>Arampatzis et al. 2010 [20]<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $p = 0.71$                                                                             | 11<br>11<br>22                   | 400<br>970                          | 293<br>265                      | 11<br>11<br>22                   | 420<br>1010                     | 401<br>199                      |                                  | -0.05<br>-0.16<br>-0.11                        | [-0.89; 0.78]<br>[-1.00; 0.67]<br>[-0.70; 0.48]                                                    | 14.4%<br>14.4%<br>28.8%                            |
| Random effects model<br>Heterogeneity: $I^2 = 33\%$ , $p = 0.18$<br>Residual heterogeneity: $I^2 = 0\%$ ,                                                                                                        | <b>82</b><br>3<br>p = 0.8        | 32                                  |                                 | 82                               |                                 |                                 | -2 -1 0 1 2<br>Decrease Increase | <b>0.55</b>                                    | [ 0.17; 0.94]                                                                                      | 100.0%                                             |

<u>S16.</u> Forest plot for the meta-analysis of cross-sectional area subdivided by protocol strain (high versus low) showing standardised mean differences (SMD) and 95% confidence intervals (CI) of resistance training studies.

|         |                                                                    | Post                                                                                 |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n       | Mean                                                               | SD                                                                                   | n                                                                                                                                                                                                                                                                                                                       | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SMD                                                   | [95% CI]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         |                                                                    |                                                                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11      | 53                                                                 | 14                                                                                   | 11                                                                                                                                                                                                                                                                                                                      | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0.30                                                | [-0.55; 1.14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11      | 56                                                                 | 36                                                                                   | 11                                                                                                                                                                                                                                                                                                                      | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02                                                  | [-0.82; 0.85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12      | 82                                                                 | 12                                                                                   | 12                                                                                                                                                                                                                                                                                                                      | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0.36                                                | [-0.45; 1.16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14      | 83                                                                 | 14                                                                                   | 14                                                                                                                                                                                                                                                                                                                      | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.23                                                  | [-0.52; 0.97]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12      | 79                                                                 | 10                                                                                   | 12                                                                                                                                                                                                                                                                                                                      | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0.34                                                | [-0.47: 1.14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 60      |                                                                    |                                                                                      | 60                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.25                                                  | [-0.11; 0.61]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                                                                    |                                                                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                                                                    |                                                                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11      | 53                                                                 | 15                                                                                   | 11                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.14                                                  | [-0.70; 0.98]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11      | 60                                                                 | 35                                                                                   | 11                                                                                                                                                                                                                                                                                                                      | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.05                                                  | [-0.79; 0.88]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 22      |                                                                    |                                                                                      | 22                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.09                                                  | [-0.50; 0.69]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 00      |                                                                    |                                                                                      | 07                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.24                                                  | L 0 40, 0 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 02      |                                                                    |                                                                                      | 02                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.21                                                  | [-0.10; 0.51]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 = 0.9 | 99                                                                 |                                                                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1 -0.5 0 0.5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                                                                    |                                                                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Decrease Increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | n<br>11<br>12<br>14<br>12<br>60<br>11<br>11<br>22<br>82<br>p = 0.8 | n Mean<br>11 53<br>12 82<br>14 83<br>12 79<br>60<br>11 53<br>12 60<br>82<br>0 = 0.99 | Post<br>Mean         Post<br>SD           11         53         14           11         56         36           12         82         12           14         3         14           12         79         10           60         35         35           22         60         35           82         0         0.99 | Post<br>n         Post<br>Mean         SD         n           11         53         14         11           15         636         11           12         82         12         12           14         83         14         14           12         79         10         12           60         60         11         12           11         53         15         11           12         60         35         11           22         22         82         82           a = 0.99         5         5         11 | Nean         SD         n         Mean           11         53         14         11         48           11         56         36         11         56           12         82         12         12         78           14         83         14         14         80           12         79         10         12         75           60         60         35         11         50           11         53         15         11         58           22         2         22         82         82           9         0.99         9         9         10         12 | Post         Pre           n         Mean         SD         n         Mean         SD           11         53         14         11         48         13           11         56         36         11         56         38           12         82         12         12         78         11           14         83         14         14         80         13           12         79         10         12         75         9           60         60         75         9         60         15           11         53         15         11         50         15           12         60         35         11         58         34           22         2         82         82         22         2           60         35         11         58         34           20         0.99         9         9         11         15 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Post         Pre           n         Mean         SD         n         Mean         SD         SMD           11         53         14         11         48         13         0.30           11         56         36         11         56         38         0.02           12         82         12         78         11         0.23           14         83         14         14         80         13           60         60         75         9         0.34           60         60         0.25         0.34           11         53         15         11         50         15           22         22         22         0.09         0.24           82         82         82         0.05         0.05           0         0.05         0.05         1         0.21           0         -1         -0.5         0         0.5         1           0         0         0         0         0.5         1 | Post         Pre           n         Mean         SD         n         Mean         SD         SMD         [95% CI]           11         53         14         11         48         13         0.30         [-0.55; 1.14]           11         56         36         11         56         38         0.02         [-0.82; 0.85]           12         82         12         12         78         11         0.36         [-0.45; 1.16]           14         83         14         14         80         13         0.23         [-0.52; 0.97]           12         79         10         12         75         9         0.34         [-0.47; 1.14]           60         60         15         [-0.79; 0.98]         [-0.79; 0.98]         [-0.79; 0.88]           22         22         22         22         0.09         [-0.50; 0.69]         0.99         [-0.50; 0.69]           82         82         82         -1         -0.5         0.0.5         1         0.21         [-0.10; 0.51]           0= 0.99         -1         -0.5         0.0.5         1         -1         -1         -1         -1         -1         -1 |

<u>S17.</u> Forest plot for the meta-analysis of stiffness subdivided by training volume (high versus low) showing standardised mean differences (SMD) and 95% confidence intervals (CI) of resistance training studies.

| Study                                    | n        | Mean | Post<br>SD | n    | Mean | Pre<br>SD |                   | SMD   | [95% CI]      | Weight  |
|------------------------------------------|----------|------|------------|------|------|-----------|-------------------|-------|---------------|---------|
| High volume                              |          |      |            |      |      |           | - [ ]             |       |               |         |
| Arampatzis et al 2010 [20]               | 11       | 261  | 56         | 11   | 276  | 53        |                   | -0.25 | [-1 09: 0 59] | 2.0%    |
| Arampatzis et al 2010 [20]               | 11       | 302  | 57         | 11   | 258  | 51        |                   | 0.79  | [-0.09: 1.66] | 1.9%    |
| Bohm et al. 2014 [21]                    | 14       | 539  | 254        | 14   | 336  | 89        |                   | 1.04  | [ 0.24; 1.84] | 2.1%    |
| Duclay et al. 2009 [105]                 | 10       | 291  | 125        | 10   | 249  | 90        |                   | 0.38  | [-0.51; 1.26] | 1.9%    |
| Geremia et al. 2018 [72]                 | 15       | 350  | 59         | 15   | 192  | 36        |                   | 3.15  | [ 2.03; 4.26] | 1.3%    |
| Kongsgaard et al. 2007 [65]              | 12       | 4213 | 1406       | 12   | 3676 | 1306      | -                 | 0.38  | [-0.43; 1.19] | 2.1%    |
| Kubo et al. 2006 [113]                   | 9        | 86   | 36         | 9    | 79   | 21        |                   | 0.25  | [-0.68; 1.17] | 1.7%    |
| Kubo et al. 2006 [113]                   | 9        | 122  | 40         | 9    | 81   | 26        |                   | 1.17  | [ 0.15; 2.18] | 1.5%    |
| Kubo et al. 2006 [96]                    | 9        | 59   | 23         | 9    | 46   | 19        |                   | 0.62  | [-0.33; 1.57] | 1.7%    |
| Kubo et al. 2006 [96]                    | 10       | 1819 | 710        | 10   | 10/0 | 200       |                   | 0.20  | [-0.73; 1.13] | 1.7%    |
| Kubo et al. 2009 [114]                   | 10       | 1253 | 410        | 10   | 999  | 426       |                   | 0.75  | [-0.10, 1.07] | 1.0%    |
| Kubo et al. 2000 [114]                   | 10       | 41   | 13         | 10   | 32   | -20       |                   | 0.85  | [-0.02, 1.40] | 1.8%    |
| Kubo et al. 2010 [115]                   | 10       | 96   | 37         | 10   | 72   | 20        |                   | 0.75  | [-0.16: 1.67] | 1.8%    |
| Kubo et al. 2017 [116]                   | 9        | 1414 | 355        | 9    | 1004 | 384       |                   | 1.06  | [ 0.05; 2.06] | 1.6%    |
| Kubo et al. 2017 [116]                   | 9        | 1457 | 440        | 9    | 1289 | 544       |                   | 0.32  | [-0.61; 1.26] | 1.7%    |
| Malliaras et al. 2013 [61]               | 10       | 2536 | 850        | 10   | 1822 | 898       |                   | 0.78  | [-0.13; 1.70] | 1.8%    |
| Massey et al. 2018 [66]                  | 14       | 595  | 101        | 14   | 592  | 118       |                   | 0.03  | [-0.71; 0.77] | 2.3%    |
| Massey et al. 2018 [66]                  | 14       | 3122 | 632        | 14   | 2605 | 446       |                   | 0.92  | [0.13; 1.70]  | 2.2%    |
| McMahon et al. 2013 [67]                 | 10       | 1221 | 594        | 10   | 916  | 441       |                   | 0.56  | [-0.34; 1.46] | 1.8%    |
| McMahon et al. 2013 [67]                 | 11       | 1124 | 4/1        | 11   | 837  | 3/9       |                   | 0.65  | [-0.22; 1.51] | 1.9%    |
| Onambélé et al. 2013 [07]                | 12       | 40   | 22         | 12   | 26   | 13        |                   | 0.72  | [0.34, 2.21]  | 2.0%    |
| Quinlan et al. 2021 [121]                | 10       | 2377 | 608        | 10   | 1769 | 462       |                   | 1.08  | [0.13:2.03]   | 1.7%    |
| Quinlan et al. 2021 [121]                | 9        | 2512 | 635        | 9    | 1782 | 570       |                   | 1.15  | [0.13; 2.17]  | 1.5%    |
| Quinlan et al. 2021 [121]                | 8        | 2326 | 769        | 8    | 1376 | 428       |                   | 1.44  | 0.31; 2.58]   | 1.3%    |
| Quinlan et al. 2021 [121]                | 8        | 2314 | 466        | 8    | 1267 | 260       |                   | 2.62  | [ 1.19; 4.06] | 0.9%    |
| Seynnes et al. 2009 [70]                 | 15       | 2288 | 2115       | 15   | 1864 | 1813      | -                 | 0.21  | [-0.51; 0.93] | 2.4%    |
| Tillin et al. 2012 [125]                 | 10       | 697  | 103        | 10   | 520  | 86        |                   | 1.79  | [ 0.71; 2.86] | 1.4%    |
| Waugh et al. 2018 [54]                   | 14       | 456  | 49         | 14   | 390  | 35        |                   | 1.51  | [ 0.66; 2.37] | 1.9%    |
| Waugh et al. 2018 [54]                   | 14       | 461  | 40         | 14   | 359  | 53        |                   | 2.11  | [ 1.16; 3.06] | 1.7%    |
| Random effects model                     | 3/18     | 459  | 147        | 3/18 | 397  | 140       |                   | 0.41  | [-0.44, 1.25] | 57.0%   |
| Heterogeneity: $I^2 = 49\%$ , $p = 0.65$ | 040      |      |            | 040  |      |           |                   | 0.00  | [0.02, 1.07]  | 07.070  |
|                                          |          |      |            |      |      |           |                   |       |               |         |
| Low volume                               |          |      |            |      |      |           |                   |       |               |         |
| Albracht et al. 2013[5]                  | 13       | 315  | 53         | 13   | 272  | 48        |                   | 0.82  | [ 0.02; 1.63] | 2.1%    |
| Arampatzis et al. 2007 [19]              | 11       | 201  | 41         | 11   | 187  | 38        |                   | 0.36  | [-0.49; 1.20] | 2.0%    |
| Arampatzis et al. 2007 [19]              | 11       | 228  | 40         | 11   | 168  | 122       |                   | 1.52  | [0.55; 2.49]  | 1.6%    |
| Bohm et al. 2014 [21]                    | 12       | 579  | 172        | 12   | 370  | 106       |                   | 1 37  | [-0.16, 1.47] | 1.8%    |
| Bohm et al. 2021 [17]                    | 13       | 111  | 59         | 13   | 85   | 36        |                   | 0.52  | [-0.27:1.30]  | 2.2%    |
| Carroll et al. 2011 [62]                 | 12       | 3335 | 1334       | 12   | 2928 | 1320      |                   | 0.30  | [-0.51; 1.10] | 2.1%    |
| Centner et al. 2019 [71]                 | 14       | 565  | 158        | 14   | 402  | 103       |                   | 1.19  | [ 0.38; 2.01] | 2.1%    |
| Eriksen et al. 2018 [63]                 | 9        | 3890 | 2430       | 9    | 2560 | 1530      | +=-               | 0.62  | [-0.33; 1.58] | 1.7%    |
| Eriksen et al. 2018 [63]                 | 12       | 1900 | 693        | 12   | 1800 | 624       |                   | 0.15  | [-0.65; 0.95] | 2.1%    |
| Kubo et al. 2001 [51]                    | 8        | 106  | 33         | 8    | 68   | 21        |                   | 1.31  | [ 0.20; 2.42] | 1.3%    |
| Kubo et al. 2006 [112]                   | 8        | 59   | 24         | 8    | 51   | 22        |                   | 0.29  | [-0.69; 1.28] | 1.6%    |
| Kubo et al. 2006 [112]                   | 8        | 1/86 | 660        | 8    | 1790 | 559       |                   | -0.01 | [-0.99; 0.97] | 1.6%    |
| Kubo et al. 2009 [114]                   | 10       | 1833 | 802        | 10   | 1071 | 630       |                   | 0.94  | [0.43, 2.44]  | 1.0%    |
| Kubo et al. 2010 [88]                    | 8        | 104  | 37         | 8    | 69   | 19        |                   | 1 12  | [ 0.04 2.20]  | 1.4%    |
| Kubo et al. 2012 [89]                    | 9        | 277  | 111        | 9    | 183  | 45        |                   | 1.06  | [ 0.05: 2.06] | 1.6%    |
| Kubo et al. 2017 [86]                    | 11       | 32   | 9          | 11   | 24   | 5         |                   | 1.17  | [ 0.25; 2.09] | 1.8%    |
| Malliaras et al. 2013 [61]               | 9        | 2338 | 638        | 9    | 1560 | 793       |                   | 1.03  | [ 0.03; 2.03] | 1.6%    |
| Malliaras et al. 2013 [61]               | 10       | 2508 | 1066       | 10   | 1387 | 360       |                   | 1.35  | [ 0.36; 2.34] | 1.6%    |
| Massey et al. 2018 [66]                  | 15       | 687  | 285        | 15   | 560  | 177       |                   | 0.52  | [-0.21; 1.25] | 2.4%    |
| Massey et al. 2018 [66]                  | 15       | 3239 | 575        | 15   | 2835 | 444       |                   | 0.77  | [0.02; 1.51]  | 2.3%    |
| wicivianon et al. 2018 [68]              | 8        | 151/ | 390        | 8    | 1132 | 294       |                   | 1.05  | [-0.01; 2.12] | 1.4%    |
| Random effects model                     | 256      | 991  | 305        | 256  | 019  | 204       |                   | 0.98  | [-0.06; 2.03] | 1.5%    |
| Heterogeneity: $J^2 = 0\%$ $p < 0.01$    | 200      |      |            | 200  |      |           |                   | 0.01  | [ 0.02, 0.33] | 40.0 /0 |
| necerogenery, r = 070, p < 0.01          |          |      |            |      |      |           |                   |       |               |         |
| Random effects model                     | 604      |      |            | 604  |      |           | 0                 | 0.83  | [ 0.68; 0.97] | 100.0%  |
| Heterogeneity: $I^2 = 32\%$ , $p = 0.01$ |          |      |            |      |      |           |                   |       | 53. St. St.   |         |
| Residual heterogeneity: $I^2 = 33\%$ ,   | p = 0.01 |      |            |      |      |           | -4 -2 0 2 4       |       |               |         |
|                                          |          |      |            |      |      |           | Decrease Increase |       |               |         |

**<u>S18.</u>** Forest plot for the meta-analysis of modulus subdivided by training volume (high versus low) showing standardised mean differences (SMD) and 95% confidence intervals (CI) of resistance training studies.

| Study                                    | n       | Mean  | Post<br>SD | n   | Mean | Pre<br>SD |       |       |          | SMD    | [95% CI]      | Weight          |
|------------------------------------------|---------|-------|------------|-----|------|-----------|-------|-------|----------|--------|---------------|-----------------|
| High volume                              |         |       |            |     |      |           |       |       |          |        |               |                 |
| Arampatzis et al. 2010 [20]              | 11      | 970   | 265        | 11  | 1010 | 199       |       | -     |          | -0.16  | [-1.00; 0.67] | 3.7%            |
| Arampatzis et al. 2010 [20]              | 11      | 1130  | 332        | 11  | 970  | 232       |       | -     |          | 0.54   | [-0.32; 1.39] | 3.6%            |
| Bohm et al. 2014 [21]                    | 14      | 1430  | 636        | 14  | 910  | 262       |       | -     |          | 1.04   | [ 0.24; 1.83] | 3.8%            |
| Geremia et al. 2018 [72]                 | 15      | 1292  | 436        | 15  | 695  | 160       |       |       |          | 1.77   | [ 0.91; 2.63] | 3.6%            |
| Kongsgaard et al. 2007 [65]              | 12      | 1650  | 554        | 12  | 1470 | 589       |       | +     |          | 0.30   | [-0.50; 1.11] | 3.8%            |
| Malliaras et al. 2013 [61]               | 10      | 1022  | 339        | 10  | 737  | 390       |       | 1     | •        | 0.75   | [-0.17; 1.66] | 3.4%            |
| Massey et al. 2018 [66]                  | 14      | 1490  | 270        | 14  | 1230 | 180       |       | 3     | +        | 1.10   | [ 0.30; 1.90] | 3.8%            |
| McMahon et al. 2013 [67]                 | 10      | 1100  | 120        | 10  | 830  | 90        |       |       |          | 2.44   | [ 1.22; 3.65] | 2.7%            |
| McMahon et al. 2013 [67]                 | 11      | 990   | 110        | 11  | 740  | 90        |       |       |          | 2.39   | [ 1.25; 3.54] | 2.8%            |
| McMahon et al. 2013 [67]                 | 11      | 1150  | 110        | 11  | 780  | 100       |       |       |          | 3.39   | [2.00; 4.77]  | 2.3%            |
| Quinlan et al. 2021 [121]                | 10      | 1510  | 440        | 10  | 1160 | 290       |       |       | <u> </u> | 0.90   | [-0.03; 1.83] | 3.4%            |
| Quinlan et al. 2021 [121]                | 9       | 1460  | 350        | 9   | 1050 | 270       |       | -     | E        | 1.25   | [ 0.22; 2.28] | 3.1%            |
| Quinlan et al. 2021 [121]                | 8       | 1430  | 570        | 8   | 800  | 250       |       |       |          | 1.35   | [ 0.23; 2.47] | 2.9%            |
| Quinlan et al. 2021 [121]                | 8       | 1280  | 230        | 8   | /10  | 130       |       |       |          | 2.88   | [1.37; 4.40]  | 2.1%            |
| Seynnes et al. 2009 [70]                 | 15      | 1160  | 1201       | 15  | 980  | 1162      |       | -     |          | 0.15   | [-0.57; 0.87] | 4.0%            |
| Waugh et al. 2018 [54]                   | 14      | 1586  | 611        | 14  | 1261 | 459       |       |       |          | 0.58   | [-0.18; 1.34] | 3.9%            |
| Waugh et al. 2018 [54]                   | 14      | 1529  | 459        | 14  | 1242 | 420       |       |       |          | 0.63   | [-0.13; 1.39] | 3.9%            |
| Random effects model                     | 197     |       |            | 197 |      |           |       |       |          | 1.13   | [0.73; 1.53]  | 56.6%           |
| Heterogeneity: $T = 69\%$ , $p = 0.02$   |         |       |            |     |      |           |       |       |          |        |               |                 |
| Louvielume                               |         |       |            |     |      |           |       |       |          |        |               |                 |
| Arampetzia et al. 2007 [10]              | 11      | 400   | 202        | 11  | 400  | 101       |       |       |          | 0.05   | 10 00.0 701   | 2 70/           |
| Arampatzis et al. 2007 [19]              | 11      | 400   | 293        | 11  | 420  | 279       |       |       |          | -0.05  | [-0.09, 0.78] | 3.770           |
| Rohm et al. 2014 [21]                    | 12      | 1050  | 277        | 10  | 900  | 270       |       |       |          | 0.72   | [-0.14, 1.39] | 3.0%            |
| Bohm et al. 2014 [21]                    | 12      | 1410  | 211        | 12  | 970  | 277       |       |       |          | 1.28   | [-0.20, 1.30] | 3.5%            |
| Centrer et al. 2014 [21]                 | 14      | 18/18 | 481        | 14  | 1540 | 102       |       |       |          | 0.61   | [0.30, 2.17]  | 3.0%            |
| Erikson et al. 2018 [63]                 | 9       | 1330  | 690        | 9   | 1230 | 300       |       | -     | 1        | 0.01   | [-0.76:1.10]  | 3.1%            |
| Eriksen et al. 2018 [63]                 | 12      | 735   | 263        | 12  | 703  | 253       |       | -     |          | 0.17   | [-0.68: 0.92] | 3.8%            |
| Kubo et al. 2001 [52]                    | 8       | 433   | 35         | 8   | 288  | 26        |       |       |          | - 445  | [242.647]     | 1.4%            |
| Malliaras et al. 2013 [61]               | 9       | 942   | 279        | g   | 620  | 223       |       |       |          | 1 22   | [0.19, 2.24]  | 3.1%            |
| Malliaras et al. 2013 [61]               | 10      | 1011  | 436        | 10  | 570  | 191       |       | _     |          | 1.25   | [ 0 28 2 23]  | 3.3%            |
| Massev et al. 2018 [66]                  | 15      | 1510  | 360        | 15  | 1320 | 270       |       |       |          | 0.58   | [-0.15: 1.31] | 4.0%            |
| McMahon et al. 2018 [68]                 | 8       | 990   | 255        | 8   | 780  | 170       |       |       | -        | 0.92   | [-0.13: 1.96] | 3.1%            |
| McMahon et al. 2018 [68]                 | 8       | 600   | 226        | 8   | 420  | 113       |       | - 4   | ÷        | 0.95   | [-0.10:2.00]  | 3.1%            |
| Random effects model                     | 139     | 000   | 220        | 139 | 120  | 110       |       |       | o l      | 0.77   | [0.40:1.13]   | 43.4%           |
| Heterogeneity: $l^2 = 50\%$ p < 0.01     | 100     |       |            | 100 |      |           |       |       |          | Sec. 1 | [ strot trio] | 101170          |
|                                          |         |       |            |     |      |           |       |       |          |        |               |                 |
| Random effects model                     | 336     |       |            | 336 |      |           |       |       | \$       | 0.97   | [ 0.70; 1.25] | 100.0%          |
| Heterogeneity: $l^2 = 63\%$ , $p < 0.01$ |         |       |            |     |      |           |       |       |          |        |               | second SUSCE FL |
| Residual heterogeneity: $I^2 = 63\%$ .   | p < 0.0 | 1     |            |     |      |           | -6 -4 | -2 0  | 2 4      | 6      |               |                 |
|                                          |         |       |            |     |      |           | Deci  | rease | Increase |        |               |                 |

<u>S19.</u> Forest plot for the meta-analysis of cross-sectional area subdivided by training volume (high versus low) showing standardised mean differences (SMD) and 95% confidence intervals (CI) of resistance training studies.

|                                           |        |           | Post |     | NO PROVIDE | Pre |                          | 7-10000000 |               |         |
|-------------------------------------------|--------|-----------|------|-----|------------|-----|--------------------------|------------|---------------|---------|
| Study                                     | n      | Mean      | SD   | n   | Mean       | SD  |                          | SMD        | [95% CI]      | Weight  |
|                                           |        |           |      |     |            |     | T T                      |            |               |         |
| High volume                               | 4.4    | <b>CO</b> | 25   | 4.4 | 50         | 24  |                          | 0.05       | [0.70,0.00]   | 0 10/   |
| Arampatzis et al. 2010 [20]               | 11     | 50        | 30   | 11  | 50         | 29  |                          | 0.05       | [-0.79, 0.00] | 2.1%    |
| Rohm at al 2014 [21]                      | 14     | 00        | 14   | 14  | 00         | 12  |                          | 0.02       | [-0.62, 0.65] | 2.170   |
| Coromia at al. 2014 [21]                  | 14     | 72        | 14   | 14  | 60         | 13  |                          | 1.01       | [-0.32, 0.97] | 2.170   |
| Kengegoord et al. 2016 [72]               | 10     | 121       | 14   | 10  | 117        | 14  |                          | 0.29       | [0.24, 1.77]  | 2.3%    |
| Kuba at al. 2001 [51]                     | 12     | 121       | 14   | 12  | 210        | 14  |                          | 0.20       | [-0.33, 1.00] | 2.3%    |
| Kubo et al. 2007 [51]                     | 0      | 213       | 19   | 0   | 210        | 10  |                          | 0.10       | [-0.02, 1.14] | 1.5%    |
| Kubo et al. 2002 [111]                    | 0      | 207       | 22   | 0   | 204        | 10  |                          | 0.14       | [-1.21, 0.70] | 1.5%    |
| Kubo et al. 2000 [113]                    | 9      | 207       | 17   | 9   | 204        | 13  |                          | 0.14       | [-0.73, 1.00] | 1.7%    |
| Kubo et al. 2000 [113]                    | a      | 205       | 20   | a   | 78         | 19  |                          | -0.02      | [-0.95: 0.90] | 1.7%    |
| Kubo et al. 2000 [50]                     | 10     | 58        | 20   | 10  | 59         | 8   |                          | -0.02      | [-0.00; 0.00] | 1 9%    |
| Kubo et al. 2007 [05]                     | 10     | 62        | 8    | 10  | 61         | 7   |                          | 0.10       | [-0.78: 0.98] | 1.9%    |
| Kubo et al. 2000 [114]                    | 10     | 58        | 8    | 10  | 59         | 8   |                          | -0.08      | [-0.96: 0.79] | 1.9%    |
| Kubo et al 2010 [115]                     | 10     | 68        | Ř    | 10  | 66         | 8   |                          | 0.00       | [-0.67:1.09]  | 1.9%    |
| Kubo et al. 2017 [116]                    | 9      | 73        | 10   | 9   | 72         | 11  |                          | 0.08       | [-0.84: 1.01] | 1.3%    |
| Kubo et al. 2017 [116]                    | ğ      | 74        | 9    | 9   | 74         | 8   |                          | 0.03       | [-0.89: 0.96] | 1.7%    |
| Malliaras et al 2013 [61]                 | 10     | 120       | 19   | 10  | 116        | 8   |                          | 0.27       | [-0.61:1.15]  | 1.9%    |
| Massev et al 2018 [66]                    | 14     | 96        | 8    | 14  | 99         | 10  |                          | -0.30      | [-1.04: 0.45] | 2.7%    |
| McMahon et al 2013 [67]                   | 10     | 73        | 14   | 10  | 70         | 13  |                          | 0.21       | [-0.67:1.09]  | 1.9%    |
| McMahon et al 2013 [67]                   | 11     | 77        | 19   | 11  | 72         | 14  |                          | 0.26       | [-0.58: 1.10] | 2.1%    |
| McMahon et al 2013 [67]                   | 11     | 76        | 16   | 11  | 71         | 13  |                          | 0.31       | [-0.53: 1.16] | 2.1%    |
| Mouraux et al 2000 [118]                  | 10     | 257       | 61   | 10  | 240        | 49  |                          | 0.29       | [-0 59 1 18]  | 1.9%    |
| Quinlan et al. 2021 [121]                 | 10     | 85        | 5    | 10  | 84         | 6   |                          | 0.16       | [-0.72: 1.04] | 1.9%    |
| Quinlan et al. 2021 [121]                 | 9      | 87        | 11   | 9   | 87         | 10  |                          | -0.03      | [-0.95: 0.90] | 1.7%    |
| Quinlan et al. 2021 [121]                 | 8      | 89        | 12   | 8   | 89         | 11  |                          | 0.01       | [-0.97: 0.99] | 1.6%    |
| Quinlan et al. 2021 [121]                 | 8      | 90        | 9    | 8   | 90         | 10  |                          | 0.08       | [-0.90: 1.06] | 1.6%    |
| Sevnnes et al. 2009 [70]                  | 15     | 107       | 4    | 15  | 103        | 4   |                          | 1.01       | [ 0.24: 1.77] | 2.5%    |
| Waugh et al. 2018 [54]                    | 14     | 61        | 17   | 14  | 62         | 15  |                          | -0.08      | [-0.82: 0.67] | 2.7%    |
| Waugh et al. 2018 [54]                    | 14     | 60        | 14   | 14  | 58         | 13  |                          | 0.14       | [-0.60: 0.88] | 2.7%    |
| Random effects model                      | 308    |           |      | 308 |            |     | <b></b>                  | 0.17       | [0.01; 0.33]  | 58.8%   |
| Heterogeneity: $I^2 = 0\%$ , $p = 0.97$   |        |           |      |     |            |     |                          |            |               |         |
|                                           |        |           |      |     |            |     |                          |            |               |         |
| Low volume                                |        |           |      |     |            |     |                          |            |               |         |
| Arampatzis et al. 2007 [19]               | 11     | 53        | 15   | 11  | 50         | 15  |                          | 0.14       | [-0.70; 0.98] | 2.1%    |
| Arampatzis et al. 2007 [19]               | 11     | 53        | 14   | 11  | 48         | 13  |                          | 0.30       | [-0.55; 1.14] | 2.1%    |
| Bohm et al. 2014 [21]                     | 12     | 82        | 12   | 12  | 78         | 11  |                          | 0.36       | [-0.45; 1.16] | 2.3%    |
| Bohm et al. 2014 [21]                     | 12     | 79        | 10   | 12  | 75         | 9   |                          | 0.34       | [-0.47; 1.14] | 2.3%    |
| Carroll et al. 2011 [62]                  | 12     | 115       | 33   | 12  | 117        | 35  |                          | -0.06      | [-0.86; 0.74] | 2.3%    |
| Centner et al. 2019 [71]                  | 14     | 74        | 17   | 14  | 70         | 18  |                          | 0.18       | [-0.56; 0.92] | 2.7%    |
| Eriksen et al. 2018 [63]                  | 9      | 129       | 24   | 9   | 131        | 27  |                          | -0.07      | [-1.00; 0.85] | 1.7%    |
| Eriksen et al. 2018 [63]                  | 11     | 123       | 33   | 12  | 121        | 28  |                          | 0.06       | [-0.76; 0.88] | 2.2%    |
| Kubo et al. 2001 [51]                     | 8      | 215       | 21   | 8   | 212        | 18  |                          | 0.15       | [-0.84; 1.13] | 1.5%    |
| Kubo et al. 2006 [112]                    | 8      | 73        | 18   | 8   | 73         | 20  |                          | 0.01       | [-0.97; 0.99] | 1.6%    |
| Kubo et al. 2009 [114]                    | 10     | 63        | 8    | 10  | 60         | 7   |                          | 0.32       | [-0.57; 1.20] | 1.9%    |
| Kubo et al. 2010 [88]                     | 8      | 81        | 20   | 8   | 80         | 19  |                          | 0.04       | [-0.94; 1.02] | 1.6%    |
| Kubo et al. 2012 [89]                     | 9      | 74        | 28   | 9   | 72         | 33  |                          | 0.06       | [-0.86; 0.99] | 1.7%    |
| Kubo et al. 2017 [86]                     | 11     | 66        | 8    | 11  | 65         | 8   |                          | 0.14       | [-0.70; 0.97] | 2.1%    |
| Malliaras et al. 2013 [61]                | 9      | 118       | 9    | 9   | 112        | 6   |                          | 0.73       | [-0.23; 1.70] | 1.6%    |
| Maillaras et al. 2013 [61]                | 10     | 120       | 19   | 10  | 114        | 19  |                          | 0.33       | [-0.55; 1.22] | 1.9%    |
| wassey et al. 2018 [66]                   | 15     | 98        | 13   | 15  | 97         | 13  |                          | 0.03       | [-0.69; 0.75] | 2.9%    |
| McMahon et al. 2018 [68]                  | 8      | 81        | 13   | 8   | //         | 13  |                          | 0.32       | [-0.67; 1.30] | 1.5%    |
| Micivianon et al. 2018 [68]               | 8      | /0        | 22   | 8   | 66         | 11  |                          | 0.20       | [-0.78; 1.18] | 1.5%    |
| Sanz-Lopez et al. 2016 [123]              | 20     | 82        | 23   | 20  | 64         | 11  |                          | 1.04       | [ 0.38; 1.71] | 3.4%    |
| Random effects model                      | 216    |           |      | 217 |            |     |                          | 0.25       | [ 0.06; 0.44] | 41.2%   |
| Heterogeneity: $I^{-} = 0\%$ , $p = 0.99$ |        |           |      |     |            |     |                          |            |               |         |
| Random effects model                      | 524    |           |      | 525 |            |     |                          | 0.20       | 10.08.0.221   | 100 09/ |
| Heterogeneity: $J^2 = 0\%$ $p = 1.00$     | 524    |           |      | 525 |            |     |                          | 0.20       | [ 0.00; 0.33] | 100.0%  |
| Residual heterogeneity: $I^2 = 0\%$ , p   | = 1.00 |           |      |     |            |     | -1.5 -1 -0.5 0 0.5 1 1.5 |            |               |         |

Decrease Increase

<u>S20.</u> Forest plot for the meta-analysis of stiffness subdivided by protocol duration showing standardised mean differences (SMD) and 95% confidence intervals (CI) of high intensity, resistance training studies.

|                                                   |          |      | Post |     |      | Pre  |                 |           |       |               |        |
|---------------------------------------------------|----------|------|------|-----|------|------|-----------------|-----------|-------|---------------|--------|
| Study                                             | n        | Mean | SD   | n   | Mean | SD   |                 |           | SMD   | [95% CI]      | Weight |
|                                                   |          |      |      |     |      |      |                 | E 3       |       |               |        |
| <12 weeks                                         | 10       | 004  | 405  | 10  | 0.40 | 00   |                 |           | 0.00  | 0.54 4.001    | 0.00/  |
| Duclay et al. 2009 [105]                          | 10       | 291  | 125  | 10  | 249  | 90   | -               |           | 0.38  | [-0.51; 1.26] | 2.0%   |
| Kay et al. 2016 [110]                             | 13       | 13   | 3    | 13  | 10   | 2    |                 |           | 1.10  | [0.27; 1.94]  | 2.1%   |
| Kubo et al. 2002 [111]                            | 10       | 1001 | 504  | 10  | 20   | 9    |                 |           | 0.80  | [-0.23; 1.83] | 1.0%   |
| McMahan et al. 2013 [67]                          | 10       | 1221 | 594  | 10  | 916  | 441  |                 |           | 0.56  | [-0.34; 1.46] | 1.9%   |
| McMahan et al. 2013 [67]                          | 11       | 1107 | 353  | 11  | 1100 | 242  |                 |           | 1.28  | [0.34; 2.21]  | 1.8%   |
| McMahan et al. 2016 [66]                          | 0        | 1517 | 390  | 0   | 1132 | 294  |                 |           | 1.05  | [-0.01; 2.12] | 1.6%   |
| Nicivianon et al. 2018 [68]                       | 8        | 0000 | 305  | 8   | 1004 | 204  |                 |           | 0.98  | [-0.08; 2.03] | 1.6%   |
| Seynnes et al. 2009 [70]                          | 15       | 2200 | 2115 | 15  | 1864 | 1013 |                 |           | 0.21  | [-0.51; 0.93] | 2.4%   |
| Tillin et al. 2012 [125]                          | 10       | 697  | 103  | 10  | 520  | 86   |                 |           | 1.79  | [0.71; 2.86]  | 1.5%   |
| Werkhausen et al. 2018 [56]                       | 11       | 459  | 147  | 11  | 397  | 146  |                 |           | 0.41  | [-0.44; 1.25] | 2.1%   |
| Random effects model                              | 104      |      |      | 104 |      |      |                 | <b>\$</b> | 0.78  | [ 0.48; 1.08] | 18.6%  |
| Heterogeneity: $I^{-} = 7\%$ , $p < 0.01$         |          |      |      |     |      |      |                 |           |       |               |        |
| 10                                                |          |      |      |     |      |      |                 |           |       |               |        |
| 12 Weeks+                                         | 40       | 045  | 50   | 40  | 070  | 40   |                 |           | 0.00  | [0.00.4.00]   | 0.00/  |
| Albracht et al. 2013 [5]                          | 13       | 315  | 53   | 13  | 212  | 48   |                 |           | 0.82  | [0.02; 1.63]  | 2.2%   |
| Arampatzis et al. 2007 [19]                       | 11       | 220  | 40   | 11  | 100  | 3/   |                 |           | 1.52  | [0.55; 2.49]  | 1.0%   |
| Arampaizis et al. 2010 [20]                       | 10       | 302  | 100  | 10  | 200  | 100  |                 |           | 0.79  | [-0.09, 1.66] | 2.0%   |
| Bonm et al. 2014 [21]                             | 12       | 457  | 132  | 12  | 370  | 132  |                 |           | 0.64  | [-0.18; 1.47] | 2.1%   |
| Bohm et al. 2014 [21]                             | 14       | 539  | 254  | 14  | 336  | 89   |                 |           | 1.04  | [0.24; 1.84]  | 2.2%   |
| Bonm et al. 2014 [21]                             | 12       | 579  | 172  | 12  | 3//  | 106  |                 |           | 1.37  | [0.46; 2.27]  | 1.9%   |
| Bohm et al. 2021 [17]                             | 13       | 111  | 59   | 13  | 85   | 36   |                 |           | 0.52  | [-0.27; 1.30] | 2.2%   |
| Carroll et al. 2011 [62]                          | 12       | 3335 | 1334 | 12  | 2928 | 1320 |                 |           | 0.30  | [-0.51; 1.10] | 2.2%   |
| Centher et al. 2019 [71]                          | 14       | 565  | 158  | 14  | 402  | 103  |                 |           | 1.19  | [ 0.38; 2.01] | 2.1%   |
| Eriksen et al. 2018 [63]                          | 9        | 3890 | 2430 | 9   | 2560 | 1530 |                 |           | 0.62  | [-0.33; 1.58] | 1.8%   |
| Eriksen et al. 2018 [63]                          | 12       | 1900 | 693  | 12  | 1800 | 624  | -               |           | 0.15  | [-0.65; 0.95] | 2.2%   |
| Eriksen et al. 2019 [64]                          | 10       | 4420 | 1075 | 10  | 4060 | 1360 |                 |           | 0.28  | [-0.60; 1.16] | 2.0%   |
| Geremia et al. 2018 [72]                          | 15       | 350  | 59   | 15  | 192  | 36   |                 |           | 3.15  | [2.03; 4.26]  | 1.5%   |
| Kongsgaard et al. 2007 [65]                       | 12       | 4213 | 1406 | 12  | 3676 | 1306 | 1. <del>.</del> |           | 0.38  | [-0.43; 1.19] | 2.2%   |
| Kubo et al. 2001 [51]                             | 8        | 106  | 33   | 8   | 68   | 21   |                 |           | 1.31  | [0.20; 2.42]  | 1.5%   |
| Kubo et al. 2006 [112]                            | 8        | 59   | 24   | 8   | 51   | 22   |                 |           | 0.29  | [-0.69; 1.28] | 1.7%   |
| Kubo et al. 2006 [112]                            | 8        | 1786 | 660  | 8   | 1790 | 559  |                 |           | -0.01 | [-0.99; 0.97] | 1.7%   |
| Kubo et al. 2006 [113]                            | 9        | 86   | 36   | 9   | 79   | 21   | 1               |           | 0.25  | [-0.68; 1.17] | 1.9%   |
| Kubo et al. 2006 [113]                            | 9        | 122  | 40   | 9   | 81   | 26   |                 |           | 1.17  | [0.15; 2.18]  | 1.7%   |
| Kubo et al. 2006 [96]                             | 9        | 59   | _23  | 9   | 46   | 19   |                 |           | 0.62  | [-0.33; 1.57] | 1.8%   |
| Kubo et al. 2006 [96]                             | 9        | 1819 | 710  | 9   | 1676 | 662  | -               |           | 0.20  | [-0.73; 1.13] | 1.9%   |
| Kubo et al. 2007 [85]                             | 10       | 166  | 44   | 10  | 128  | 26   |                 |           | 1.01  | [ 0.07; 1.96] | 1.8%   |
| Kubo et al. 2009 [114]                            | 10       | 96   | 37   | 10  | 72   | 20   |                 |           | 0.75  | [-0.16; 1.67] | 1.9%   |
| Kubo et al. 2009 [114]                            | 10       | 1253 | 410  | 10  | 999  | 426  |                 |           | 0.58  | [-0.32; 1.48] | 1.9%   |
| Kubo et al. 2009 [114]                            | 10       | 110  | 36   | 10  | 67   | 19   |                 |           | 1.43  | [0.43; 2.44]  | 1.7%   |
| Kubo et al. 2009 [114]                            | 10       | 1833 | 892  | 10  | 1071 | 639  |                 |           | 0.94  | [ 0.01; 1.88] | 1.8%   |
| Kubo et al. 2010 [115]                            | 10       | 96   | 37   | 10  | 72   | 20   |                 |           | 0.75  | [-0.16; 1.67] | 1.9%   |
| Kubo et al. 2010 [115]                            | 10       | 41   | 13   | 10  | 32   | 5    |                 |           | 0.85  | [-0.08; 1.77] | 1.9%   |
| Kubo et al. 2010 [88]                             | 8        | 104  | 37   | 8   | 69   | 19   |                 |           | 1.12  | [ 0.04; 2.20] | 1.5%   |
| Kubo et al. 2012 [89]                             | 9        | 277  | 111  | 9   | 183  | 45   |                 | - <u></u> | 1.06  | [ 0.05; 2.06] | 1.7%   |
| Kubo et al. 2017 [116]                            | 9        | 1414 | 355  | 9   | 1004 | 384  |                 |           | 1.06  | [ 0.05; 2.06] | 1.7%   |
| Kubo et al. 2017 [116]                            | 9        | 1457 | 440  | 9   | 1289 | 544  | -               |           | 0.32  | [-0.61; 1.26] | 1.8%   |
| Kubo et al. 2017 [86]                             | 11       | 32   | 9    | 11  | 24   | 5    |                 |           | 1.17  | [ 0.25; 2.09] | 1.9%   |
| Malliaras et al. 2013 [61]                        | 9        | 2338 | 638  | 9   | 1560 | 793  |                 |           | 1.03  | [ 0.03; 2.03] | 1.7%   |
| Malliaras et al. 2013 [61]                        | 10       | 2536 | 850  | 10  | 1822 | 898  |                 |           | 0.78  | [-0.13; 1.70] | 1.9%   |
| Malliaras et al. 2013 [61]                        | 10       | 2508 | 1066 | 10  | 1387 | 360  |                 |           | 1.35  | [ 0.36; 2.34] | 1.7%   |
| Massey et al. 2018 [66]                           | 15       | 687  | 285  | 15  | 560  | 177  |                 |           | 0.52  | [-0.21; 1.25] | 2.4%   |
| Massey et al. 2018 [66]                           | 15       | 3239 | 575  | 15  | 2835 | 444  |                 |           | 0.77  | [ 0.02; 1.51] | 2.3%   |
| Massey et al. 2018 [66]                           | 14       | 595  | 101  | 14  | 592  | 118  | -               |           | 0.03  | [-0.71; 0.77] | 2.4%   |
| Massey et al. 2018 [66]                           | 14       | 3122 | 632  | 14  | 2605 | 446  |                 |           | 0.92  | [ 0.13; 1.70] | 2.2%   |
| Onambélé et al. 2008 [120]                        | 12       | 40   | 23   | 12  | 26   | 13   |                 | <b>†</b>  | 0.72  | [-0.11; 1.55] | 2.1%   |
| Waugh et al. 2018 [54]                            | 14       | 541  | 49   | 14  | 390  | 35   |                 | -         | 3.43  | [ 2.21; 4.65] | 1.3%   |
| Waugh et al. 2018 [54]                            | 14       | 523  | 53   | 14  | 359  | 53   |                 |           | 2.99  | [ 1.87; 4.12] | 1.5%   |
| Random effects model                              | 473      |      |      | 473 |      |      |                 | \$        | 0.88  | [ 0.69; 1.07] | 81.4%  |
| Heterogeneity: $I^2 = 48\%, p = 0.38$             |          |      |      |     |      |      |                 |           |       |               |        |
| Random effects model                              | 577      |      |      | 577 |      |      |                 | <b></b>   | 0.86  | [ 0.70; 1.02] | 100.0% |
| Residual beteroconsity: $I^2 = 42\%$ , $p < 0.01$ | 0 < 0.01 |      |      |     |      |      | -1 2            | 0 2 4     |       |               |        |
| Nosidual neterogeneity. 1 – 43%,                  | μ ~ 0.01 |      |      |     |      |      | T -2            | Increase  |       |               |        |
|                                                   |          |      |      |     |      |      | Deciease        | 11010030  |       |               |        |

<u>S21.</u> Forest plot for the meta-analysis of modulus subdivided by protocol duration showing standardised mean differences (SMD) and 95% confidence intervals (CI) of high intensity, resistance training studies.

|                                          |         |      | Post |     |      | Pre  |          |          |      |               |        |
|------------------------------------------|---------|------|------|-----|------|------|----------|----------|------|---------------|--------|
| Study                                    | n       | Mean | SD   | n   | Mean | SD   |          |          | SMD  | [95% CI]      | Weight |
| 410                                      |         |      |      |     |      |      |          | 13       |      |               |        |
| <12 weeks                                | 10      | 4400 | 100  | 10  | 000  | 00   |          |          | 0.44 | 14.00.0.051   | 0.00/  |
| McMahan et al. 2013 [67]                 | 10      | 1100 | 120  | 10  | 830  | 90   |          |          | 2.44 | [ 1.22; 3.65] | 3.0%   |
| McMahon et al. 2013 [67]                 | 11      | 1150 | 110  | 11  | 780  | 100  |          |          | 3.39 | [2.00; 4.77]  | 2.5%   |
| McManon et al. 2018 [68]                 | 8       | 990  | 255  | 8   | 780  | 170  |          |          | 0.92 | [-0.13; 1.96] | 3.5%   |
| McMahon et al. 2018 [68]                 | 8       | 600  | 226  | 8   | 420  | 113  |          |          | 0.95 | [-0.10; 2.00] | 3.5%   |
| Seynnes et al. 2009 [70]                 | 15      | 1160 | 1201 | 15  | 980  | 1162 | 1        |          | 0.15 | [-0.57; 0.87] | 4.8%   |
| Random effects model                     | 52      |      |      | 52  |      |      |          | $\sim$   | 1.48 | [0.38; 2.58]  | 17.3%  |
| Heterogeneity: $I^2 = 82\%$ , $p = 0.04$ |         |      |      |     |      |      |          |          |      |               |        |
| 12 weeks+                                |         |      |      |     |      |      |          |          |      |               |        |
| Arampatzis et al. 2007 [19]              | 11      | 680  | 355  | 11  | 440  | 278  |          | <u> </u> | 0.72 | [-0.14: 1.59] | 4.2%   |
| Arampatzis et al. 2010 [20]              | 11      | 1130 | 332  | 11  | 970  | 232  |          | -        | 0.54 | [-0.32: 1.39] | 4.2%   |
| Bohm et al. 2014 [21]                    | 12      | 1050 | 277  | 12  | 890  | 277  |          |          | 0.56 | [-0.26: 1.38] | 4.4%   |
| Bohm et al 2014 [21]                     | 14      | 1430 | 636  | 14  | 910  | 262  |          |          | 1.04 | [0.24.1.83]   | 4 5%   |
| Bohm et al 2014 [21]                     | 12      | 1410 | 381  | 12  | 970  | 277  |          |          | 1.28 | [0.38:2.17]   | 4 1%   |
| Carroll et al. 2011 [62]                 | 12      | 1220 | 450  | 12  | 1030 | 416  | -        | -        | 0.42 | [-0.39: 1.23] | 4.4%   |
| Centner et al. 2019 [71]                 | 14      | 1848 | 481  | 14  | 1540 | 492  |          | -        | 0.61 | [-0.15: 1.38] | 4.6%   |
| Eriksen et al. 2018 [63]                 | 9       | 1330 | 690  | 9   | 1230 | 390  | -        |          | 0.17 | [-0.76: 1.10] | 3.9%   |
| Eriksen et al. 2018 [63]                 | 12      | 735  | 263  | 12  | 703  | 253  |          |          | 0.12 | [-0.68: 0.92] | 4.5%   |
| Eriksen et al. 2019 [64]                 | 10      | 1560 | 443  | 10  | 1510 | 474  | _        |          | 0.10 | [-0.77: 0.98] | 4.1%   |
| Geremia et al. 2018 [72]                 | 15      | 1292 | 436  | 15  | 695  | 160  |          |          | 1.77 | [0.91:2.63]   | 4.2%   |
| Kongsgaard et al. 2007 [65]              | 12      | 1650 | 554  | 12  | 1470 | 589  | -        |          | 0.30 | [-0.50: 1.11] | 4.4%   |
| Kubo et al. 2001 [52]                    | 8       | 433  | 35   | 8   | 288  | 26   |          | □        | 4.45 | [2.42:6.47]   | 1.4%   |
| Malliaras et al. 2013 [61]               | 9       | 942  | 279  | 9   | 620  | 223  |          |          | 1.22 | [0.19: 2.24]  | 3.6%   |
| Malliaras et al. 2013 [61]               | 10      | 1022 | 339  | 10  | 737  | 390  |          | <b>F</b> | 0.75 | [-0.17, 1.66] | 4.0%   |
| Malliaras et al. 2013 [61]               | 10      | 1011 | 436  | 10  | 570  | 191  |          | <b>—</b> | 1.25 | [0.28:2.23]   | 3.8%   |
| Massev et al. 2018 [66]                  | 15      | 1510 | 360  | 15  | 1320 | 270  |          |          | 0.58 | [-0.15: 1.31] | 4.8%   |
| Massey et al 2018 [66]                   | 14      | 1490 | 270  | 14  | 1230 | 180  |          |          | 1 10 | [0 30 1 90]   | 4 5%   |
| Waugh et al. 2018 [54]                   | 14      | 1892 | 803  | 14  | 1261 | 459  |          | <b>—</b> | 0.94 | [ 0.15; 1.72] | 4.5%   |
| Waugh et al. 2018 [54]                   | 14      | 1720 | 535  | 14  | 1242 | 420  |          | <b>—</b> | 0.96 | [0.17:1.75]   | 4.5%   |
| Random effects model                     | 238     |      |      | 238 |      |      |          | \$       | 0.80 | [ 0.55: 1.05] | 82.7%  |
| Heterogeneity: $l^2 = 40\% p < 0.01$     |         |      |      |     |      |      |          |          |      | F             |        |
|                                          |         |      |      |     |      |      |          |          |      |               |        |
| Random effects model                     | 290     |      |      | 290 |      |      |          | \$       | 0.91 | [ 0.63; 1.18] | 100.0% |
| Heterogeneity: $I^2 = 57\%$ , $p < 0.01$ |         |      |      |     |      |      |          |          |      |               |        |
| Residual heterogeneity: $I^2 = 57\%$ ,   | p < 0.0 | 1    |      |     |      | -    | -6 -4 -2 | 0246     |      |               |        |
|                                          |         |      |      |     |      |      | Decrease | Increase |      |               |        |

<u>S22.</u> Forest plot for the meta-analysis of cross-sectional area subdivided by protocol duration showing standardised mean differences (SMD) and 95% confidence intervals (CI) of high intensity, resistance training studies.

|                                                                                                                     |                                         |      | Post |                         |      | Pre |                                       |                      |                                                 |                         |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------|------|-------------------------|------|-----|---------------------------------------|----------------------|-------------------------------------------------|-------------------------|
| Study                                                                                                               | n                                       | Mean | SD   | n                       | Mean | SD  |                                       | SMD                  | [95% CI]                                        | Weight                  |
|                                                                                                                     |                                         |      |      |                         |      |     | 1.5                                   |                      |                                                 |                         |
| <12 weeks                                                                                                           | 0                                       | 50   | •    | •                       | 0.4  | 0   | _                                     | 0.00                 | 1 4 0 4 0 701                                   | 4 70/                   |
| Kubo et al. 2002 [111]                                                                                              | 8                                       | 59   | 8    | 8                       | 01   | 9   |                                       | -0.22                | [-1.21; 0.76]                                   | 1.7%                    |
| McMahon et al. 2013[67]                                                                                             | 10                                      | 73   | 14   | 10                      | 70   | 13  |                                       | 0.21                 | [-0.67; 1.09]                                   | 2.2%                    |
| McMahon et al. 2013[67]                                                                                             | 11                                      | 76   | 16   | 11                      | /1   | 13  |                                       | 0.31                 | [-0.53; 1.16]                                   | 2.4%                    |
| McMahon et al. 2018 [68]                                                                                            | 8                                       | 81   | 13   | 8                       | 77   | 13  |                                       | 0.32                 | [-0.67; 1.30]                                   | 1.7%                    |
| McMahon et al. 2018 [68]                                                                                            | 8                                       | 70   | 22   | 8                       | 66   | 11  |                                       | 0.20                 | [-0.78; 1.18]                                   | 1.7%                    |
| Mouraux et al. 2000 [118]                                                                                           | 10                                      | 257  | 61   | 10                      | 240  | 49  |                                       | 0.29                 | [-0.59; 1.18]                                   | 2.2%                    |
| Sanz-Lopez et al. 2016 [123]                                                                                        | 20                                      | 82   | 23   | 20                      | 64   | 11  |                                       | 1.04                 | [ 0.38; 1.71]                                   | 3.8%                    |
| Seynnes et al. 2009 [70]                                                                                            | 15                                      | 107  | 4    | 15                      | 103  | 4   |                                       | 1.01                 | [ 0.24; 1.77]                                   | 2.9%                    |
| Random effects model                                                                                                | 90                                      |      |      | 90                      |      |     | $\diamond$                            | 0.49                 | [0.17; 0.80]                                    | 18.6%                   |
| Heterogeneity: $I^2 = 8\%$ , $p = 1.00$                                                                             |                                         |      |      |                         |      |     |                                       |                      |                                                 |                         |
| 10                                                                                                                  |                                         |      |      |                         |      |     |                                       |                      |                                                 |                         |
| 12 weeks+                                                                                                           |                                         | 50   |      |                         | 40   | 40  |                                       | 0.00                 |                                                 | 0.40/                   |
| Arampatzis et al. 2007 [19]                                                                                         | 11                                      | 53   | 14   | 11                      | 48   | 13  |                                       | 0.30                 | [-0.55; 1.14]                                   | 2.4%                    |
| Arampatzis et al. 2010 [20]                                                                                         | 11                                      | 56   | 36   | 11                      | 56   | 38  |                                       | 0.02                 | [-0.82; 0.85]                                   | 2.4%                    |
| Bohm et al. 2014 [21]                                                                                               | 12                                      | 82   | 12   | 12                      | 78   | 11  |                                       | 0.36                 | [-0.45; 1.16]                                   | 2.6%                    |
| Bohm et al. 2014 [21]                                                                                               | 14                                      | 83   | 14   | 14                      | 80   | 13  |                                       | 0.23                 | [-0.52; 0.97]                                   | 3.0%                    |
| Bohm et al. 2014 [21]                                                                                               | 12                                      | 79   | 10   | 12                      | 75   | 9   |                                       | 0.34                 | [-0.47; 1.14]                                   | 2.6%                    |
| Carroll et al. 2011 [62]                                                                                            | 12                                      | 115  | 33   | 12                      | 117  | 35  |                                       | -0.06                | [-0.86; 0.74]                                   | 2.6%                    |
| Centner et al. 2019 [71]                                                                                            | 14                                      | 74   | 17   | 14                      | 70   | 18  |                                       | 0.18                 | [-0.56; 0.92]                                   | 3.1%                    |
| Eriksen et al. 2018 [63]                                                                                            | 9                                       | 129  | 24   | 9                       | 131  | 27  |                                       | -0.07                | [-1.00; 0.85]                                   | 2.0%                    |
| Eriksen et al. 2018 [63]                                                                                            | 11                                      | 123  | 33   | 12                      | 121  | 28  |                                       | 0.06                 | [-0.76; 0.88]                                   | 2.5%                    |
| Eriksen et al. 2019 [64]                                                                                            | 10                                      | 124  | 22   | 10                      | 117  | 21  |                                       | 0.31                 | [-0.57; 1.20]                                   | 2.2%                    |
| Geremia et al. 2018 [72]                                                                                            | 15                                      | 72   | 11   | 15                      | 62   | 8   |                                       | 1.01                 | [ 0.24; 1.77]                                   | 2.9%                    |
| Kongsgaard et al. 2007 [65]                                                                                         | 12                                      | 121  | 14   | 12                      | 117  | 14  |                                       | 0.28                 | [-0.53; 1.08]                                   | 2.6%                    |
| Kubo et al. 2001 [51]                                                                                               | 8                                       | 213  | 19   | 8                       | 210  | 16  |                                       | 0.16                 | [-0.82; 1.14]                                   | 1.7%                    |
| Kubo et al. 2001 [51]                                                                                               | 8                                       | 215  | 21   | 8                       | 212  | 18  |                                       | 0.15                 | [-0.84; 1.13]                                   | 1.7%                    |
| Kubo et al. 2006 [112]                                                                                              | 8                                       | 73   | 18   | 8                       | 73   | 20  |                                       | 0.01                 | [-0.97; 0.99]                                   | 1.8%                    |
| Kubo et al. 2006 [113]                                                                                              | 9                                       | 207  | 22   | 9                       | 204  | 19  |                                       | 0.14                 | [-0.79; 1.06]                                   | 2.0%                    |
| Kubo et al. 2006 [113]                                                                                              | 9                                       | 205  | 17   | 9                       | 202  | 13  |                                       | 0.19                 | [-0.74; 1.12]                                   | 2.0%                    |
| Kubo et al. 2006 [96]                                                                                               | 9                                       | 78   | 20   | 9                       | 78   | 19  |                                       | -0.02                | [-0.95; 0.90]                                   | 2.0%                    |
| Kubo et al. 2007 [85]                                                                                               | 10                                      | 58   | 8    | 10                      | 59   | 8   |                                       | -0.08                | [-0.96; 0.79]                                   | 2.2%                    |
| Kubo et al. 2009 [114]                                                                                              | 10                                      | 62   | 8    | 10                      | 61   | 7   |                                       | 0.10                 | [-0.78; 0.98]                                   | 2.2%                    |
| Kubo et al. 2009 [114]                                                                                              | 10                                      | 63   | 8    | 10                      | 60   | 7   |                                       | 0.32                 | [-0.57; 1.20]                                   | 2.2%                    |
| Kubo et al. 2010 [115]                                                                                              | 10                                      | 58   | 8    | 10                      | 59   | 8   |                                       | -0.08                | [-0.96; 0.79]                                   | 2.2%                    |
| Kubo et al. 2010 [115]                                                                                              | 10                                      | 68   | 8    | 10                      | 66   | 8   |                                       | 0.21                 | [-0.67; 1.09]                                   | 2.2%                    |
| Kubo et al. 2010 [88]                                                                                               | 8                                       | 81   | 20   | 8                       | 80   | 19  |                                       | 0.04                 | [-0.94; 1.02]                                   | 1.8%                    |
| Kubo et al. 2012 [89]                                                                                               | 9                                       | 74   | 28   | 9                       | 72   | 33  |                                       | 0.06                 | [-0.86; 0.99]                                   | 2.0%                    |
| Kubo et al. 2017 [116]                                                                                              | 9                                       | 73   | 10   | 9                       | 72   | 11  |                                       | 0.08                 | [-0.84; 1.01]                                   | 2.0%                    |
| Kubo et al. 2017 [116]                                                                                              | 9                                       | 74   | 9    | 9                       | 74   | 8   |                                       | 0.03                 | [-0.89; 0.96]                                   | 2.0%                    |
| Kubo et al. 2017 [86]                                                                                               | 11                                      | 66   | 8    | 11                      | 65   | 8   |                                       | 0.14                 | [-0.70; 0.97]                                   | 2.4%                    |
| Malliaras et al. 2013 [61]                                                                                          | 9                                       | 118  | 9    | 9                       | 112  | 6   |                                       | 0.73                 | [-0.23; 1.70]                                   | 1.8%                    |
| Malliaras et al. 2013 [61]                                                                                          | 10                                      | 120  | 19   | 10                      | 116  | 8   |                                       | 0.27                 | [-0.61; 1.15]                                   | 2.2%                    |
| Malliaras et al. 2013 [61]                                                                                          | 10                                      | 120  | 19   | 10                      | 114  | 19  |                                       | 0.33                 | [-0.55; 1.22]                                   | 2.2%                    |
| Massey et al. 2018 [66]                                                                                             | 14                                      | 96   | 8    | 14                      | 99   | 10  |                                       | -0.30                | [-1.04; 0.45]                                   | 3.0%                    |
| Massey et al. 2018 [66]                                                                                             | 15                                      | 98   | 13   | 15                      | 97   | 13  |                                       | 0.03                 | [-0.69; 0.75]                                   | 3.3%                    |
| Waugh et al. 2018 [54]                                                                                              |                                         | 61   | 17   | 14                      | 62   | 15  | · · · · · · · · · · · · · · · · · · · | -0.08                | [-0.82: 0.67]                                   | 3.1%                    |
| Waugh et al. 2018 [54]                                                                                              | 14                                      | 01   |      |                         |      |     |                                       |                      |                                                 |                         |
| Random effects model                                                                                                | 14<br>14                                | 60   | 14   | 14                      | 58   | 13  |                                       | 0.14                 | [-0.60: 0.88]                                   | 3.1%                    |
| Heterogeneity: $l^2 = 0\%$ , $p = 0.37$                                                                             | 14<br>14<br>376                         | 60   | 14   | 14<br>377               | 58   | 13  |                                       | 0.14 0.16            | [-0.60; 0.88]<br>[ 0.01: 0.30]                  | 3.1%<br>81.4%           |
| rioteregenery. r                                                                                                    | 14<br>14<br>376                         | 60   | 14   | 14<br>377               | 58   | 13  |                                       | 0.14<br>0.16         | [-0.60; 0.88]<br>[ 0.01; 0.30]                  | 3.1%<br>81.4%           |
| Random effects model                                                                                                | 14<br>14<br>376                         | 60   | 14   | 14<br>377<br>467        | 58   | 13  |                                       | 0.14<br>0.16         | [-0.60; 0.88]<br>[ 0.01; 0.30]                  | 3.1%<br>81.4%           |
| <b>Random effects model</b><br>Heterogeneity: $l^2 = 0\%$ , $p = 0.99$                                              | 14<br>14<br>376<br>466                  | 60   | 14   | 14<br>377<br><b>467</b> | 58   | 13  |                                       | 0.14<br>0.16<br>0.22 | [-0.60; 0.88]<br>[ 0.01; 0.30]<br>[ 0.09; 0.35] | 3.1%<br>81.4%<br>100.0% |
| <b>Random effects model</b><br>Heterogeneity: $l^2 = 0\%$ , $p = 0.99$<br>Residual beterogeneity: $l^2 = 0\%$ , $p$ | 14<br>14<br>376<br><b>466</b><br>= 1.00 | 60   | 14   | 14<br>377<br><b>467</b> | 58   | 13  | -15.1.05.0.05.1.15                    | 0.14<br>0.16<br>0.22 | [-0.60; 0.88]<br>[ 0.01; 0.30]<br>[ 0.09; 0.35] | 3.1%<br>81.4%<br>100.0% |

<u>S23.</u> Forest plot for the meta-analysis of stiffness subdivided by contraction mode showing standardised mean differences (SMD) and 95% confidence intervals (CI) of high intensity, resistance training studies.

| Study                                                   | n        | Mean        | Post<br>SD  | n        | Mean        | Pre<br>SD   |            | SMD          | [95% CI]                       | Weight       |
|---------------------------------------------------------|----------|-------------|-------------|----------|-------------|-------------|------------|--------------|--------------------------------|--------------|
| Con:Ecc                                                 |          |             |             |          |             |             |            |              |                                |              |
| Carroll et al. 2011 [62]<br>Centner et al. 2019 [71]    | 12<br>14 | 3335<br>565 | 1334<br>158 | 12<br>14 | 2928<br>402 | 1320<br>103 |            | 0.30<br>1.19 | [-0.51; 1.10]<br>[ 0.38; 2.01] | 2.2%<br>2.1% |
| Eriksen et al. 2018 [63]                                | 9        | 3890        | 2430        | 9        | 2560        | 1530        | <u>+</u>   | 0.62         | [-0.33; 1.58]                  | 1.8%         |
| Eriksen et al. 2018 [63]                                | 12       | 1900        | 693         | 12       | 1800        | 624         |            | 0.15         | [-0.65; 0.95]                  | 2.2%         |
| Eriksen et al. 2019 [64]<br>Kongsgaard et al. 2007 [65] | 10       | 4420        | 1075        | 10       | 4060        | 1360        |            | 0.28         | [-0.60; 1.16]                  | 2.0%         |
| Kubo et al. 2002 [111]                                  | 8        | 34          | 1400        | 8        | 26          | 9           |            | 0.80         | [-0.23: 1.83]                  | 1.6%         |
| Kubo et al. 2006 [96]                                   | 9        | 59          | 23          | 9        | 46          | 19          |            | 0.62         | [-0.33; 1.57]                  | 1.8%         |
| Kubo et al. 2006 [96]                                   | 9        | 1819        | 710         | 9        | 1676        | 662         | - <b>H</b> | 0.20         | [-0.73; 1.13]                  | 1.9%         |
| Kubo et al. 2007 [85]                                   | 10       | 166         | 44          | 10       | 128         | 26          |            | 1.01         | [0.07; 1.96]                   | 1.8%         |
| Kubo et al. 2009 [114]<br>Kubo et al. 2009 [114]        | 10       | 1253        | 37          | 10       | 999         | 20          |            | 0.75         | [-0.16; 1.67]                  | 1.9%         |
| Kubo et al. 2010 [115]                                  | 10       | 96          | 37          | 10       | 72          | 20          |            | 0.75         | [-0.16; 1.67]                  | 1.9%         |
| McMahon et al. 2013 [67]                                | 10       | 1221        | 594         | 10       | 916         | 441         |            | 0.56         | [-0.34; 1.46]                  | 1.9%         |
| McMahon et al. 2013 [67]                                | 11       | 1167        | 353         | 11       | 765         | 242         |            | 1.28         | [0.34; 2.21]                   | 1.8%         |
| McMahon et al. 2018 [68]                                | 8        | 1517        | 390         | 8        | 1132        | 294         |            | 1.05         | [-0.01; 2.12]                  | 1.6%         |
| Onambélé et al. 2008 [120]                              | 12       | 40          | 23          | 12       | 26          | 204         |            | 0.90         | [-0.11:1.55]                   | 2.1%         |
| Seynnes et al. 2009 [70]                                | 15       | 2288        | 2115        | 15       | 1864        | 1813        |            | 0.21         | [-0.51; 0.93]                  | 2.4%         |
| Random effects model                                    | 199      |             |             | 199      |             |             | •          | 0.62         | [0.41; 0.82]                   | 36.7%        |
| Heterogeneity: $l^2 = 0\%$ , $p < 0.01$                 |          |             |             |          |             |             |            |              |                                |              |
| Concentric                                              |          |             |             |          |             |             |            |              |                                |              |
| Kubo et al. 2017 [116]                                  | 9        | 1414        | 355         | 9        | 1004        | 384         |            | 1.06         | [ 0.05; 2.06]                  | 1.7%         |
| Malliaras et al. 2013 [61]                              | 9        | 2338        | 638         | 9        | 1560        | 793         |            | 1.03         | [ 0.03; 2.03]                  | 1.7%         |
| Random effects model                                    | 18       |             |             | 18       |             |             | $\diamond$ | 1.04         | [ 0.34; 1.75]                  | 3.4%         |
| Heterogeneity: $I^* = 0\%$ , $p = 0.90$                 |          |             |             |          |             |             |            |              |                                |              |
| Eccentric                                               |          |             |             |          |             |             |            |              |                                |              |
| Duclay et al. 2009 [105]                                | 10       | 291         | 125         | 10       | 249         | 90          |            | 0.38         | [-0.51; 1.26]                  | 2.0%         |
| Geremia et al. 2018 [72]                                | 15       | 350         | 59          | 15       | 192         | 36          |            | 3.15         | [2.03; 4.26]                   | 1.5%         |
| Kubo et al 2017 [116]                                   | 9        | 1457        | 440         | 9        | 1289        | 544         |            | 0.32         | [-0.61:1.94]                   | 2.1%         |
| Malliaras et al. 2013 [61]                              | 10       | 2536        | 850         | 10       | 1822        | 898         |            | 0.78         | [-0.13; 1.70]                  | 1.9%         |
| Malliaras et al. 2013 [61]                              | 10       | 2508        | 1066        | 10       | 1387        | 360         |            | 1.35         | [ 0.36; 2.34]                  | 1.7%         |
| Random effects model                                    | 67       |             |             | 67       |             |             |            | 1.14         | [ 0.40; 1.89]                  | 11.0%        |
| Heterogeneity: $I^2 = 73\%$ , $p < 0.01$                |          |             |             |          |             |             |            |              |                                |              |
| Isometric                                               |          | 5.75        | 10101       |          |             |             |            |              |                                | 0.000        |
| Albracht et al. 2013 [5]                                | 13       | 315         | 53          | 13       | 272         | 48          |            | 0.82         | [ 0.02; 1.63]                  | 2.2%         |
| Arampatzis et al. 2007 [19]                             | 11       | 302         | 40          | 11       | 258         | 51          |            | 0.79         | [0.55, 2.49]                   | 2.0%         |
| Bohm et al. 2014 [21]                                   | 12       | 457         | 132         | 12       | 370         | 132         | <b></b>    | 0.64         | [-0.18; 1.47]                  | 2.1%         |
| Bohm et al. 2014 [21]                                   | 14       | 539         | 254         | 14       | 336         | 89          |            | 1.04         | [ 0.24; 1.84]                  | 2.2%         |
| Bohm et al. 2014 [21]                                   | 12       | 579         | 172         | 12       | 377         | 106         |            | 1.37         | [ 0.46; 2.27]                  | 1.9%         |
| Bohm et al. 2021 [17]                                   | 13       | 111         | 59          | 13       | 85          | 36          |            | 0.52         | [-0.27; 1.30]                  | 2.2%         |
| Kubo et al. 2001 [51]                                   | 8        | 106         | 33          | 8        | 68<br>51    | 21          |            | 1.31         | [0.20; 2.42]                   | 1.5%         |
| Kubo et al. 2006 [112]                                  | 8        | 1786        | 660         | 8        | 1790        | 559         |            | -0.01        | [-0.99: 0.97]                  | 1.7%         |
| Kubo et al. 2006 [113]                                  | 9        | 86          | 36          | 9        | 79          | 21          |            | 0.25         | [-0.68; 1.17]                  | 1.9%         |
| Kubo et al. 2006 [113]                                  | 9        | 122         | 40          | 9        | 81          | 26          |            | 1.17         | [ 0.15; 2.18]                  | 1.7%         |
| Kubo et al. 2009 [114]                                  | 10       | 110         | 36          | 10       | 67          | 19          |            | 1.43         | [0.43; 2.44]                   | 1.7%         |
| Kubo et al. 2009 [114]                                  | 10       | 1833        | 892         | 10       | 10/1        | 639         |            | 0.94         | [0.01; 1.88]                   | 1.8%         |
| Kubo et al. 2010 [113]                                  | 8        | 104         | 37          | 8        | 69          | 19          |            | 1.12         | [0.04: 2.20]                   | 1.5%         |
| Kubo et al. 2012 [89]                                   | 9        | 277         | 111         | 9        | 183         | 45          | - <u>-</u> | 1.06         | [ 0.05; 2.06]                  | 1.7%         |
| Kubo et al. 2017 [86]                                   | 11       | 32          | 9           | 11       | 24          | 5           |            | 1.17         | [ 0.25; 2.09]                  | 1.9%         |
| Massey et al. 2018 [66]                                 | 15       | 687         | 285         | 15       | 560         | 177         |            | 0.52         | [-0.21; 1.25]                  | 2.4%         |
| Massey et al. 2018 [66]                                 | 15       | 595         | 5/5         | 15       | 2835        | 444         |            | 0.77         | [ 0.02; 1.51]<br>[-0.71: 0.77] | 2.3%         |
| Massey et al. 2018 [66]                                 | 14       | 3122        | 632         | 14       | 2605        | 446         |            | 0.92         | [ 0.13: 1.70]                  | 2.2%         |
| Tillin et al. 2012 [125]                                | 10       | 697         | 103         | 10       | 520         | 86          |            | 1.79         | [ 0.71, 2.86]                  | 1.5%         |
| Waugh et al. 2018 [54]                                  | 14       | 541         | 49          | 14       | 390         | 35          |            | - 3.43       | [2.21; 4.65]                   | 1.3%         |
| Warkbausen et al. 2018 [54]                             | 14       | 523         | 53          | 14       | 359         | 53          |            | 2.99         | [ 1.87; 4.12]                  | 1.5%         |
| Random effects model                                    | 293      | 409         | 147         | 293      | 391         | 140         | •          | 0.41         | [ 0.72: 1.24]                  | 49.0%        |
| Heterogeneity: $I^2 = 53\%$ , $p = 0.97$                |          |             |             |          |             |             |            |              |                                |              |
| Random effects model                                    | 577      |             |             | 577      |             |             |            | <u>a</u> 8 0 | [0 70.1 02]                    | 100 0%       |
| Heterogeneity: $l^2 = 42\% p < 0.01$                    | 911      |             |             | 5/1      |             |             |            | 0.00         | [ 0.70, 1.02]                  | 100.0 /0     |

Heterogeneity:  $I^2 = 42\%$ , p < 0.01Residual heterogeneity:  $I^2 = 41\%$ , p < 0.01 -4 -2 0 2 4 Decrease Increase <u>S24.</u> Forest plot for the meta-analysis of modulus subdivided by contraction mode showing standardised mean differences (SMD) and 95% confidence intervals (CI) of high intensity, resistance training studies.

|                                          |         |         | Post     |      |           | Pre     |                   |          |                   |            |
|------------------------------------------|---------|---------|----------|------|-----------|---------|-------------------|----------|-------------------|------------|
| Study                                    | n       | Mean    | SD       | n    | Mean      | SD      |                   | SMD      | [95% CI]          | Weight     |
| ContEco                                  |         |         |          |      |           |         | 14                |          |                   |            |
| Corroll et al. 2011 [62]                 | 10      | 1000    | 450      | 10   | 1020      | 416     |                   | 0 42     | 10 20: 1 221      | 4 4 9/     |
| Canton et al. 2010 [71]                  | 14      | 1010    | 400      | 14   | 1540      | 410     |                   | 0.42     | [-0.39, 1.23]     | 4.4%       |
| Centrier et al. 2019 [71]                | 14      | 1040    | 401      | 14   | 1020      | 492     |                   | 0.017    | [-0.15, 1.36]     | 4.0%       |
| Eriksen et al. 2018 [63]                 | 10      | 1330    | 690      | 9    | 1230      | 390     |                   | 0.17     | [-0.76; 1.10]     | 3.9%       |
| Eriksen et al. 2016 [63]                 | 12      | 130     | 203      | 12   | 103       | 253     |                   | 0.12     | [-0.66, 0.92]     | 4.5%       |
| Eriksen et al. 2019 [64]                 | 10      | 1050    | 443      | 10   | 1510      | 4/4     |                   | 0.10     | [-0.77; 0.98]     | 4.1%       |
| Kongsgaard et al. 2007 [65]              | 12      | 1650    | 554      | 12   | 1470      | 589     |                   | 0.30     | [-0.50; 1.11]     | 4.4%       |
| McMahon et al. 2013 [67]                 | 10      | 1100    | 120      | 10   | 830       | 90      |                   | 2.44     | [ 1.22; 3.65]     | 3.0%       |
| McMahon et al. 2013 [67]                 | 11      | 1150    | 110      | 11   | 780       | 100     |                   | 3.39     | [2.00; 4.77]      | 2.5%       |
| McMahon et al. 2018 [68]                 | 8       | 990     | 255      | 8    | 780       | 170     |                   | 0.92     | [-0.13; 1.96]     | 3.5%       |
| McMahon et al. 2018 [68]                 | 8       | 600     | 226      | 8    | 420       | 113     |                   | 0.95     | [-0.10; 2.00]     | 3.5%       |
| Seynnes et al. 2009 [70]                 | 15      | 1160    | 1201     | 15   | 980       | 1162    |                   | 0.15     | [-0.57; 0.87]     | 4.8%       |
| Random effects model                     | 121     |         |          | 121  |           |         | \$                | 0.74     | [ 0.26; 1.23]     | 43.4%      |
| Heterogeneity: $I^2 = 67\%$ , $p = 0.09$ |         |         |          |      |           |         |                   |          |                   |            |
|                                          |         |         |          |      |           |         |                   |          |                   |            |
| Concentric                               | 10      | 1000000 | 10000000 | 52   | 100000000 | 1377783 |                   | a (1933) | 2000 2000 C 0. 0. | 12010-0000 |
| Malliaras et al. 2013 [61]               | 9       | 942     | 279      | 9    | 620       | 223     | -                 | 1.22     | [ 0.19; 2.24]     | 3.6%       |
| Random effects model                     | 9       |         |          | 9    |           |         | $\diamond$        | 1.22     | [ 0.19; 2.24]     | 3.6%       |
| Heterogeneity: not applicable            |         |         |          |      |           |         |                   |          |                   |            |
|                                          |         |         |          |      |           |         |                   |          |                   |            |
| Eccentric                                |         |         |          |      |           |         |                   |          |                   |            |
| Geremia et al. 2018 [72]                 | 15      | 1292    | 436      | 15   | 695       | 160     |                   | 1.77     | [ 0.91; 2.63]     | 4.2%       |
| Malliaras et al. 2013 [61]               | 10      | 1022    | 339      | 10   | 737       | 390     | +                 | 0.75     | [-0.17; 1.66]     | 4.0%       |
| Malliaras et al. 2013 [61]               | 10      | 1011    | 436      | 10   | 570       | 191     |                   | 1.25     | [ 0.28; 2.23]     | 3.8%       |
| Random effects model                     | 35      |         |          | 35   |           |         | •                 | 1.27     | [ 0.67; 1.87]     | 12.0%      |
| Heterogeneity: $I^2 = 22\%, p = 0.28$    |         |         |          |      |           |         |                   |          |                   |            |
|                                          |         |         |          |      |           |         |                   |          |                   |            |
| Isometric                                |         |         |          |      |           |         |                   |          |                   |            |
| Arampatzis et al. 2007 [19]              | 11      | 680     | 355      | 11   | 440       | 278     |                   | 0.72     | [-0.14; 1.59]     | 4.2%       |
| Arampatzis et al. 2010 [20]              | 11      | 1130    | 332      | 11   | 970       | 232     |                   | 0.54     | [-0.32; 1.39]     | 4.2%       |
| Bohm et al. 2014 [21]                    | 12      | 1050    | 277      | 12   | 890       | 277     |                   | 0.56     | [-0.26; 1.38]     | 4.4%       |
| Bohm et al. 2014 [21]                    | 14      | 1430    | 636      | 14   | 910       | 262     |                   | 1.04     | [ 0.24; 1.83]     | 4.5%       |
| Bohm et al. 2014 [21]                    | 12      | 1410    | 381      | 12   | 970       | 277     |                   | 1.28     | [ 0.38; 2.17]     | 4.1%       |
| Kubo et al. 2001 [52]                    | 8       | 433     | 35       | 8    | 288       | 26      |                   | - 4.45   | [ 2.42: 6.47]     | 1.4%       |
| Massey et al. 2018 [66]                  | 15      | 1510    | 360      | 15   | 1320      | 270     |                   | 0.58     | [-0.15: 1.31]     | 4.8%       |
| Massey et al. 2018 [66]                  | 14      | 1490    | 270      | 14   | 1230      | 180     |                   | 1.10     | [0.30: 1.90]      | 4.5%       |
| Waugh et al. 2018 [54]                   | 14      | 1892    | 803      | 14   | 1261      | 459     | -                 | 0.94     | [0.15:1.72]       | 4 5%       |
| Waugh et al 2018 [54]                    | 14      | 1720    | 535      | 14   | 1242      | 420     |                   | 0.96     | [0 17 1 75]       | 4 5%       |
| Random effects model                     | 125     |         |          | 125  |           |         | \$                | 0.95     | [0.60: 1.30]      | 41.1%      |
| Heterogeneity: $l^2 = 40\%$ $p = NA$     | 1.00.00 |         |          | 1000 |           |         |                   | 0100     | , stoo, 1100]     | -1117U     |
| interesting and the state of the state   |         |         |          |      |           |         |                   |          |                   |            |
| Random effects model                     | 290     |         |          | 290  |           |         | \$                | 0.91     | [ 0.63: 1.18]     | 100.0%     |
| Heterogeneity: $l^2 = 57\%$ , $p < 0.01$ | 200     |         |          | 200  |           |         |                   | 1 0.07   | [ 5.00, 1.10]     | 10010/0    |
| Residual beterogeneity: $l^2 = 57\%$     | n < 0 0 | 1       |          |      |           |         | -6 -4 -2 0 2 4 4  | 5        |                   |            |
|                                          | p - 0.0 | 80.     |          |      |           |         | Decrease Increase | 5        |                   |            |

<u>S25.</u> Forest plot for the meta-analysis of cross-sectional area subdivided by contraction mode showing standardised mean differences (SMD) and 95% confidence intervals (CI) of high intensity, resistance training studies.

| Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                                                                                                                | Mean                                                                                                               | Post                                                                                                 | n                                                                                                          | Mean                                                                                             | Pre                                                                                                  |                                       | SMD                                                                                                                                               | [95% CI]                                                                                                                                                                                                                                                                                                                                                                                           | Weight                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| olddy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | mean                                                                                                               | 00                                                                                                   |                                                                                                            | mean                                                                                             | 00                                                                                                   | Ê                                     |                                                                                                                                                   | [00/0 01]                                                                                                                                                                                                                                                                                                                                                                                          | Weight                                                                                                                |
| Con:Ecc<br>Carroll et al. 2011 [62]<br>Centner et al. 2019 [71]<br>Eriksen et al. 2018 [63]<br>Eriksen et al. 2018 [63]<br>Eriksen et al. 2019 [64]<br>Kongsgaard et al. 2007 [65]<br>Kubo et al. 2002 [111]<br>Kubo et al. 2007 [85]<br>Kubo et al. 2007 [85]<br>Kubo et al. 2009 [114]<br>Kubo et al. 2010 [115]<br>McMahon et al. 2013 [67]<br>McMahon et al. 2013 [67]<br>McMahon et al. 2018 [68]<br>McMahon et al. 2018 [68]<br>Seynnes et al. 2009 [70]<br>Random effects model<br>Heterogeneity: $I^2 = 0\%$ , $\rho = 1.00$ | 12<br>14<br>9<br>11<br>10<br>12<br>8<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>11<br>8<br>8<br>15<br>177 | 115<br>74<br>129<br>123<br>124<br>121<br>59<br>78<br>62<br>58<br>62<br>58<br>68<br>73<br>76<br>81<br>70<br>107     | 33<br>17<br>24<br>33<br>22<br>14<br>8<br>20<br>8<br>8<br>8<br>8<br>14<br>16<br>13<br>22<br>4         | 12<br>14<br>9<br>12<br>10<br>12<br>8<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>11<br>8<br>8<br>15<br>178 | 117<br>70<br>131<br>121<br>117<br>61<br>59<br>66<br>70<br>71<br>77<br>66<br>103                  | 35<br>18<br>27<br>28<br>21<br>14<br>9<br>19<br>8<br>7<br>8<br>8<br>13<br>13<br>13<br>13<br>11<br>4   |                                       | -0.06<br>0.18<br>-0.07<br>0.06<br>0.31<br>0.22<br>-0.02<br>-0.08<br>0.10<br>-0.08<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21<br>0.21 | $\begin{bmatrix} -0.86; 0.74 \\ -0.56; 0.92 \\ -1.00; 0.85 \\ -0.76; 0.88 \\ -0.57; 1.20 \\ -0.53; 1.08 \\ -1.21; 0.76 \\ -0.95; 0.90 \\ -0.96; 0.79 \\ -0.96; 0.79 \\ -0.96; 0.79 \\ -0.67; 1.09 \\ -0.67; 1.09 \\ -0.67; 1.09 \\ -0.67; 1.16 \\ -0.67; 1.30 \\ -0.78; 1.18 \\ -0.24; 1.77 \\ -0.04; 0.38 \\ \end{bmatrix}$                                                                       | 2.6%<br>3.1%<br>2.5%<br>2.5%<br>2.6%<br>2.2%<br>2.2%<br>2.2%<br>2.2%<br>2.2%<br>2.2%<br>2.2                           |
| Concentric<br>Kubo et al. 2017 [116]<br>Malliaras et al. 2013 [61]<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $\rho = 0.97$                                                                                                                                                                                                                                                                                                                                                                                             | 9<br>9<br>18                                                                                                     | 73<br>118                                                                                                          | 10<br>9                                                                                              | 9<br>9<br>18                                                                                               | 72<br>112                                                                                        | 11<br>6                                                                                              |                                       | 0.08<br>0.73<br>0.40                                                                                                                              | [-0.84; 1.01]<br>[-0.23; 1.70]<br>[-0.27; 1.06]                                                                                                                                                                                                                                                                                                                                                    | 2.0%<br>1.8%<br>3.8%                                                                                                  |
| Eccentric<br>Geremia et al. 2018 [72]<br>Kubo et al. 2017 [116]<br>Malliaras et al. 2013 [61]<br>Malliaras et al. 2013 [61]<br>Mouraux et al. 2000 [118]<br>Sanz-Lopez et al. 2016 [123]<br>Random effects model<br>Heterogeneity: $I^2 = 10\%$ , $p = 0.35$                                                                                                                                                                                                                                                                         | 15<br>9<br>10<br>10<br>10<br>20<br>74                                                                            | 72<br>74<br>120<br>120<br>257<br>82                                                                                | 11<br>9<br>19<br>19<br>61<br>23                                                                      | 15<br>9<br>10<br>10<br>10<br>20<br>74                                                                      | 62<br>74<br>116<br>114<br>240<br>64                                                              | 8<br>8<br>19<br>49<br>11                                                                             |                                       | - 1.01<br>0.03<br>0.27<br>0.33<br>0.29<br>1.04<br>0.58                                                                                            | [ 0.24; 1.77]<br>[-0.89; 0.96]<br>[-0.61; 1.15]<br>[-0.55; 1.22]<br>[-0.59; 1.18]<br>[ 0.38; 1.71]<br>[ 0.22; 0.93]                                                                                                                                                                                                                                                                                | 2.9%<br>2.0%<br>2.2%<br>2.2%<br>3.8%<br>15.1%                                                                         |
| Isometric<br>Arampatzis et al. 2007 [19]<br>Arampatzis et al. 2010 [20]<br>Bohm et al. 2014 [21]<br>Bohm et al. 2014 [21]<br>Bohm et al. 2014 [21]<br>Kubo et al. 2001 [51]<br>Kubo et al. 2006 [112]<br>Kubo et al. 2006 [113]<br>Kubo et al. 2006 [113]<br>Kubo et al. 2006 [113]<br>Kubo et al. 2009 [114]<br>Kubo et al. 2010 [88]<br>Kubo et al. 2011 [86]<br>Massey et al. 2018 [66]<br>Massey et al. 2018 [54]<br>Waugh et al. 2018 [54]<br>Random effects model<br>Heterogeneity: $I^2 = 0\%$ , $p = 0.34$                   | 11<br>12<br>14<br>12<br>8<br>8<br>9<br>9<br>10<br>8<br>9<br>11<br>15<br>14<br>15<br>14<br>197                    | 53<br>56<br>82<br>83<br>79<br>213<br>215<br>73<br>207<br>205<br>63<br>81<br>74<br>66<br>96<br>96<br>98<br>61<br>60 | 14<br>36<br>12<br>14<br>10<br>19<br>21<br>8<br>22<br>17<br>8<br>20<br>28<br>8<br>8<br>13<br>17<br>14 | 11<br>11<br>12<br>14<br>12<br>8<br>8<br>9<br>9<br>10<br>8<br>9<br>11<br>14<br>15<br>14<br>197              | 48<br>56<br>78<br>210<br>212<br>73<br>204<br>202<br>60<br>80<br>72<br>65<br>99<br>97<br>62<br>58 | 13<br>38<br>11<br>13<br>9<br>16<br>8<br>20<br>19<br>13<br>7<br>19<br>33<br>8<br>10<br>13<br>15<br>13 |                                       | 0.30<br>0.02<br>0.34<br>0.16<br>0.15<br>0.01<br>0.14<br>0.19<br>0.32<br>0.04<br>0.06<br>0.14<br>-0.30<br>0.03<br>-0.08<br>0.14<br>0.12            | $\begin{bmatrix} -0.55; 1.14 \\ [-0.82; 0.85] \\ [-0.45; 1.16] \\ [-0.52; 0.97] \\ [-0.47; 1.14] \\ [-0.82; 1.14] \\ [-0.82; 1.14] \\ [-0.84; 1.13] \\ [-0.97; 0.99] \\ [-0.79; 1.06] \\ [-0.74; 1.12] \\ [-0.57; 1.20] \\ [-0.94; 1.02] \\ [-0.94; 1.02] \\ [-0.96; 0.99] \\ [-0.70; 0.97] \\ [-1.04; 0.45] \\ [-0.69; 0.75] \\ [-0.82; 0.67] \\ [-0.82; 0.67] \\ [-0.08; 0.32] \\ \end{bmatrix}$ | 2.4%<br>2.6%<br>3.0%<br>2.6%<br>1.7%<br>1.8%<br>2.0%<br>2.2%<br>1.8%<br>2.0%<br>2.4%<br>3.0%<br>3.3%<br>3.1%<br>42.9% |
| <b>Random effects model</b><br>Heterogeneity: $l^2 = 0\%$ , $p = 0.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 466                                                                                                              |                                                                                                                    |                                                                                                      | 467                                                                                                        |                                                                                                  |                                                                                                      | ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► | 0.22                                                                                                                                              | [ 0.09; 0.35]                                                                                                                                                                                                                                                                                                                                                                                      | 100.0%                                                                                                                |

Residual heterogeneity:  $I^2 = 0\%$ , p = 1.00

-1.5 -1 -0.5 0 0.5 1 1.5 Decrease Increase <u>S26.</u> Forest plot for the meta-analysis of stiffness subdivided by contraction mode showing standardised mean differences (SMD) and 95% confidence intervals (CI) of matched high intensity, resistance training studies.

|                                                                                                                                                                   |                            |                      | Post               |                     |                      | Pre               |                                  |                                |                                                                  |                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|--------------------|---------------------|----------------------|-------------------|----------------------------------|--------------------------------|------------------------------------------------------------------|----------------------------------|
| Study                                                                                                                                                             | n                          | Mean                 | SD                 | n                   | Mean                 | SD                |                                  | SMD                            | [95% CI]                                                         | Weight                           |
| Con:Ecc<br>Kubo et al. 2009 [114]<br>Kubo et al. 2009 [114]<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $p = 0.8$                                     | 10<br>10<br>20             | 96<br>1253           | 37<br>410          | 10<br>10<br>20      | 72<br>999            | 20<br>426         |                                  | 0.75<br>0.58<br>0.67           | [-0.16; 1.67]<br>[-0.32; 1.48]<br>[ 0.02; 1.31]                  | 12.1%<br>12.5%<br>24.5%          |
| Concentric<br>Kubo et al. 2017 [116]<br>Malliaras et al. 2013 [61]<br>Random effects model<br>Heterogeneity: $I^2 = 0\%$ , $p = 0.4$                              | 9<br>9<br>18<br>8          | 1414<br>2338         | 355<br>638         | 9<br>9<br>18        | 1004<br>1560         | 384<br>793        |                                  | 1.06<br>1.03<br>1.04           | [ 0.05; 2.06]<br>[ 0.03; 2.03]<br>[ 0.34; 1.75]                  | 10.0%<br>10.1%<br>20.1%          |
| Eccentric<br>Kubo et al. 2017 [116]<br>Malliaras et al. 2013 [61]<br>Malliaras et al. 2013 [61]<br>Random effects model<br>Heterogeneity: $I^2 = 8\%$ , $p = 0.9$ | 9<br>10<br>10<br>29        | 1457<br>2536<br>2508 | 440<br>850<br>1066 | 9<br>10<br>10<br>29 | 1289<br>1822<br>1387 | 544<br>898<br>360 |                                  | 0.32<br>0.78<br>- 1.35<br>0.80 | [-0.61; 1.26]<br>[-0.13; 1.70]<br>[ 0.36; 2.34]<br>[ 0.23; 1.37] | 11.6%<br>12.0%<br>10.2%<br>33.8% |
| Isometric<br>Kubo et al. 2009 [114]<br>Kubo et al. 2009 [114]<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $p = 0.3$                                   | 10<br>10<br>20             | 110<br>1833          | 36<br>892          | 10<br>10<br>20      | 67<br>1071           | 19<br>639         |                                  | - 1.43<br>0.94<br>1.17         | [ 0.43; 2.44]<br>[ 0.01; 1.88]<br>[ 0.48; 1.85]                  | 9.9%<br>11.5%<br>21.5%           |
| <b>Random effects model</b><br>Heterogeneity: $I^2 = 0\%$ , $\rho = 0.8$<br>Residual heterogeneity: $I^2 = 0\%$                                                   | <b>87</b><br>4<br>6, p = 1 | 0.74                 |                    | 87                  |                      |                   | -2 -1 0 1 2<br>Decrease Increase | 0.89                           | [ 0.58; 1.21]                                                    | 100. <mark>0</mark> %            |

<u>S27.</u> Forest plot for the meta-analysis of modulus subdivided by contraction mode showing standardised mean differences (SMD) and 95% confidence intervals (CI) of matched high intensity, resistance training studies.

| Study                                     | n      | Mean | Post<br>SD | n  | Mean | Pre<br>SD |         |                   | SMD    | [95% CI]      | Weight |
|-------------------------------------------|--------|------|------------|----|------|-----------|---------|-------------------|--------|---------------|--------|
|                                           |        |      |            |    |      |           |         |                   |        |               |        |
| Concentric                                |        |      |            |    |      |           |         |                   |        |               |        |
| Malliaras et al. 2013 [61]                | 9      | 942  | 279        | 9  | 620  | 223       |         | -                 | - 1.22 | [ 0.19; 2.24] | 29.7%  |
| Random effects model                      | 9      |      |            | 9  |      |           |         |                   | 1.22   | [ 0.19; 2.24] | 29.7%  |
| Heterogeneity: not applicable             |        |      |            |    |      |           |         |                   |        |               |        |
| Eccentric                                 |        |      |            |    |      |           |         |                   |        |               |        |
| Malliaras et al. 2013 [61]                | 10     | 1022 | 339        | 10 | 737  | 390       |         |                   | 0.75   | [-0.17; 1.66] | 37.5%  |
| Malliaras et al. 2013 [61]                | 10     | 1011 | 436        | 10 | 570  | 191       |         |                   | 1.25   | [ 0.28; 2.23] | 32.8%  |
| Random effects model                      | 20     |      |            | 20 |      |           |         | $\langle \rangle$ | 0.98   | [ 0.32; 1.65] | 70.3%  |
| Heterogeneity: $I^2 = 0\%$ , $p = 0.4$    | 46     |      |            |    |      |           |         |                   |        |               |        |
| Random effects model                      | 29     |      |            | 29 |      |           |         |                   | 1.05   | [ 0.49; 1.61] | 100.0% |
| Heterogeneity: $I^2 = 0\%$ , $p = 0$ .    | 71     |      |            |    |      |           | 1 1     | 1 1 1             |        |               |        |
| Residual heterogeneity: $I^2 = 0^{\circ}$ | %, p = | 0.46 |            |    |      |           | -2 -1   | 0 1 2             |        |               |        |
|                                           |        |      |            |    |      |           | Decreas | e Increase        |        |               |        |

<u>S28.</u> Forest plot for the meta-analysis of cross-sectional area subdivided by contraction mode showing standardised mean differences (SMD) and 95% confidence intervals (CI) of matched high intensity, resistance training studies.

| 0, 1                                                                                                                                                              | 222                         |                  | Post          |                     |                  | Pre          |                                              |                              | 10.5% OR                                                         |                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|---------------|---------------------|------------------|--------------|----------------------------------------------|------------------------------|------------------------------------------------------------------|----------------------------------|
| Study                                                                                                                                                             | n                           | Mean             | SD            | n                   | Mean             | 50           |                                              | SMD                          | [95% CI]                                                         | weight                           |
| Con:Ecc<br>Kubo et al. 2009 [114]<br>Random effects model<br>Heterogeneity: not applicable                                                                        | 10<br>10                    | 62               | 8             | 10<br>10            | 61               | 7            |                                              | 0.10<br>0.10                 | [-0.78; 0.98]<br>[-0.78; 0.98]                                   | 15.2%<br>15.2%                   |
| Concentric<br>Kubo et al. 2017 [116]<br>Malliaras et al. 2013 [61]<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $p = NA$                               | 9<br>9<br>18                | 73<br>118        | 10<br>9       | 9<br>9<br>18        | 72<br>112        | 11<br>6      |                                              | 0.08<br>0.73<br>0.40         | [-0.84; 1.01]<br>[-0.23; 1.70]<br>[-0.27; 1.06]                  | 13.7%<br>12.6%<br>26.2%          |
| Eccentric<br>Kubo et al. 2017 [116]<br>Malliaras et al. 2013 [61]<br>Malliaras et al. 2013 [61]<br>Random effects model<br>Heterogeneity: $I^2 = 0\%, \rho = 0.3$ | 9<br>10<br>10<br>29<br>34   | 74<br>120<br>120 | 9<br>19<br>19 | 9<br>10<br>10<br>29 | 74<br>116<br>114 | 8<br>8<br>19 |                                              | 0.03<br>0.27<br>0.33<br>0.22 | [-0.89; 0.96]<br>[-0.61; 1.15]<br>[-0.55; 1.22]<br>[-0.30; 0.73] | 13.7%<br>15.0%<br>14.9%<br>43.6% |
| Isometric<br>Kubo et al. 2009 [114]<br>Random effects model<br>Heterogeneity: not applicable                                                                      | 10<br>10                    | 63               | 8             | 10<br>10            | 60               | 7            |                                              | 0.32<br>0.32                 | [-0.57; 1.20]<br>[-0.57; 1.20]                                   | 15.0%<br>15.0%                   |
| <b>Random effects model</b><br>Heterogeneity: $I^2 = 0\%$ , $p = 0.5$<br>Residual heterogeneity: $I^2 = 0\%$                                                      | <b>67</b><br>96<br>%, p = 0 | 0.77             |               | 67                  |                  | -            | 1.5 -1 -0.5 0 0.5 1 1.5<br>Decrease Increase | 0.26                         | [-0.08; 0.60]                                                    | 100.0%                           |

<u>S29.</u> Forest plot for the meta-analysis of stiffness subdivided by age group showing standardised mean differences (SMD) and 95% confidence intervals (CI) of high intensity resistance training studies.

| Study                                                            | n        | Mean | Post<br>SD | n   | Mean | Pre<br>SD |         |            | SMD    | [95% CI]      | Weight |
|------------------------------------------------------------------|----------|------|------------|-----|------|-----------|---------|------------|--------|---------------|--------|
| Adult                                                            |          |      |            |     |      |           |         | 1 3        |        |               |        |
| Albracht et al. 2013 [5]                                         | 13       | 315  | 53         | 13  | 272  | 48        |         |            | 0.82   | [0.02: 1.63]  | 2.2%   |
| Arampatzis et al. 2007 [19]                                      | 11       | 228  | 40         | 11  | 168  | 37        |         |            | 1.52   | 0.55; 2.49]   | 1.8%   |
| Arampatzis et al. 2010 [20]                                      | 11       | 302  | 57         | 11  | 258  | 51        |         | -          | 0.79   | [-0.09; 1.66] | 2.0%   |
| Bohm et al. 2014 [21]                                            | 12       | 457  | 132        | 12  | 370  | 132       |         | +          | 0.64   | [-0.18; 1.47] | 2.1%   |
| Bohm et al. 2014 [21]                                            | 14       | 539  | 254        | 14  | 336  | 89        |         |            | 1.04   | [ 0.24; 1.84] | 2.2%   |
| Bohm et al. 2014 [21]                                            | 12       | 579  | 172        | 12  | 377  | 106       |         |            | 1.37   | [0.46; 2.27]  | 1.9%   |
| Bonm et al. 2021 [17]                                            | 13       | 111  | 159        | 13  | 85   | 36        |         |            | 0.52   | [-0.27; 1.30] | 2.2%   |
| Duclay et al. 2009 [105]                                         | 14       | 201  | 125        | 14  | 2/9  | 90        |         |            | 0.38   | [0.30, 2.01]  | 2.1%   |
| Geremia et al 2018 [72]                                          | 15       | 350  | 59         | 15  | 192  | 36        |         |            | 3 15   | [2.03: 4.26]  | 1.5%   |
| Kay et al. 2016 [110]                                            | 13       | 13   | 3          | 13  | 10   | 2         |         |            | 1.10   | [ 0.27; 1.94] | 2.1%   |
| Kongsgaard et al. 2007 [65]                                      | 12       | 4213 | 1406       | 12  | 3676 | 1306      |         |            | 0.38   | [-0.43; 1.19] | 2.2%   |
| Kubo et al. 2001 [51]                                            | 8        | 106  | 33         | 8   | 68   | 21        |         |            | 1.31   | [ 0.20; 2.42] | 1.5%   |
| Kubo et al. 2002 [111]                                           | 8        | 34   | 10         | 8   | 26   | 9         |         |            | 0.80   | [-0.23; 1.83] | 1.6%   |
| Kubo et al. 2006 [112]                                           | 8        | 59   | 24         | 8   | 51   | 22        |         |            | 0.29   | [-0.69; 1.28] | 1.7%   |
| Kubo et al. 2006 [112]                                           | 8        | 1786 | 660        | 8   | 1/90 | 559       | -       |            | -0.01  | [-0.99; 0.97] | 1.7%   |
| Kubo et al. 2006 [113]                                           | 9        | 122  | 40         | 9   | 81   | 21        |         |            | 1 17   | [-0.06, 1.17] | 1.9%   |
| Kubo et al. 2006 [96]                                            | 9        | 59   | 23         | 9   | 46   | 19        |         |            | 0.62   | [-0.33: 1.57] | 1.8%   |
| Kubo et al. 2006 [96]                                            | 9        | 1819 | 710        | 9   | 1676 | 662       |         | _ <b>_</b> | 0.20   | [-0.73; 1.13] | 1.9%   |
| Kubo et al. 2007 [85]                                            | 10       | 166  | 44         | 10  | 128  | 26        |         |            | 1.01   | [ 0.07; 1.96] | 1.8%   |
| Kubo et al. 2009 [114]                                           | 10       | 96   | 37         | 10  | 72   | 20        |         | -          | 0.75   | [-0.16; 1.67] | 1.9%   |
| Kubo et al. 2009 [114]                                           | 10       | 1253 | 410        | 10  | 999  | 426       |         |            | 0.58   | [-0.32; 1.48] | 1.9%   |
| Kubo et al. 2009 [114]                                           | 10       | 110  | 36         | 10  | 67   | 19        |         |            | 1.43   | [0.43; 2.44]  | 1.7%   |
| Kubo et al. 2009 [114]                                           | 10       | 1833 | 892        | 10  | 1071 | 639       |         |            | 0.94   | [0.01; 1.88]  | 1.8%   |
| Kubo et al. 2010 [115]                                           | 10       | 90   | 13         | 10  | 32   | 20        |         |            | 0.75   | [-0.16, 1.67] | 1.9%   |
| Kubo et al. 2010 [88]                                            | 8        | 104  | 37         | 8   | 69   | 19        |         |            | 1 12   | [0.04 2.20]   | 1.5%   |
| Kubo et al. 2012 [89]                                            | 9        | 277  | 111        | 9   | 183  | 45        |         |            | 1.06   | [ 0.05; 2.06] | 1.7%   |
| Kubo et al. 2017 [116]                                           | 9        | 1414 | 355        | 9   | 1004 | 384       |         | - <u>-</u> | 1.06   | [ 0.05; 2.06] | 1.7%   |
| Kubo et al. 2017 [116]                                           | 9        | 1457 | 440        | 9   | 1289 | 544       |         | -          | 0.32   | [-0.61; 1.26] | 1.8%   |
| Kubo et al. 2017 [86]                                            | 11       | 32   | 9          | 11  | 24   | 5         |         |            | 1.17   | [ 0.25; 2.09] | 1.9%   |
| Malliaras et al. 2013 [61]                                       | 9        | 2338 | 638        | 9   | 1560 | 793       |         |            | 1.03   | [0.03; 2.03]  | 1.7%   |
| Malliaras et al. 2013 [61]                                       | 10       | 2536 | 1066       | 10  | 1822 | 898       |         |            | 0.78   | [-0.13; 1.70] | 1.9%   |
| Massev et al. 2018 [66]                                          | 15       | 687  | 285        | 15  | 560  | 177       |         |            | 0.52   | [-0.21:1.25]  | 2 4%   |
| Massey et al. 2018 [66]                                          | 15       | 3239 | 575        | 15  | 2835 | 444       |         |            | 0.77   | [ 0.02; 1.51] | 2.3%   |
| Massey et al. 2018 [66]                                          | 14       | 595  | 101        | 14  | 592  | 118       |         |            | 0.03   | [-0.71; 0.77] | 2.4%   |
| Massey et al. 2018 [66]                                          | 14       | 3122 | 632        | 14  | 2605 | 446       |         |            | 0.92   | [0.13; 1.70]  | 2.2%   |
| McMahon et al. 2013 [67]                                         | 10       | 1221 | 594        | 10  | 916  | 441       |         |            | 0.56   | [-0.34; 1.46] | 1.9%   |
| McMahon et al. 2013 [67]                                         | 11       | 1167 | 353        | 11  | 765  | 242       |         |            | 1.28   | [0.34; 2.21]  | 1.8%   |
| McMahon et al. 2018 [68]                                         | 8        | 1517 | 390        | 8   | 1132 | 294       |         |            | 1.05   | [-0.01; 2.12] | 1.6%   |
| Sevenes et al. 2016 [66]                                         | 15       | 2288 | 2115       | 15  | 1864 | 1813      |         |            | 0.98   | [-0.06; 2.03] | 2.4%   |
| Tillin et al. 2012 [125]                                         | 10       | 697  | 103        | 10  | 520  | 86        |         |            | 1 79   | [0.71 2.86]   | 1.5%   |
| Waugh et al. 2018 [54]                                           | 14       | 541  | 49         | 14  | 390  | 35        |         |            | - 3.43 | [ 2.21; 4.65] | 1.3%   |
| Waugh et al. 2018 [54]                                           | 14       | 523  | 53         | 14  | 359  | 53        |         |            | 2.99   | [ 1.87; 4.12] | 1.5%   |
| Werkhausen et al. 2018 [56]                                      | 11       | 459  | 147        | 11  | 397  | 146       |         |            | 0.41   | [-0.44; 1.25] | 2.1%   |
| Random effects model<br>Heterogeneity: $I^2 = 44\%$ , $p < 0.01$ | 522      |      |            | 522 |      |           |         | \$         | 0.91   | [ 0.74; 1.09] | 89.8%  |
| Flderly                                                          |          |      |            |     |      |           |         |            |        |               |        |
| Carroll et al. 2011 [62]                                         | 12       | 3335 | 1334       | 12  | 2928 | 1320      |         |            | 0.30   | [-0.51: 1.10] | 2.2%   |
| Eriksen et al. 2018 [63]                                         | 9        | 3890 | 2430       | 9   | 2560 | 1530      |         | - <b>F</b> | 0.62   | [-0.33; 1.58] | 1.8%   |
| Eriksen et al. 2018 [63]                                         | 12       | 1900 | 693        | 12  | 1800 | 624       |         | - <b></b>  | 0.15   | [-0.65; 0.95] | 2.2%   |
| Eriksen et al. 2019 [64]                                         | 10       | 4420 | 1075       | 10  | 4060 | 1360      |         |            | 0.28   | [-0.60; 1.16] | 2.0%   |
| Onambélé et al. 2008 [120]                                       | 12       | 40   | 23         | 12  | 26   | 13        |         |            | 0.72   | [-0.11; 1.55] | 2.1%   |
| Random effects model<br>Heterogeneity: $I^2 = 0\%$ , $p = 0.86$  | 55       |      |            | 55  |      |           |         |            | 0.40   | [ 0.02; 0.78] | 10.2%  |
| Random effects model                                             | 577      |      |            | 577 |      |           |         | \$         | 0.86   | [ 0.70; 1.02] | 100.0% |
| Heterogeneity: $I^2 = 42\%, p < 0.01$                            |          |      |            |     |      |           |         |            |        |               |        |
| Residual heterogeneity: $I^2 = 40\%$ ,                           | p < 0.01 |      |            |     |      |           | -4 -2   | 0 2 4      |        |               |        |
|                                                                  |          |      |            |     |      |           | Decreas | e Increase |        |               |        |

**<u>S30.</u>** Forest plot for the meta-analysis of modulus subdivided by age group showing standardised mean differences (SMD) and 95% confidence intervals (CI) of high intensity resistance training studies.

|                                          |         |      | Post |     |      | Pre  |                   |        |               |        |
|------------------------------------------|---------|------|------|-----|------|------|-------------------|--------|---------------|--------|
| Study                                    | n       | Mean | SD   | n   | Mean | SD   |                   | SMD    | [95% CI]      | Weight |
| Adult                                    |         |      |      |     |      |      | 1                 |        |               |        |
| Arampatzis et al. 2007 [19]              | 11      | 680  | 355  | 11  | 440  | 278  | <b></b>           | 0.72   | [-0.14: 1.59] | 4.2%   |
| Arampatzis et al. 2010 [20]              | 11      | 1130 | 332  | 11  | 970  | 232  |                   | 0.54   | [-0.32; 1.39] | 4.2%   |
| Bohm et al. 2014 [21]                    | 12      | 1050 | 277  | 12  | 890  | 277  |                   | 0.56   | [-0.26; 1.38] | 4.4%   |
| Bohm et al. 2014 [21]                    | 14      | 1430 | 636  | 14  | 910  | 262  |                   | 1.04   | [0.24; 1.83]  | 4.5%   |
| Bohm et al. 2014 [21]                    | 12      | 1410 | 381  | 12  | 970  | 277  |                   | 1.28   | [0.38; 2.17]  | 4.1%   |
| Centner et al. 2019 [71]                 | 14      | 1848 | 481  | 14  | 1540 | 492  |                   | 0.61   | [-0.15; 1.38] | 4.6%   |
| Geremia et al. 2018 [72]                 | 15      | 1292 | 436  | 15  | 695  | 160  |                   | 1.77   | [ 0.91; 2.63] | 4.2%   |
| Kongsgaard et al. 2007 [65]              | 12      | 1650 | 554  | 12  | 1470 | 589  |                   | 0.30   | [-0.50; 1.11] | 4.4%   |
| Kubo et al. 2001 [52]                    | 8       | 433  | 35   | 8   | 288  | 26   |                   | - 4.45 | [ 2.42; 6.47] | 1.4%   |
| Malliaras et al. 2013 [61]               | 9       | 942  | 279  | 9   | 620  | 223  |                   | 1.22   | [ 0.19; 2.24] | 3.6%   |
| Malliaras et al. 2013 [61]               | 10      | 1022 | 339  | 10  | 737  | 390  |                   | 0.75   | [-0.17; 1.66] | 4.0%   |
| Malliaras et al. 2013 [61]               | 10      | 1011 | 436  | 10  | 570  | 191  |                   | 1.25   | [ 0.28; 2.23] | 3.8%   |
| Massey et al. 2018 [66]                  | 15      | 1510 | 360  | 15  | 1320 | 270  |                   | 0.58   | [-0.15; 1.31] | 4.8%   |
| Massey et al. 2018 [66]                  | 14      | 1490 | 270  | 14  | 1230 | 180  | -                 | 1.10   | [ 0.30; 1.90] | 4.5%   |
| McMahon et al. 2013 [67]                 | 10      | 1100 | 120  | 10  | 830  | 90   |                   | 2.44   | [ 1.22; 3.65] | 3.0%   |
| McMahon et al. 2013 [67]                 | 11      | 1150 | 110  | 11  | 780  | 100  |                   | 3.39   | [2.00; 4.77]  | 2.5%   |
| McMahon et al. 2018 [68]                 | 8       | 990  | 255  | 8   | 780  | 170  |                   | 0.92   | [-0.13; 1.96] | 3.5%   |
| McManon et al. 2018 [68]                 | 8       | 600  | 226  | 8   | 420  | 113  |                   | 0.95   | [-0.10; 2.00] | 3.5%   |
| Seynnes et al. 2009 [70]                 | 15      | 1160 | 1201 | 15  | 980  | 1162 |                   | 0.15   | [-0.57; 0.87] | 4.8%   |
| Waugh et al. 2018 [54]                   | 14      | 1892 | 803  | 14  | 1201 | 459  |                   | 0.94   | [0.15; 1.72]  | 4.5%   |
| Waugh et al. 2016 [54]                   | 247     | 1720 | 535  | 14  | 1242 | 420  | <b>—</b>          | 1.05   | [0.17, 1.75]  | 4.5%   |
| Random effects model                     | 247     |      |      | 247 |      |      | ×                 | 1.05   | [ 0.75; 1.34] | 83.0%  |
| Heterogeneity: $I = 56\%$ , $p < 0.01$   |         |      |      |     |      |      |                   |        |               |        |
| Elderly                                  |         |      |      |     |      |      |                   |        |               |        |
| Carroll et al. 2011 [62]                 | 12      | 1220 | 450  | 12  | 1030 | 416  |                   | 0.42   | [-0.39: 1.23] | 4.4%   |
| Eriksen et al. 2018 [63]                 | 9       | 1330 | 690  | 9   | 1230 | 390  |                   | 0.17   | [-0.76: 1.10] | 3.9%   |
| Eriksen et al. 2018 [63]                 | 12      | 735  | 263  | 12  | 703  | 253  |                   | 0.12   | [-0.68; 0.92] | 4.5%   |
| Eriksen et al. 2019 [64]                 | 10      | 1560 | 443  | 10  | 1510 | 474  |                   | 0.10   | [-0.77; 0.98] | 4.1%   |
| Random effects model                     | 43      |      |      | 43  |      |      | \$                | 0.21   | [-0.21; 0.63] | 17.0%  |
| Heterogeneity: $I^2 = 0\%$ , $p = 0.94$  |         |      |      |     |      |      |                   |        |               |        |
| Random effects model                     | 290     |      |      | 290 |      |      | \$                | 0.91   | [0.63.1.18]   | 100 0% |
| Heterogeneity: $l^2 = 57\%$ , $p < 0.01$ |         |      |      |     |      |      |                   | 0.01   | [ 0.00, 1.10] |        |
| Residual heterogeneity: $I^2 = 49\%$ ,   | p < 0.0 | 1    |      |     |      |      | -6 -4 -2 0 2 4 6  |        |               |        |
|                                          |         |      |      |     |      |      | Decrease Increase |        |               |        |

**<u>S31.</u>** Forest plot for the meta-analysis of cross-sectional area subdivided by age group showing standardised mean differences (SMD) and 95% confidence intervals (CI) of high intensity resistance training studies.

|                                           |        |      | Post |     |      | Pre |                          |       |               |        |
|-------------------------------------------|--------|------|------|-----|------|-----|--------------------------|-------|---------------|--------|
| Study                                     | n      | Mean | SD   | n   | Mean | SD  |                          | SMD   | [95% CI]      | Weight |
| Adult                                     |        |      |      |     |      |     |                          |       |               |        |
| Arampatzis et al. 2007 [19]               | 11     | 53   | 14   | 11  | 48   | 13  |                          | 0.30  | [-0.55: 1.14] | 2.4%   |
| Arampatzis et al. 2010 [20]               | 11     | 56   | 36   | 11  | 56   | 38  |                          | 0.02  | [-0.82: 0.85] | 2.4%   |
| Bohm et al. 2014 [21]                     | 12     | 82   | 12   | 12  | 78   | 11  |                          | 0.36  | [-0.45: 1.16] | 2.6%   |
| Bohm et al. 2014 [21]                     | 14     | 83   | 14   | 14  | 80   | 13  |                          | 0.23  | [-0.52: 0.97] | 3.0%   |
| Bohm et al. 2014 [21]                     | 12     | 79   | 10   | 12  | 75   | 9   |                          | 0.34  | [-0.47: 1.14] | 2.6%   |
| Centner et al. 2019 [71]                  | 14     | 74   | 17   | 14  | 70   | 18  |                          | 0.18  | [-0.56: 0.92] | 3.1%   |
| Geremia et al. 2018 [72]                  | 15     | 72   | 11   | 15  | 62   | 8   |                          | 1.01  | 0.24: 1.77    | 2.9%   |
| Kongsgaard et al. 2007 [65]               | 12     | 121  | 14   | 12  | 117  | 14  |                          | 0.28  | [-0.53; 1.08] | 2.6%   |
| Kubo et al. 2001 [51]                     | 8      | 213  | 19   | 8   | 210  | 16  |                          | 0.16  | [-0.82; 1.14] | 1.7%   |
| Kubo et al. 2001 [51]                     | 8      | 215  | 21   | 8   | 212  | 18  |                          | 0.15  | [-0.84; 1.13] | 1.7%   |
| Kubo et al. 2002 [111]                    | 8      | 59   | 8    | 8   | 61   | 9   |                          | -0.22 | [-1.21; 0.76] | 1.7%   |
| Kubo et al. 2006 [112]                    | 8      | 73   | 18   | 8   | 73   | 20  |                          | 0.01  | [-0.97; 0.99] | 1.8%   |
| Kubo et al. 2006 [113]                    | 9      | 207  | 22   | 9   | 204  | 19  |                          | 0.14  | [-0.79; 1.06] | 2.0%   |
| Kubo et al. 2006 [113]                    | 9      | 205  | 17   | 9   | 202  | 13  |                          | 0.19  | [-0.74; 1.12] | 2.0%   |
| Kubo et al. 2006 [96]                     | 9      | 78   | 20   | 9   | 78   | 19  |                          | -0.02 | [-0.95; 0.90] | 2.0%   |
| Kubo et al. 2007 [85]                     | 10     | 58   | 8    | 10  | 59   | 8   |                          | -0.08 | [-0.96; 0.79] | 2.2%   |
| Kubo et al. 2009 [114]                    | 10     | 62   | 8    | 10  | 61   | 7   |                          | 0.10  | [-0.78; 0.98] | 2.2%   |
| Kubo et al. 2009 [114]                    | 10     | 63   | 8    | 10  | 60   | 7   |                          | 0.32  | [-0.57; 1.20] | 2.2%   |
| Kubo et al. 2010 [115]                    | 10     | 58   | 8    | 10  | 59   | 8   |                          | -0.08 | [-0.96; 0.79] | 2.2%   |
| Kubo et al. 2010 [115]                    | 10     | 68   | 8    | 10  | 66   | 8   |                          | 0.21  | [-0.67; 1.09] | 2.2%   |
| Kubo et al. 2010 [88]                     | 8      | 81   | 20   | 8   | 80   | 19  |                          | 0.04  | [-0.94; 1.02] | 1.8%   |
| Kubo et al. 2012 [89]                     | 9      | 74   | 28   | 9   | 72   | 33  |                          | 0.06  | [-0.86; 0.99] | 2.0%   |
| Kubo et al. 2017 [116]                    | 9      | 73   | 10   | 9   | 72   | 11  |                          | 0.08  | [-0.84; 1.01] | 2.0%   |
| Kubo et al. 2017 [116]                    | 9      | /4   | 9    | 9   | 74   | 8   |                          | 0.03  | [-0.89; 0.96] | 2.0%   |
| Kubo et al. 2017 [86]                     | 11     | 66   | 8    | 11  | 65   | 8   |                          | 0.14  | [-0.70; 0.97] | 2.4%   |
| Malliaras et al. 2013 [61]                | 9      | 118  | 9    | 9   | 112  | 6   |                          | 0.73  | [-0.23; 1.70] | 1.8%   |
| Malliaras et al. 2013 [61]                | 10     | 120  | 19   | 10  | 110  | 10  |                          | 0.27  | [-0.61, 1.15] | 2.2%   |
| Managay et al. 2019 [61]                  | 14     | 120  | 19   | 14  | 00   | 19  |                          | 0.33  | [-0.55, 1.22] | 2.270  |
| Massey et al. 2018 [66]                   | 15     | 08   | 13   | 15  | 07   | 13  |                          | 0.03  | [-1.04, 0.45] | 3 30%  |
| McMahon et al 2013 [67]                   | 10     | 73   | 14   | 10  | 70   | 13  |                          | 0.00  | [-0.67: 1.09] | 2 2%   |
| McMahon et al. 2013 [67]                  | 11     | 76   | 16   | 11  | 70   | 13  |                          | 0.21  | [-0.53: 1.16] | 2.270  |
| McMahon et al. 2018 [68]                  | 8      | 81   | 13   | 8   | 77   | 13  |                          | 0.32  | [-0.67: 1.30] | 1 7%   |
| McMahon et al 2018 [68]                   | 8      | 70   | 22   | 8   | 66   | 11  |                          | 0.20  | [-0.78: 1.18] | 1.7%   |
| Mouraux et al 2000 [118]                  | 10     | 257  | 61   | 10  | 240  | 49  |                          | 0.29  | [-0.59: 1.18] | 2.2%   |
| Sanz-Lopez et al. 2016 [123]              | 20     | 82   | 23   | 20  | 64   | 11  | <b>-</b>                 | 1.04  | [ 0.38: 1.71] | 3.8%   |
| Sevnnes et al. 2009 [70]                  | 15     | 107  | 4    | 15  | 103  | 4   |                          | 1.01  | 0.24: 1.77    | 2.9%   |
| Waugh et al. 2018 [54]                    | 14     | 61   | 17   | 14  | 62   | 15  |                          | -0.08 | [-0.82: 0.67] | 3.1%   |
| Waugh et al. 2018 [54]                    | 14     | 60   | 14   | 14  | 58   | 13  |                          | 0.14  | [-0.60; 0.88] | 3.1%   |
| Random effects model                      | 424    |      |      | 424 |      |     | $\diamond$               | 0.24  | [ 0.10; 0.37] | 90.7%  |
| Heterogeneity: $I^2 = 0\%$ , $p = 0.99$   |        |      |      |     |      |     |                          |       |               |        |
|                                           |        |      |      |     |      |     |                          |       |               |        |
| Elderly                                   |        |      |      |     |      |     |                          |       |               |        |
| Carroll et al. 2011 [62]                  | 12     | 115  | 33   | 12  | 117  | 35  |                          | -0.06 | [-0.86; 0.74] | 2.6%   |
| Eriksen et al. 2018 [63]                  | 9      | 129  | 24   | 9   | 131  | 27  |                          | -0.07 | [-1.00; 0.85] | 2.0%   |
| Eriksen et al. 2018 [63]                  | 11     | 123  | 33   | 12  | 121  | 28  |                          | 0.06  | [-0.76; 0.88] | 2.5%   |
| Eriksen et al. 2019 [64]                  | 10     | 124  | 22   | 10  | 117  | 21  |                          | 0.31  | [-0.57; 1.20] | 2.2%   |
| Random effects model                      | 42     |      |      | 43  |      |     | $\sim$                   | 0.06  | [-0.37; 0.48] | 9.3%   |
| Heterogeneity: $I^{-} = 0\%$ , $p = 0.92$ |        |      |      |     |      |     |                          |       |               |        |
| Random effects model                      | 466    |      |      | 467 |      |     | \$                       | 0.22  | [ 0.09: 0.35] | 100.0% |
| Heterogeneity: $l^2 = 0\% p = 0.99$       |        |      |      |     |      |     |                          |       | [ 1.00, 0.00] |        |
| Residual heterogeneity: $I^2 = 0\%$ . p   | = 0.99 |      |      |     |      | 8   | -1.5 -1 -0.5 0 0.5 1 1.5 |       |               |        |
|                                           |        |      |      |     |      |     | Decrease Increase        |       |               |        |