Recent insights on genetic testing in primary prostate cancer diagnosis

Mona Kafka¹, Cristian Surcel^{2,3} and Isabel Heidegger¹

¹Department of Urology, Medical University Innsbruck, Innsbruck, Austria 2Carol Davila University of Medicine and Pharmacy, Bucharest, Romania ³Fundeni Clinical Institute, Department of Urology, Bucharest, Romania

Supplementary Table 1: Literature overview

Specific sorting of all search results (N=111):

1. Included clinical trial (N=34)

Title	Authors	Journal	Year
A cohort analysis of men with a family history of BRCA1/2	Kerr et al.	BMC Cancer	2016
and Lynch mutations for prostate cancer			
A Genetic Risk Score to Personalize Prostate Cancer	Huynh-Le et al.	Cancer	2020
Screening, Applied to Population Data		Epidemiol Biomarkers Prev	
A personalised approach to prostate cancer screening based on genotyping of risk founder alleles	Cybulski et al.	Br J Cancer	2013
Association of Genomic Domains in BRCA1 and BRCA2 with Prostate Cancer Risk and Aggressiveness	Patel et al.	Cancer Res	2020
Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families	Yang et al.	J Clin Oncol	2020
Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian	Mersch et al.	Cancer	2015
Characterization of the Cancer Spectrum in Men With Germline BRCA1 and BRCA2 Pathogenic Variants: Results From the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA)	Silvestri et al.	JAMA Oncol	2020
Clinical and histopathological characteristics of familial prostate cancer in Finland	Pakkanen et al.	BJU Int	2012
Clinical significance of PON1 L55M, Q192R and I102V polymorphisms and their association with prostate cancer risk in Polish men	Heise et al.	Pol J Pathol	2020
Clinical testing with a panel of 25 genes associated with increased cancer risk results in a significant increase in clinically significant findings across a broad range of cancer histories	Rosenthal et al.	Cancer Genet	2017
Diagnosing hereditary cancer predisposition in men with prostate cancer	Pritzlaff et al.	Genet Med	2020
Differences in cancer prevalence among CHEK2 carriers identified via multi-gene panel testing	Sutcliffe et al.	Cancer Genet	2020
Epidemiologic, clinical, and molecular characteristics of hereditary prostate cancer in Latvia	Abele et al.	Medicina (Kaunas)	2011
Ethnic disparities among men with prostate cancer undergoing germline testing	Kwon et al.	Urol Oncol	2020
Finnish Fanconi anemia mutations and hereditary predisposition to breast and prostate cancer	Mantere et al.	Clin Genet	2015
G84E germline mutation in HOXB13 gene is associated with increased prostate cancer risk in Polish men	Heise et al.	Pol J Pathol	2019
Genetic analyses supporting colorectal, gastric, and prostate cancer syndromes	Wallander et al.	Genes Chromosomes Cancer	2019
Germline genetic variants in men with prostate cancer and one or more additional cancers	Pilie et al.	Cancer	2017
Germline mutations in HOXB13 and prostate-cancer risk	Ewing et al.	N Engl J Med	2012
Germline Pathogenic Variants in 7636 Japanese Patients With Prostate Cancer and 12Â 366 Controls	Momozawa et al.	J Natl Cancer Inst	2020
Identification of Incidental Germline Mutations in Patients With Advanced Solid Tumors Who Underwent Cell-Free Circulating Tumor DNA Sequencing	Slavin et al.	J Clin Oncol	2018
Interim Results from the IMPACT Study: Evidence for Prostate-specific Antigen Screening in BRCA2 Mutation Carriers	Page et al.	Eur Urol	2019

Known susceptibility SNPs for sporadic prostate cancer	Cremers et al.	Prostate	2015
show a similar association with "hereditary" prostate cancer			
PALB2, CHEK2 and ATM rare variants and cancer risk: data	Southey et al.	J Med Genet	2016
from COGS			
Finnish Fanconi anemia mutations and hereditary	Seibert et al.	BMJ	2018
predisposition to breast and prostate cancer			
Population-based estimate of prostate cancer risk for	MacInnis et al.	PLoS One	2013
carriers of the HOXB13 missense mutation G84E			
Prevalence of Suspected Hereditary Cancer Syndromes and	Chandrasekar	Eur Urol Oncol	2020
Germline Mutations Among a Diverse Cohort of Probands	et al.		
Reporting a Family History of Prostate Cancer: Toward			
Informing Cascade Testing for Men			
Prevalence of the HOXB13 G84E germline mutation in	Kote-Jarai et al.	Ann Oncol	2015
British men and correlation with prostate cancer risk,			
tumour characteristics and clinical outcomes			
Prostate cancer incidence in males with Lynch syndrome	Haraldsdottir et	Genet Med	2014
	al.		
Risk of Prostate Cancer Associated With Familial and	Beebe-Dimmer	J Clin Oncol	2020
Hereditary Cancer Syndromes	et al.		
Targeted prostate cancer screening in BRCA1 and BRCA2	Bancroft et al.	Eur Urol	2014
mutation carriers: results from the initial screening round of			
the IMPACT study			
The role of germline mutations in the BRCA1/2 and	Maia et al.	Fam Cancer	2016
mismatch repair genes in men ascertained for early-onset			
and/or familial prostate cancer			
The spectrum of urological malignancy in Lynch syndrome	Barrow et al.	Fam Cancer	2013
Truncating and missense PPM1D mutations in early-onset	Cardoso et al.	Genes	2016
and/or familial/hereditary prostate cancer patients		Chromosomes	
		Cancer	

2. Not medically relevant (e.g. psychological or economic aspects) (N=13)

Title	Authors	Journal	Year
"I Am Uncertain About What My Uncertainty Even Is": Men's	Rauscher et al.	J Genet Couns	2018
Uncertainty and Information Management of Their BRCA- Related Cancer Risks			
Engaging Men With BRCA-Related Cancer Risks: Practical	Dean et al.	Am J Mens	2020
Advice for BRCA Risk Management From Male Stakeholders		Health	
Genetic testing in the European Union: does economic	Antonanzas et	Eur J Health	2012
evaluation matter?	al.	Econ	
gsSKAT: Rapid gene set analysis and multiple testing	Larson et al.	Genet	2017
correction for rare-variant association studies using weighted		Epidemiol	
linear kernels			
SNP interaction pattern identifier (SIPI): an intensive search	Lin et al.	Bioinformatics	2017
for SNP-SNP interaction patterns			
The effect of sample size on polygenic hazard models for	Karunamuni	Eur J Hum	2020
prostate cancer	et al.	Genet	
The Genetic Education for Men (GEM) Trial: Development of	Peshkin et al.	J Cancer Educ	2019
Web-Based Education for Untested Men in BRCA1/2-Positive			
Families			
Understanding of multigene test results among males	Giri et al.	Prostate	2018
undergoing germline testing for inherited prostate cancer:			
Implications for genetic counseling			
What factors may influence psychological well being at three	Bosch et al.	Breast	2012
months and one year post BRCA genetic result disclosure?			

What men want: Qualitative analysis of what men with prostate cancer (PCa) want to learn regarding genetic	Greenberg et al.	Prostate	2020
referral, counseling, and testing			
AA9int: SNP interaction pattern search using non-hierarchical	Lin et al.	Bioinformatics	2018
additive model set			
Development and validation of a 36-gene sequencing assay	Vysotskaia et	PeerJ	2017
for hereditary cancer risk assessment	al.		
Development and validation of next generation sequencing	Chan et al.	Hered Cancer	2020
based 35-gene hereditary cancer panel		Clin Pract	

3. Not specific enough (e.g. genetic pathways, carcinogenesis) (N=16)

Title	Authors	Journal	Year
Alcohol consumption and prostate cancer incidence and	Brunner et	Int J Cancer	2017
progression: A Mendelian randomisation study	al.		
Cancer screening in Australia: future directions in melanoma,	Weber et al.	Public Health	2019
Lynch syndrome, and liver, lung and prostate cancers		Res Pract	
Genetic cancer predisposition syndromes among older adults	Chavarri-	J Geriatr Oncol	2020
	Guerra et al.		
Genomics of Prostate Cancer: What Nurses Need to Know	McReynolds	Semin Oncol	2019
	et al.	Nurs	
Germline testing for prostate cancer: community urology	Concepcion	Can J Urol	2019
perspective	et al.		
Identification of genetic biomarkers in urine for early detection	Kavalci et al.	Curr Probl	2020
of prostate cancer		Cancer	
Inequities in multi-gene hereditary cancer testing: lower	Ndugga-	Fam Cancer	2019
diagnostic yield and higher VUS rate in individuals who identify	Kabuye et al.		
as Hispanic, African or Asian and Pacific Islander as compared			
to European			
Lung, Breast, and Prostate Cancer Patients with Unknown	Lin et al.	J Registry	2017
Ethnicity in US Department of Defense Cancer Registry Data:		Manag	
Comparisons to Patients with Known Ethnicity			
New name for breast-cancer syndrome could help to save lives	Pritchard et	Nature	2019
	al.		
Population prevalence of familial cancer and common	Scheuner et	Genet Med	2010
hereditary cancer syndromes. The 2005 California Health	al.		
Interview Survey			
Prevalence and causes of elevated bone mass	Nottez et al.	Bone	2020
Publisher Correction: Shared heritability and functional	Jiang et al.	Nat Commun	2019
enrichment across six solid cancers			
A comparison of isolated circulating tumor cells and tissue	Jiang et al.	Oncotarget	2015
biopsies using whole-genome sequencing in prostate cancer			
Assessing the role of insulin-like growth factors and binding	Bonilla et al.	Int J Cancer	2016
proteins in prostate cancer using Mendelian randomization:			
Genetic variants as instruments for circulating levels			
Germline Mutations in DNA Repair Genes in Patients With	Holeckova et	In Vivo	2020
Metastatic Castration-resistant Prostate Cancer	al.		
Microsatellite Instability Is Associated With the Presence of	Latham et al.	J Clin Oncol	2019
Lynch Syndrome Pan-Cancer			

4. Genetic testing in other tumor entities (N=19)

Title	Author	Journal	Year
Analysis of Founder Mutations in Rare Tumors Associated With Hereditary Breast/Ovarian Cancer Reveals a Novel Association of BRCA2 Mutations with Ampulla of Vater Carcinomas	Pinto et al.	PLoS One	2016

Application of Hereditary Renal Cell Carcinoma Risk Criteria to	Kushnir et	Clin Oncol (R Coll	2020
a Large Prospective Database	al.	Radiol)	
ATM whole gene deletion in an Italian family with hereditary	Arts et al.	Cancer Genet	2020
pancreatic cancer: Challenges to cancer risk prediction			
associated with an 11q22.3 microdeletion			
BAP1 Syndrome - Predisposition to Malignant Mesothelioma,	Foretova	Klin Onkol	2019
Skin and Uveal Melanoma, Renal and Other Cancers	et al.		
Characteristics of individuals with breast cancer	Jackson et	Cancer	2014
rearrangements in BRCA1 and BRCA2	al.		
Comprehensive genetic characterization of hereditary	Konecny	Breast Cancer Res	2011
breast/ovarian cancer families from Slovakia	et al.	Treat	
Germline mutation prevalence in individuals with pancreatic	Dudley et	Cancer	2018
cancer and a history of previous malignancy	al.		
High risk men's perceptions of pre-implantation genetic	Quinn et	Hum Reprod	2010
diagnosis for hereditary breast and ovarian cancer	al.		
Incidence of Pathogenic Variants in Those With a Family	Macklin et	Front Oncol	2018
History of Pancreatic Cancer	al.		
Lynch Syndrome: Genomics Update and Imaging Review	Cox et al.	Radiographics	2018
Malignant Peripheral Nerve Sheath Tumor in a Patient With	Kaszuba	World Neurosurg	2018
BAP1 Tumor Predisposition Syndrome	et al.	_	
Men seeking counselling in a Breast Cancer Risk Evaluation	Freitas et	Ecancermedicalscienc	2018
Clinic	al.	е	
Polymorphisms in MMP-1, MMP-2, MMP-7, MMP-13 and	Bialkowsk	Hered Cancer Clin	2020
MT2A do not contribute to breast, lung and colon cancer risk	a et al.	Pract	
in polish population			
Prevention and Screening in Hereditary Breast and Ovarian	Zeichner	Oncology (Williston	2016
Cancer	et al.	Park)	
Recurrent large genomic rearrangements in BRCA1 and BRCA2	McVeigh	Cancer Genet	2017
in an Irish case series	et al.		
Rescreening for genetic mutations using multi-gene panel	Frey et al.	Gynecol Oncol	2015
testing in patients who previously underwent non-informative			
genetic screening			
BRCA1 and BRCA2 mutations in males with familial breast and	de Juan et	Fam Cancer	2015
ovarian cancer syndrome. Results of a Spanish multicenter	al.		
study			
CDKN1B V109G polymorphism a new prognostic factor in	Pasquali	Eur J Endocrinol	2011
sporadic medullary thyroid carcinoma	et al.		
Population prevalence of individuals meeting criteria for	Greenber	Cancer Med	2019

5. Animal Studies (N=3)

Title	Authors	Journal	Year
CD24 Is Not Required for Tumor Initiation and Growth in Murine	Cremers et al.	PLoS One	2016
Breast and Prostate Cancer Models			
Chromosome instability and carcinogenesis: insights from	Cassidy et. al	Mol Oncol	2014
murine models of human pancreatic cancer associated with			
BRCA2 inactivation			
DNA-Encoded Library-Derived DDR1 Inhibitor Prevents Fibrosis	Richter et al.	ACS Chem	2019
and Renal Function Loss in a Genetic Mouse Model of Alport		Biol	
Syndrome			

6. Case Reports (N=2)

Title	Authors	Journal	Year
Contiguous gene deletion of chromosome 2p16.3-p21 as a cause	Salo-Mullen et	Fam Cancer	2018
of Lynch syndrome	al.		

DNA Damage Repair (DDR) Mutations and the Utility of High-Risk	Rathi et al.	World J	2018
Genetics Clinics in Metastatic Castration-Refractory Prostate		Oncol	
Cancer (mCRPC)			

7. Prostate cancer but not focused on genetic testing (N=4)

Title	Authors	Journal	Year
Digitoxin Inhibits Epithelial-to-Mesenchymal-Transition in	Pollard et al.	Front Oncol	2019
Hereditary Castration Resistant Prostate Cancer			
Effect of family history on outcome in German patients treated with radical prostatectomy for clinically localised prostate cancer	Heck et al.	Eur J Cancer	2012
The clinical phenotype of hereditary versus sporadic prostate cancer: HPC definition revisited	Cremers et al.	Prostate	2016
Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study	Adams et al.	Cancer Epidemiol Biomarkers Prev	2019

8. Reviews (N=16)

Title	Authors	Journal	Year
Application Areas of Traditional Molecular Genetic Methods and	Mikhaylenk	J Oncol	2020
NGS in relation to Hereditary Urological Cancer Diagnosis	o et al.		
Familial prostate cancer	Giri et al.	Semin Oncol	2016
Genetic testing for hereditary prostate cancer: Current status and limitations	Zhen et al.	Cancer	2018
Hereditary Predisposition to Prostate Cancer: From Genetics to Clinical Implications	Brandao et al.	Int J Mol Sci	2020
Hereditary prostate cancer - Primetime for genetic testing?	Heidegger et al.	Cancer Treat Rev	2019
How I Do It: Genetic counseling and genetic testing for inherited prostate cancer	Giri et al.	Can J Urol	2016
Metastatic Prostate Cancer: Effects of Genetic Testing on Care	Connors et al.	Clin J Oncol Nurs	2019
Molecular genetics and targeted therapy of WNT-related human diseases (Review)	Katoh et al.	Int J Mol Med	2017
Prostate cancer screening in BRCA and Lynch syndrome mutation carriers	Castro et al.	Am Soc Clin Oncol Educ Book	2013
Screening for familial and hereditary prostate cancer	Lynch et al.	Int J Cancer	2016
The Role of BRCA Testing in Hereditary Pancreatic and Prostate Cancer Families	Pilarski et al.	Am Soc Clin Oncol Educ Book	2019
Urological cancer related to familial syndromes	Costa et al.	Int Braz J Urol	2017
BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer	Petrucelli et al.	GeneReviews	1993
Dysregulation of the homeobox transcription factor gene HOXB13: role in prostate cancer	Decker et al.	Pharmgenomics Pers Med	2014
Genitourinary cancer predisposition syndromes	Gallagher et al.	Hematol Oncol Clin North Am	2010
Human genome meeting 2016 : Houston, TX, USA. 28 February - 2 March 2016	Srivastava et al.	Hum Genomics	2016

9. Consensus decisions (N=2)

Title	Authors	Journal	Year
Implementation of Germline Testing for Prostate Cancer: Philadelphia	Giri et al.	J Clin Oncol	2020
Prostate Cancer Consensus Conference 2019			

Role of Genetic Testing for Inherited Prostate Cancer Risk:	Giri et al.	J Clin Oncol	2018
Philadelphia Prostate Cancer Consensus Conference 2017			