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|. DATA SELECTION
The process of data selection has three stages.

1) An initial set of 153 patients is first cleaned by removimggpeated response values, that is those
which share the same time stamp. These repeats arise wheiemt pasubmits a rating score either by
mistake or in order to correct an earlier response. Assurttiag earlier values are being corrected, we
remove repeated responses by taking the most recent in theersge. We then select those members
whose time series have at least 25 data points, or appraynsix months duration to create Set A
(n=93). We resample the time series in Set A to an exact weekhpkiag interval. Figure 1 illustrates
the resampling process assuming that sampling is apprtedynance per week and that responses are
valid for the previous week. The optimal weekdayfor the resampled time series is chosen to minimise
the total deviation of the original responses from theirresponding resampled position on theaxis
or ‘comb’ of weekdays. The deviation in this case is the eddptme to the first response within seven
days.

Fig. 1. lllustration of resampling. Diamond markers reprasthe original, non-uniform time series and the horizblites to the left of
each marker show the period over which the response is \&djdare markers represent the resampled series and thoise seuare central
dot are imputed values. Th¥-axis or ‘comb’ shows the optimal weekday which when aligméth the original series gives the minimum
total distance (deviation) of the sample time from the respotime.
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The comb is then populated from the original series as falo8tarting from weekday at the start,
or the last instance before the start, of the time series,agerd any response within seven days. We
repeat the search from weekdayin the following week and continue until the last responséheftime
series is reached. If no response is found within seven @agsssing value is imputed by using the last
value in the resampled series.

2) The next step is to select those time series with a minimesampled length of 100 data points
and with 5 or fewer imputations in the first 100 points of theiese The minimum length criterion is
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required by the nonlinear forecasting methods and the kmiimputations avoids large errors resulting
from incorrect estimation.

3) Finally, we limit the length of the time series to 100 peirnd remove non-stationary series to
leave the 8 time series used in the study. Stationarity tedegsing a Kolmogorov-Smirnov test on the
first and second halfs of the time series and rejecting thosed to be different at a significance level
of 5%. Figure 2 summarizes the data selection process.

Fig. 2. From an initial set of 153 patients, with one time egnper patient, uniform time series of length at 25 weeks elected to give
a set of 93. Next. those time series with 5 or fewer missinantsdn the first 100 points of the time series are selected mgakiset of 14.
Finally, non-st

At least 25 5 or fewer tati )
me weeks in length? missing points? stationary
sy o SetA (n=93) = SetB (n=8)

I[I. FORECASTING METHODS

This section provides details of the forecasting methodsl uis the study. The methods are persistence
PST, simple exponential smoothirfgeS, autoregressioARL andAR2, Gaussian process regressMAT?2,
locally constant predictiohCP and local linear predictiohLP.

A. Smple linear methods

We apply three simple linear prediction methogersistence, the autoregressive model with orders 1
and 2, andsimple exponential smoothing. An AR model can be written

p
Ye = Z QYi—i + 2 (2)
i=1

where{z;} is purely random process andis the order of the model, which is referred to asAfR(p)
model.

Simple exponential smoothing takes a forecasat timet¢ and adjusts it to give a next step forecast
of 9,41 = y: + a(y: — y:), Wwherey, is the actual value at timeand« is a constant parameter with value
between zero and one. It is estimated by taking the value thiat minimizes the root mean square error
(RMSE) on the training data.

B. Nonlinear methods

We apply two nonlinear models, the first being a locally canspredictor, the second a local linear
fit. The locally constant predictor which takes the averafj¢ghe ‘successor’ points to the neighboring
delay vectors formed from the time series. That is,

R 1
Yt+1 = W Z Sn+1 (2

sn€U(S)

wherel/ represents the neighborhood set of delay vectors, (y; 11, -.-v;) andm is the embedding
dimension. The algorithm is described in [1] and is impletedrusing theTISEAN function| zo- r un

[2] with the default options. The local linear model is anesdion, which uses an autoregressive model
in the embedding space to form a new local model for everyigtied. It is implemented by using the
TISEAN function| f o- r un.
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C. Gaussian process forecasting

The theory for Gaussian process models is well-establisimedin recent decades it has been widely
applied in regression and machine learning. A clear intctida to the method is to be found in [3] and a
fuller description is given in the machine learning text. [#he present authors have applied the method
to forecasting in [5]. The method assumes a Bayesian nomgdiia model where the regression function
itself has a prior distribution. This is a Gaussian processchvis specified by a covariance function
k(x,x'| @) to define the correlation between latent function valuesputisx andx’. Properties of the
prior process, such as the length scale, are determindydeyparameters 6, which are estimated from
the data by maximum likelihood along with a noise testn The predictive equation is theR[f.] =
kT (K + 0¢2I)~'y wherek, is the vector of covariances of the test point with the tranpointsy, and
K is the covariance matrix of the training set.

Fig. 3. Sample draws from a Gaussian process. The upper ti®ale realizations of a Gaussian process with &liatovariance function
k(r)=0(1+ ‘/g"? exp —@2 with length scald = 10 and standard deviatiom = 5. The two lower time plots are moving-average

l l
smoothed series selected from the eight depression tinessgsed in ths study.
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An example of draws from a Gaussian process distributiomasva in the two upper panels of Figure
3. They are generated atrtificially using the method desdribe[3]. By way of comparison, the two
lower plots in Figure 3 are two moving-average smoothed ts@ees selected from the eight used in
this study. The artificial series match the smoothed mootsdor time scale and variance because
these hyperparameters are chosen accordingly. In fonegashe training set is used to determine the
hyperparameter values, which are then used in the preelietjuation.

Choice of Gaussian process covariance function: Table | shows the negative log likelihood from training
the first half of each of the eight time series used in the stilitlyee kinds of covariance function are
used, squared exponenti8JE), rational quadraticRQU) and Maérn (MAT). For the first two covariance
functions and foMAT1, we use exact inference with a Gaussian likelihood functicar MAT2 we use a
sech? likelihood with a Laplace approximation to the posterioneMAT3 method uses aech? likelihood
with a leave out one inferenc®AT4 uses a t-distribution likelihood with variational Bayedearence.
Further details of the inference methods can be found in [4].

The MAT3 method is distinguished by having the lowest negative ikgjihood, but otherwise there is
little to choose between the methods.

Table Il shows the out of sample RMSE forecast error for thiéerdint covariance functions and
inference methods. Again tHdAT3 method is distinguished from the others, but in this casalse it is
markedly worse. There is a large error for the time serieb midlex 1, which was found to be random. It
appears that the leave-out-one method for estimating paesmis overfitting in this case. There is little
to distinguish the other methodMAT2 has the lowest mean out-of-sample error, but by a very small
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TABLE |
NEGATIVE LOG LIKELIHOOD FOR DIFFERENT COVARIANCE FUNCTIONSLIKELIHOODS AND INFERENCE METHODS

NE RQU MAT1 MAT2 MAT3 MAT4

Gauss Gauss Gauss sech?  sech? t
Time series Exact Exact Exact Lpce LOO VB

1 121.0 121.0 1210 116.9 118.2 116.9
2 122.0 1224 1223 122.0 1199 1243
3 129.6 129.0 1295 130.8 122.6 130.4
4 156.2 156.4 156.4 156.9 152.6 181.1
5 95.3 95.6 95.4 96.5 86.5 100.4
6 107.4 1079 107.8 110.7 98.0 109.7
7 1116 1119 1122 113.1 108.0 112.7
8 122.0 1209 120.4 120.9 98.8 121.8
Mean 120.6 1206 120.6 120.97 113.0 124.7

TABLE I
OUT OF SAMPLE FORECAST ERRORRMSE)FOR DIFFERENT COVARIANCE FUNCTIONSLIKELIHOODS AND INFERENCE METHODS

QE RQU MAT1 MAT2 MAT3 MAT4

Gauss Gauss Gauss sech® sech? t
Time series Exact Exact Exact Lpce LOO VB

1 2.70 2.70 270 270 4.32 2.67
2 1.91 1.89 187 1.83 1.86 1.82
3 3.52 3.64 3.58 3.68 3.67 3.99
4 5.09 5.08 5.06 4.88 4.90 5.11
5 2.48 2.38 235 217 3.46 221
6 2.42 2.46 241 245 2.39 2.39
7 2.69 2.70 271 2.65 2.85 2.65
8 1.56 1.73 1.60 1.60 1.82 1.59
Mean 2.80 2.82 279 275 3.16 2.80

margin. For the comparison with other forecast methodsefbee, we choos®AT2, which uses a M&rn
covariance function with aech? likelihood and parameter inference using a Laplace appration to
the posterior.

Fig. 4. Gaussian process forecasting using aékfatovariance function. The hyperparameters are traimethe first 50 data points to
give a length scalé= 2.5 and a process standard deviatiorvof= 3.3. The original time series, the third out of the eight usechia study,
is shown as the thicker line and the prediction as the thitiner
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Figure 4 illustrates the forecasting method using a singie series selected from the eight used in the
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study. The hyperparameters are trained on the first 50 pofritse time series and next step predictions
made for the next 50 points. It is possible to retrain the hyaemeters using a longer training set as
the prediction point moves forward in time, but we find thas tmakes no difference to the prediction

accuracy.

[11. DIEBOLD-MARIANO TEST

The Diebold-Mariano test [6] compares the predictive agcyiof two forecasting methods by examining
the forecast errors from each model. The null hypothesit@fést is that the expected values of the loss

functions are the same,
Hy : E[L(e1)] = E[L(e2)] 3)

wheree; ande, are the forecast errors for each method. The Diebold-Martast statistic for one step

ahead predictions is -
d
Spm = —— N(Oa 1) (4)
var(d)
T
whered is L(e;) — L(e;) and T is the number of forecasts. Since the statistic is distetbutormally, we

reject the null hypothesis (that the methods have equaligirezl accuracy) for absolute values of above
1.96.

TABLE 11l
DIEBOLD-MARIANO TEST STATISTIC FOR OUT OF SAMPLE FORECAST RESULTS

Time series SES ARL AR2 MAT2 LCP LLP

198 221 1.98 1.90 206 164
067 154 151 1.74 161 140
0.02 183 155 1.71 0.74 1.38
-1.84 -0.12 -029 048 -0.74 -0.03
1.83 205 2.02 1.78 184 191

0 0.64 0.84 0.87 -0.99 0.87
225 287 267 2.49 206 231

0 215 016 -0.57 -0.63 0.85

0O ~NO O WN P

Table Il shows the Diebold-Mariano test statistic for ofitsample forecast results used in the paper
and applying an identity loss function. Forecast metho@scampared individually with persistence as
the baseline forecast. It can be seen that simple expohent@othing (SES) is not distinguished from the
baseline with the exception of patients 1 and 7. Patientgl 28d 6 show no distinction from persistence
forecasts for any of the forecasting methods, includingrtbe-linear methods.
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