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I. DATA SELECTION

The process of data selection has three stages.

1) An initial set of 153 patients is first cleaned by removing repeated response values, that is those
which share the same time stamp. These repeats arise when a patient resubmits a rating score either by
mistake or in order to correct an earlier response. Assumingthat earlier values are being corrected, we
remove repeated responses by taking the most recent in the sequence. We then select those members
whose time series have at least 25 data points, or approximately six months duration to create Set A
(n=93). We resample the time series in Set A to an exact weekly sampling interval. Figure 1 illustrates
the resampling process assuming that sampling is approximately once per week and that responses are
valid for the previous week. The optimal weekdayw for the resampled time series is chosen to minimise
the total deviation of the original responses from their corresponding resampled position on theX-axis
or ‘comb’ of weekdays. The deviation in this case is the elapsed time to the first response within seven
days.

Fig. 1. Illustration of resampling. Diamond markers represent the original, non-uniform time series and the horizontal lines to the left of
each marker show the period over which the response is valid.Square markers represent the resampled series and those with a square central
dot are imputed values. TheX-axis or ‘comb’ shows the optimal weekday which when alignedwith the original series gives the minimum
total distance (deviation) of the sample time from the response time.

            
time (weeks) →

The comb is then populated from the original series as follows. Starting from weekdayw at the start,
or the last instance before the start, of the time series, we record any response within seven days. We
repeat the search from weekdayw in the following week and continue until the last response ofthe time
series is reached. If no response is found within seven days,a missing value is imputed by using the last
value in the resampled series.

2) The next step is to select those time series with a minimum resampled length of 100 data points
and with 5 or fewer imputations in the first 100 points of the series. The minimum length criterion is
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required by the nonlinear forecasting methods and the limiton imputations avoids large errors resulting
from incorrect estimation.

3) Finally, we limit the length of the time series to 100 points and remove non-stationary series to
leave the 8 time series used in the study. Stationarity is tested using a Kolmogorov-Smirnov test on the
first and second halfs of the time series and rejecting those found to be different at a significance level
of 5%. Figure 2 summarizes the data selection process.

Fig. 2. From an initial set of 153 patients, with one time series per patient, uniform time series of length at 25 weeks are selected to give
a set of 93. Next, those time series with 5 or fewer missing points in the first 100 points of the time series are selected making a set of 14.
Finally, non-stationary time series are removed to create the set of 8 time series which are used in the study.

II. FORECASTING METHODS

This section provides details of the forecasting methods used in the study. The methods are persistence
PST, simple exponential smoothingSES, autoregressionAR1 andAR2, Gaussian process regressionMAT2,
locally constant predictionLCP and local linear predictionLLP.

A. Simple linear methods

We apply three simple linear prediction methods:persistence, the autoregressive model with orders 1
and 2, andsimple exponential smoothing. An AR model can be written

yt =

p
∑

i=1

αiyt−i + zt (1)

where{zt} is purely random process andp is the order of the model, which is referred to as anAR(p)
model.

Simple exponential smoothing takes a forecastŷt at time t and adjusts it to give a next step forecast
of ŷt+1 = ŷt + α(yt − ŷt), whereyt is the actual value at timet andα is a constant parameter with value
between zero and one. It is estimated by taking the value ofα that minimizes the root mean square error
(RMSE) on the training data.

B. Nonlinear methods

We apply two nonlinear models, the first being a locally constant predictor, the second a local linear
fit. The locally constant predictor which takes the average of the ‘successor’ points to the neighboring
delay vectors formed from the time series. That is,

ŷt+1 =
1

|U(s)|

∑

sn∈U(s)

sn+1 (2)

whereU represents the neighborhood set of delay vectors,s = (yt−m+1, ... yt) andm is the embedding
dimension. The algorithm is described in [1] and is implemented using theTISEAN function lzo-run
[2] with the default options. The local linear model is an extension, which uses an autoregressive model
in the embedding space to form a new local model for every prediction. It is implemented by using the
TISEAN function lfo-run.
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C. Gaussian process forecasting

The theory for Gaussian process models is well-establishedand in recent decades it has been widely
applied in regression and machine learning. A clear introduction to the method is to be found in [3] and a
fuller description is given in the machine learning text [4]. The present authors have applied the method
to forecasting in [5]. The method assumes a Bayesian nonparametric model where the regression function
itself has a prior distribution. This is a Gaussian process which is specified by a covariance function
k(x,x′|θ) to define the correlation between latent function values at inputsx andx′. Properties of the
prior process, such as the length scale, are determined byhyperparameters θ, which are estimated from
the data by maximum likelihood along with a noise termσn. The predictive equation is thenE[f∗] =
kT

∗
(K + σ2

nI)
−1y wherek∗ is the vector of covariances of the test point with the training pointsy, and

K is the covariance matrix of the training set.

Fig. 3. Sample draws from a Gaussian process. The upper two plots are realizations of a Gaussian process with a Matérn covariance function
k(r) = σ
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with length scalel = 10 and standard deviationσ = 5. The two lower time plots are moving-average
smoothed series selected from the eight depression time series used in ths study.
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An example of draws from a Gaussian process distribution is shown in the two upper panels of Figure
3. They are generated artificially using the method described in [3]. By way of comparison, the two
lower plots in Figure 3 are two moving-average smoothed timeseries selected from the eight used in
this study. The artificial series match the smoothed mood series for time scale and variance because
these hyperparameters are chosen accordingly. In forecasting, the training set is used to determine the
hyperparameter values, which are then used in the predictive equation.

Choice of Gaussian process covariance function: Table I shows the negative log likelihood from training
the first half of each of the eight time series used in the study. Three kinds of covariance function are
used, squared exponential (SQE), rational quadratic (RQU) and Mat́ern (MAT). For the first two covariance
functions and forMAT1, we use exact inference with a Gaussian likelihood function. For MAT2 we use a
sech2 likelihood with a Laplace approximation to the posterior. TheMAT3 method uses asech2 likelihood
with a leave out one inference.MAT4 uses a t-distribution likelihood with variational Bayes inference.
Further details of the inference methods can be found in [4].

The MAT3 method is distinguished by having the lowest negative log-likelihood, but otherwise there is
little to choose between the methods.

Table II shows the out of sample RMSE forecast error for the different covariance functions and
inference methods. Again theMAT3 method is distinguished from the others, but in this case because it is
markedly worse. There is a large error for the time series with index 1, which was found to be random. It
appears that the leave-out-one method for estimating parameters is overfitting in this case. There is little
to distinguish the other methods:MAT2 has the lowest mean out-of-sample error, but by a very small
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TABLE I
NEGATIVE LOG LIKELIHOOD FOR DIFFERENT COVARIANCE FUNCTIONS, LIKELIHOODS AND INFERENCE METHODS

SQE RQU MAT1 MAT2 MAT3 MAT4

Gauss Gauss Gauss sech
2

sech
2 t

Time series Exact Exact Exact Lpce LOO VB

1 121.0 121.0 121.0 116.9 118.2 116.9

2 122.0 122.4 122.3 122.0 119.9 124.3

3 129.6 129.0 129.5 130.8 122.6 130.4

4 156.2 156.4 156.4 156.9 152.6 181.1

5 95.3 95.6 95.4 96.5 86.5 100.4

6 107.4 107.9 107.8 110.7 98.0 109.7

7 111.6 111.9 112.2 113.1 108.0 112.7

8 122.0 120.9 120.4 120.9 98.8 121.8

Mean 120.6 120.6 120.6 120.975 113.0 124.7

TABLE II
OUT OF SAMPLE FORECAST ERROR(RMSE)FOR DIFFERENT COVARIANCE FUNCTIONS, LIKELIHOODS AND INFERENCE METHODS

SQE RQU MAT1 MAT2 MAT3 MAT4

Gauss Gauss Gauss sech
2

sech
2 t

Time series Exact Exact Exact Lpce LOO VB

1 2.70 2.70 2.70 2.70 4.32 2.67

2 1.91 1.89 1.87 1.83 1.86 1.82

3 3.52 3.64 3.58 3.68 3.67 3.99

4 5.09 5.08 5.06 4.88 4.90 5.11

5 2.48 2.38 2.35 2.17 3.46 2.21

6 2.42 2.46 2.41 2.45 2.39 2.39

7 2.69 2.70 2.71 2.65 2.85 2.65

8 1.56 1.73 1.60 1.60 1.82 1.59

Mean 2.80 2.82 2.79 2.75 3.16 2.80

margin. For the comparison with other forecast methods, therefore, we chooseMAT2, which uses a Matérn
covariance function with asech2 likelihood and parameter inference using a Laplace approximation to
the posterior.

Fig. 4. Gaussian process forecasting using a Matérn covariance function. The hyperparameters are trained on the first 50 data points to
give a length scalel = 2.5 and a process standard deviation ofσ = 3.3. The original time series, the third out of the eight used in the study,
is shown as the thicker line and the prediction as the thinnerline.
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Figure 4 illustrates the forecasting method using a single time series selected from the eight used in the
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study. The hyperparameters are trained on the first 50 pointsof the time series and next step predictions
made for the next 50 points. It is possible to retrain the hyperparameters using a longer training set as
the prediction point moves forward in time, but we find that this makes no difference to the prediction
accuracy.

III. D IEBOLD-MARIANO TEST

The Diebold-Mariano test [6] compares the predictive accuracy of two forecasting methods by examining
the forecast errors from each model. The null hypothesis of the test is that the expected values of the loss
functions are the same,

H0 : E[L(ǫ1)] = E[L(ǫ2)] (3)

whereǫ1 and ǫ2 are the forecast errors for each method. The Diebold-Mariano test statistic for one step
ahead predictions is

SDM =
d̄

√

var(d)
T

∼ N (0, 1) (4)

whered is L(ǫ1)−L(ǫ2) andT is the number of forecasts. Since the statistic is distributed normally, we
reject the null hypothesis (that the methods have equal predictive accuracy) for absolute values of above
1.96.

TABLE III
DIEBOLD-MARIANO TEST STATISTIC FOR OUT OF SAMPLE FORECAST RESULTS

Time series SES AR1 AR2 MAT2 LCP LLP

1 1.98 2.21 1.98 1.90 2.06 1.64

2 0.67 1.54 1.51 1.74 1.61 1.40

3 0.02 1.83 1.55 1.71 0.74 1.38

4 -1.84 -0.12 -0.29 0.48 -0.74 -0.03

5 1.83 2.05 2.02 1.78 1.84 1.91

6 0 0.64 0.84 0.87 -0.99 0.87

7 2.25 2.87 2.67 2.49 2.06 2.31

8 0 2.15 0.16 -0.57 -0.63 0.85

Table III shows the Diebold-Mariano test statistic for out of sample forecast results used in the paper
and applying an identity loss function. Forecast methods are compared individually with persistence as
the baseline forecast. It can be seen that simple exponential smoothing (SES) is not distinguished from the
baseline with the exception of patients 1 and 7. Patients 2,3,4 and 6 show no distinction from persistence
forecasts for any of the forecasting methods, including thenon-linear methods.
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