Title: The Arctic APP mutation leads to Alzheimer's disease pathology with highly variable topographic deposition of differentially truncated $A \beta$
Journal: Acta Neuropathologica Communications
Authors: Hannu Kalimo ${ }^{1}$, Maciej Lalowski, Nenad Bogdanovic, Ola Philipson, Thomas D. Bird , David Nochlin, Gerard D. Schellenberg, RoseMarie Brundin, Tommie Olofsson, Marc Baumann, Oliver Wirths, Thomas A. Bayer, Lars N.G. Nilsson, Hans Basun, Lars Lannfelt, Martin Ingelsson Corresponding author: ${ }^{1}$ Hannu Kalimo, Department of Pathology, University and University Hospital of Helsinki, Helsinki, Finland,
E-mail: hannu.kalimo @helsinki.fi

Suppl. Fig. 4 a-g: A β-plaques in Swe2 patient's claustrum show similar targetoid pattern as in neocortex (a-c consecutive sections). a: With abA β_{x-42} dark corona and pale centre. \mathbf{b} : With abA β_{x-} 40 fair staining of both centre and corona. \mathbf{c} : With $a b A \beta_{1-5}$ dark centre and pale corona. d: Middomain abA β_{17-24} stains strongly both centre and corona. e: Specific abA $\beta_{\text {arc. }}$. gives similar pattern as abA β_{17-24}, though with much lesser intensity. \mathbf{f} and \mathbf{g} : Plaques comprise of both $\mathrm{A} \beta_{3 \mathrm{pE}}$ and $\mathrm{A} \beta_{11 \mathrm{pE}}$, though less of the latter. $\mathbf{h}-\mathbf{k}$: Plaques in $\operatorname{Sw} 2$ patient's putamen are small and diffusely stained. The most intense stainings are seen with $a b A \beta_{x-42}, a b A \beta_{a r c}$ and $a b A \beta_{3 p E}(\mathbf{h}, \mathbf{j}$ and $\mathbf{k})$ suggesting an abundance of $\mathrm{A} \beta$ with pyroglutamate-modified N -termini, which is consistent with the virtually negative $a b A \beta_{1-5}$ staining (i). I: In Sw2 patient's amygdala plaques are similar as in putamen but more numerous. m: In Sw2 patient's thalamus the plaques are ragged and weakly stained. (bar in a $100 \mu \mathrm{~m}$ for $\mathbf{a - c}$; bar in d $100 \mu \mathrm{~m}$ for $\mathbf{d - g}$; bar in $\mathbf{h} 50 \mu \mathrm{~m}$ for $\mathbf{h}-\mathbf{l}$; bar in $\mathbf{~ m ~} 50 \mu \mathrm{~m}$)

