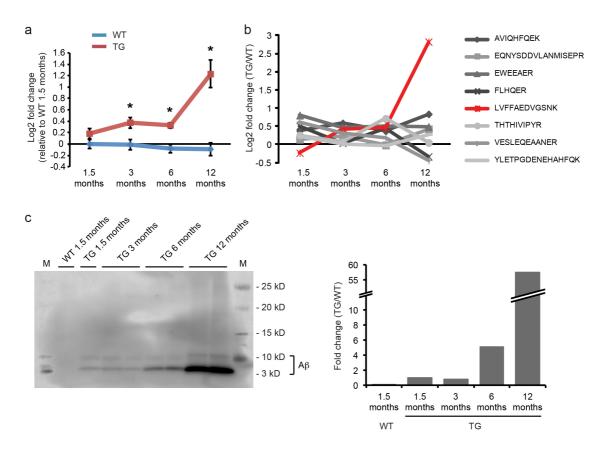
Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease


Marlene J. Végh^a, Céline M. Heldring^a, Willem Kamphuis^b, Sara Hijazi^a, Arie J. Timmerman^a, Ka Wan Li^a, Pim van Nierop^a, Huibert D. Mansvelder^a, Elly M. Hol^c, August B. Smit^a, Ronald E. van Kesteren^a

^aCenter for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.

^bNetherlands Institue for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.

^cDepartment of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.

Correspondence should be addressed to R.E. van Kesteren. E-mail: ronald.van.kesteren@vu.nl, phone: +31205987111, fax: +31205989281.

Suppl. Fig. 2 APP/A β levels at hippocampal synaptic sites are significantly increased in APP/PS1 mice. **a** Proteomics analysis revealed a significant increase in APP levels at hippocampal synaptic sites in APP/PS1 transgenic (TG) mice compared with wildtype (WT) controls at 3, 6 and 12 months of age; *n* = 5 mice per genotype (SAM analysis; mean ± SEM; *FDR < 10). **b** Increased levels of APP as detected by proteomics analysis are primarily due to an increase in the levels of the A β -specific peptide LVFFAEDVGSNK (indicated in red), in particular at 12 months of age. **c** The increase in synaptic A β levels is further confirmed by immunoblotting using the A β -specific antibody 6E10. An age-dependent accumulation of monomeric and low molecular weight oligomeric A β is observed, starting as early as 1.5 months of age