ADDITIONAL FILE 4

Neurodegeneration and contralateral α-synuclein induction after intracerebral α-synuclein injections in the anterior olfactory nucleus of a Parkinson's disease A53T mouse model

Alicia Flores-Cuadrado ${ }^{1}$, Daniel Saiz-Sanchez ${ }^{1}$, Alicia Mohedano-Moriano ${ }^{2}$, Alino MartinezMarcos ${ }^{1}$, Isabel Ubeda-Bañon ${ }^{1 *}$
${ }^{1}$ Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, University of Castilla-La Mancha, Ciudad Real, Spain.
${ }^{2}$ School of Occupational Therapy, Speech Therapy and Nursing, University of Castilla-La Mancha, Talavera de la Reina, Spain.

Alicia.flores@uclm.es
 Daniel.saiz@uclm.es

Alicia.mohedano@uclm.es
Alino.martinez@uclm.es

Address for correspondence:

Isabel Ubeda-Bañon
University of Castilla-La Mancha
Ciudad Real Medical School
Camino de Moledores s/n
13071 Ciudad Real (Spain)
Phone: 9262953006835
E-mail Isabel.ubeda@uclm.es

Stereological α-synuclein, NeuN, Iba-1, GFAP quantification

Table S8. Statistical data of stereological α-synuclein quantification.

Area	Group (TG mice)	Comparisons (cells/mm ${ }^{3}$)	t-test	P value
OB	Saline-injection	Left hemisphere \times Right hemisphere	$\mathrm{t}_{6}=6.948$	$\mathrm{P}=0.0004^{* * *}$
	α-syn-injection	Left hemisphere \times Right hemisphere	$\mathrm{t}_{4}=1.605$	$\mathrm{P}=0.1838$
	α-syn-injection x Salineinjection	Right hemisphere \times Right hemisphere	$\mathrm{t}_{5}=2.080$	$\mathrm{P}=0.0921$
	α-syn-injection x Salineinjection	Left hemisphere \times Left hemisphere	$\mathrm{t}_{5}=3.805$	$\mathrm{P}=0.0126^{*}$
AON	Saline-injection	Left hemisphere \times Right hemisphere	$\mathrm{t}_{6}=3.197$	$\mathrm{P}=0.0187 *$
	α-syn-injection	Left hemisphere \times Right hemisphere	$\mathrm{t}_{4}=1.315$	$\mathrm{P}=0.2588$
	α-syn-injection x Salineinjection	Right hemisphere \times Right hemisphere	$\mathrm{t}_{5}=2.310$	$\mathrm{P}=0.0689$
	α-syn-injection x Salineinjection	Left hemisphere \times Left hemisphere	$\mathrm{t}_{5}=2.104$	$\mathrm{P}=0.0893$
Pir	Saline-injection	Left hemisphere \times Right hemisphere	$\mathrm{t}_{6}=0.334$	$\mathrm{P}=0.7493$
	α-syn-injection	Left hemisphere \times Right hemisphere	$\mathrm{t}_{4}=0.115$	$\mathrm{P}=0.9136$
	α-syn-injection x Salineinjection	Right hemisphere \times Right hemisphere	$\mathrm{t}_{5}=2.225$	$\mathrm{P}=0.0767$
	α-syn-injection x Salineinjection	Left hemisphere \times Left hemisphere	$\mathrm{t}_{5}=2.514$	$\mathrm{P}=0.0536$

Table S9. Statistical data of NeuN quantification (Mann-Whitney test).

Area	Source of variation	P value
OB	WT-saline-RH x TG-saline-RH	$\mathrm{P}=0.0286$ *
	WT-saline-LH x TG-saline-LH	$\mathrm{P}=0.0286$ *
	WT- α-RH \times TG- α-RH	$\mathrm{P}=0.2286$
	WT- α-LH x TG- α-LH	$\mathrm{P}=0.1143$
	TG-saline-RH x TG- α-RH	$\mathrm{P}=0.0571$
	TG-saline-LH x TG- α-LH	$\mathrm{P}=0.0571$
	WT-saline-RH x WT- α-RH	$\mathrm{P}=0.4857$
	WT-saline-LH x WT- α-LH	$\mathrm{P}=0.1143$
AON	WT-saline-RH x TG-saline-RH	$\mathrm{P}=0.0286 *$
	WT-saline-LH x TG-saline-LH	$\mathrm{P}=0.0286^{*}$
	WT- α-RH x TG- α-RH	$\mathrm{P}=0.4000$
	WT- α-LH x TG- α-LH	$\mathrm{P}=0.0571$
	TG-saline-RH x TG- α-RH	$\mathrm{P}=0.0571$
	TG-saline-LH x TG- α-LH	$\mathrm{P}=0.0571$
	WT-saline-RH x WT- α-RH	$\mathrm{P}=0.4857$
	WT-saline-LH x WT- α-LH	$\mathrm{P}=0.8286$
Pir	WT-saline-RH x TG-saline-RH	$\mathrm{P}=0.0286$ *
	WT-saline-LH x TG-saline-LH	$\mathrm{P}=0.0286^{*}$
	WT- α-RH x TG- α-RH	$\mathrm{P}>0.9999$
	WT- α-LH x TG- α-LH	$\mathrm{P}=0.2286$
	TG-saline-RH x TG- α-RH	$\mathrm{P}=0.0571$
	TG-saline-LH x TG- α-LH	$\mathrm{P}=0.0571$
	WT-saline-RH x WT- α-RH	$\mathrm{P}=0.0286^{*}$
	WT-saline-LH x WT- α-LH	$\mathrm{P}>0.9999$

Table S10. Statistical data of stereological Iba-1 quantification. Comparison of genotype in the right hemisphere.

Area	Source of variation	$\mathrm{F}(\mathrm{DFn}, \mathrm{DFd})$	P value
GL	Interaction	$\mathrm{F}(1,11)=0.04697$	$\mathrm{P}=0.8324$
	Treatment	$\mathrm{F}(1,11)=1.256$	$\mathrm{P}=0.2863$
	Genotype	$\mathrm{F}(1,11)=0.3596$	$\mathrm{P}=0.5609$
MiL	Interaction	$\mathrm{F}(1,11)=0.06955$	$\mathrm{P}=0.7969$
	Treatment	$\mathrm{F}(1,11)=1.053$	$\mathrm{P}=0.3268$
	Genotype	$\mathrm{F}(1,11)=1.448$	$\mathrm{P}=0.2541$
IPL	Interaction	$\mathrm{F}(1,11)=4.943$	$\mathrm{P}=0.0481^{*}(\mathrm{t})$
	Treatment	$\mathrm{F}(1,11)=0.8695$	$\mathrm{P}=0.3711$
	Genotype	$\mathrm{F}(1,11)=4.519$	$\mathrm{P}=0.0570$
GrL	Interaction	$\mathrm{F}(1,11)=0.3797$	$\mathrm{P}=0.5503$
	Treatment	$\mathrm{F}(1,11)=1.604$	$\mathrm{P}=0.2315$
	Genotype	$\mathrm{F}(1,11)=0.02487$	$\mathrm{P}=0.8775$
AON	Interaction	$\mathrm{F}(1,11)=1.013$	$\mathrm{P}=0.3358$
	Treatment	$\mathrm{F}(1,11)=3.076$	$\mathrm{P}=0.1072$
	Genotype	$\mathrm{F}(1,11)=0.1085$	$\mathrm{P}=0.8486$
Pir	Interaction	$\mathrm{F}(1,11)=0.03820$	$\mathrm{P}=0.9107$
	Treatment	$\mathrm{F}(1,11)=0.01318$	$\mathrm{P}=0.2573$
	Genotype	$\mathrm{F}(1,11)=1.427$	$\mathrm{P}=0.5787$

(t) TG- α-right x TG-S-right: $\mathrm{t}_{5}=3.410 ; \mathrm{P}=0.0190$.

Table S11. Statistical data of stereological Iba-1 quantification. Comparison of genotype in the left hemisphere.

Area	Source of variation	F (DFn, DFd)	P value
GL	Interaction	$\mathrm{F}(1,11)=3.982$	$\mathrm{P}=0.0714$
	Treatment	$\mathrm{F}(1,11)=0.1076$	$\mathrm{P}=0.7490$
	Genotype	$\mathrm{F}(1,11)=0.05624$	$\mathrm{P}=0.8169$
EPL	Interaction	$\mathrm{F}(1,11)=0.1320$	$\mathrm{P}=0.7233$
	Treatment	$\mathrm{F}(1,11)=2.039$	$\mathrm{P}=0.1811$
	Genotype	$\mathrm{F}(1,11)=1.927$	$\mathrm{P}=0.1925$
MiL	Interaction	F (1, 11) = 3.576	$\mathrm{P}=0.0852$ (t1)
	Treatment	$\mathrm{F}(1,11)=1.189$	$\mathrm{P}=0.2989$
	Genotype	$\mathrm{F}(1,11)=0.7315$	$\mathrm{P}=0.4106$
IPL	Interaction	$\mathrm{F}(1,11)=4.346 \mathrm{e}-005$	$\mathrm{P}=0.9949$
	Treatment	$\mathrm{F}(1,11)=2.225$	$\mathrm{P}=0.1639$
	Genotype	$\mathrm{F}(1,11)=0.2819$	$\mathrm{P}=0.6060$
GrL	Interaction	$\mathrm{F}(1,11)=2.116$	$\mathrm{P}=0.1737$
	Treatment	$\mathrm{F}(1,11)=0.004102$	$\mathrm{P}=0.9501$
	Genotype	$\mathrm{F}(1,11)=0.3776$	$\mathrm{P}=0.5514$
AON	Interaction	$\mathrm{F}(1,11)=0.7252$	$\mathrm{P}=0.4126$
	Treatment	$\mathrm{F}(1,11)=0.2762$	$\mathrm{P}=0.6096$
	Genotype	$\mathrm{F}(1,11)=0.002602$	$\mathrm{P}=0.9602$
Pir	Interaction	$\mathrm{F}(1,11)=0.4845$	$\mathrm{P}=0.5008$
	Treatment	$\mathrm{F}(1,11)=0.6570$	$\mathrm{P}=0.4348$ (t2)
	Genotype	$\mathrm{F}(1,11)=0.05178$	$\mathrm{P}=0.8242$

(t1) TG- α-left \times TG-S-left: $\mathrm{t}_{5}=3.626 ; \mathrm{P}=0.0151$.
(t2) TG- α-left \times TG-S-left: $\mathrm{t}_{5}=2.620 ; \mathrm{P}=0.0471$.

Table S12. Statistical data of stereological Iba-1 quantification. Comparison of hemispheres in WT.

Area	Source of variation	F (DFn, DFd)	P value
GL	Interaction	F (3, 26) = 1.253	$\mathrm{P}=0.3108$
	Treatment \times Time	$\mathrm{F}(3,26)=52.42$	$\mathrm{P}<0.0001^{* * * *}$
	Hemisphere	$\mathrm{F}(1,26)=0.01173$	$\mathrm{P}=0.9146$
EPL	Interaction	$\mathrm{F}(3,26)=1.470$	$\mathrm{P}=0.2456$
	Treatment \times Time	$\mathrm{F}(3,26)=82.29$	$\mathrm{P}<0.0001^{* * * *}$
	Hemisphere	$\mathrm{F}(1,26)=0.2745$	$\mathrm{P}=0.6047$
MiL	Interaction	$\mathrm{F}(3,26)=0.1273$	$\mathrm{P}=0.9431$
	Treatment \times Time	$F(3,26)=39.19$	$\mathrm{P}<0.0001^{* * * *}$
	Hemisphere	$\mathrm{F}(1,26)=0.1012$	$\mathrm{P}=0.7530$
IPL	Interaction	$F(3,26)=0.1904$	$\mathrm{P}=0.9020$
	Treatment \times Time	$\mathrm{F}(3,26)=36.83$	$\mathrm{P}<0.0001^{* * * *}$
	Hemisphere	$\mathrm{F}(1,26)=0.05854$	$\mathrm{P}=0.8107$
GrL	Interaction	$\mathrm{F}(3,26)=1.304$	$\mathrm{P}=0.2944$
	Treatment \times Time	$\mathrm{F}(3,26)=149.7$	$\mathrm{P}<0.0001^{* * * *}$
	Hemisphere	$\mathrm{F}(1,26)=1.179$	$\mathrm{P}=0.2876$
AON	Interaction	F (3, 26) = 1.304	$\mathrm{P}=0.2944$
	Treatment \times Time	$\mathrm{F}(3,26)=149.7$	$\mathrm{P}<0.0001^{* * * *}$
	Hemisphere	F (1, 26) $=1.179$	$\mathrm{P}=0.2876$
Pir	Interaction	$\mathrm{F}(3,26)=0.06495$	$\mathrm{P}=0.9779$
	Treatment \times Time	F (3, 26) $=35.75$	$\mathrm{P}<0.0001^{* * * *}$
	Hemisphere	F (1, 26) $=0.001407$	$\mathrm{P}=0.9704$

Table S13. Statistical data of stereological Iba-1 quantification. Comparison of hemispheres in TG.

Area	Source of variation	F (DFn, DFd)	P value
GL	Interaction	$\mathrm{F}(1,10)=0.1615$	$\mathrm{P}=0.6962$
	Treatment	F (1, 10) = 2.842	$\mathrm{P}=0.1227$
	Hemisphere	$\mathrm{F}(1,10)=0.3787$	$\mathrm{P}=0.5520$
EPL	Interaction	$\mathrm{F}(1,10)=1.320$	$\mathrm{P}=0.2774$
	Treatment	$F(1,10)=0.006174$	$\mathrm{P}=0.9389$
	Hemisphere	$\mathrm{F}(1,10)=0.9160$	$\mathrm{P}=0.3611$
MiL	Interaction	$\mathrm{F}(1,10)=0.1243$	$\mathrm{P}=0.7318$
	Treatment	$\mathrm{F}(1,10)=24.35$	$\mathrm{P}=0.0006^{* * *}$
	Hemisphere	F (1, 10) = 3.098	$\mathrm{P}=0.1089$
IPL	Interaction	$\mathrm{F}(1,10)=0.08663$	$\mathrm{P}=0.7745$
	Treatment	$\mathrm{F}(1,10)=1.997$	$\mathrm{P}=0.1880$
	Hemisphere	$\mathrm{F}(1,10)=0.06282$	$\mathrm{P}=0.8072$
GrL	Interaction	$\mathrm{F}(1,10)=0.3451$	$\mathrm{P}=0.5699$
	Treatment	$\mathrm{F}(1,10)=3.261$	$\mathrm{P}=0.1011$
	Hemisphere	$\mathrm{F}(1,10)=0.001080$	$\mathrm{P}=0.9744$
AON	Interaction	$\mathrm{F}(1,10)=0.1234$	$\mathrm{P}=0.7326$
	Treatment	$F(1,10)=0.002316$	$\mathrm{P}=0.9626$
	Hemisphere	$\mathrm{F}(1,10)=0.2034$	$\mathrm{P}=0.6616$
Pir	Interaction	F (1, 10) = 7.081	$\mathrm{P}=0.0239 *$ (t)
	Treatment	$F(1,10)=0.007362$	$\mathrm{P}=0.9333$
	Hemisphere	$\mathrm{F}(1,10)=0.07785$	$\mathrm{P}=0.7859$

(t) TG- α-left \times TG-S-left: $\mathrm{t}_{5}=2.620 ; \mathrm{P}=0.0471$.

Table S14. Statistical data of GFAP quantification. Comparison of genotype in the right hemisphere.

Area	Source of variation	$\mathrm{F}(\mathrm{DFn}, \mathrm{DFd})$	P value
OB	Interaction	$\mathrm{F}(1,11)=0.2590$	$\mathrm{P}=0.6208$
	Treatment	$\mathrm{F}(1,11)=0.6954$	$\mathrm{P}=0.4221$
	Genotype	$\mathrm{F}(1,11)=32.13$	$\mathrm{P}=0.0001^{* * *}$
AON	Interaction	$\mathrm{F}(1,11)=1.121$	$\mathrm{P}=0.3123$
	Treatment	$\mathrm{F}(1,11)=3.740$	$\mathrm{P}=0.0793$
	Genotype	$\mathrm{F}(1,11)=11.73$	$\mathrm{P}=0.0057^{* *}(\mathrm{t})$
Pir	Interaction	$\mathrm{F}(1,11)=0.3859$	$\mathrm{P}=0.5621$
	Treatment	$\mathrm{F}(1,11)=0.3573$	$\mathrm{P}=0.1094$
	Genotype	$\mathrm{F}(1,11)=3.034$	

(t) WT saline $2 \mathrm{~m}-\mathrm{TG}$ saline 2 m : $\mathrm{t}_{6}=3.134$; $\mathrm{P}=0.0202$.

Table S15. Statistical data of GFAP quantification. Comparison of genotype in the left hemisphere.

Area	Source of variation	$\mathrm{F}(\mathrm{DFn}, \mathrm{DFd})$	P value
OB	Interaction	$\mathrm{F}(1,11)=0.9921$	$\mathrm{P}=0.3406$
	Treatment	$\mathrm{F}(1,11)=0.08698$	$\mathrm{P}=0.7735$
	Genotype	$\mathrm{F}(1,11)=22.10$	$\mathrm{P}=0.0006^{* * *}$
AON	Interaction	$\mathrm{F}(1,11)=0.8663$	$\mathrm{P}=0.3720$
	Treatment	$\mathrm{F}(1,11)=0.03401$	$\mathrm{P}=0.8570$
	Genotype	$\mathrm{F}(1,11)=30.14$	$\mathrm{P}=0.0002^{* * *}$
Pir	Interaction	$\mathrm{F}(1,11)=1.2814$	
	Treatment	$\mathrm{F}(1,11)=0.4568$	$\mathrm{P}=0.5131$
	Genotype	$\mathrm{F}(1,11)=1.287$	$\mathrm{P}=0.2807$

Table S16. Statistical data of GFAP quantification. Comparison of hemispheres in WT.

Area	Source of variation	$\mathrm{F}(\mathrm{DFn}, \mathrm{DFd})$	P value
OB	Interaction	$\mathrm{F}(3,26)=0.2841$	$\mathrm{P}=0.8364$
	Treatment	$\mathrm{F}(3,26)=4.233$	$\mathrm{P}=0.0146^{*}$
	Hemisphere	$\mathrm{F}(1,26)=1.315$	$\mathrm{P}=0.2619$
AON	Interaction	$\mathrm{F}(3,26)=0.05543$	$\mathrm{P}=0.9824$
	Treatment	$\mathrm{F}(3,26)=2.106$	$\mathrm{P}=0.1239$
	Hemisphere	$\mathrm{F}(1,26)=0.5590$	$\mathrm{P}=0.4614$
Pir	Interaction	$\mathrm{F}(3,26)=1.279$	$\mathrm{P}=0.3024$
	Treatment	$\mathrm{F}(3,26)=2.273$	$\mathrm{P}=0.1038$
	Hemisphere	$\mathrm{F}(1,26)=0.6240$	$\mathrm{P}=0.4367$

Table S17. Statistical data of GFAP quantification. Comparison of hemispheres in TG.

Area	Source of variation	$\mathrm{F}(\mathrm{DFn}, \mathrm{DFd})$	P value
OB	Interaction	$\mathrm{F}(1,10)=0.9984$	$\mathrm{P}=0.3413$
	Treatment	$\mathrm{F}(1,10)=0.009101$	$\mathrm{P}=0.9259$
	Hemisphere	$\mathrm{F}(1,10)=0.6813$	$\mathrm{P}=0.4284$
AON	Interaction	$\mathrm{F}(1,10)=3.763$	$\mathrm{P}=0.0811$
	Treatment	$\mathrm{F}(1,10)=2.085$	$\mathrm{P}=0.1793$
	Hemisphere	$\mathrm{F}(1,10)=0.55435$	
Pir	Interaction	$\mathrm{F}(1,10)=0.03984$	$\mathrm{P}=0.8458$
	Treatment	$\mathrm{F}(1,10)=1.002$	$\mathrm{P}=0.3405$
	Hemisphere	$\mathrm{F}(1,10)=0.05028$	

1.1 Supplementary Figures

Fig. S6 AON injection site labeled with different markers. α-synuclein (a-h), Iba-1 (i-p) and GFAP ($\mathbf{q}-\mathbf{x}$). Scale bars: a-d, i-l, q-t, $500 \mu \mathrm{~m}$; e-h, m-p, u-x $250 \mu \mathrm{~m}$. For abbreviations, see list.

Fig. S7 α-synucleinopathy in the caudate-putamen (a-l). Arrows indicate α-synuclein aggregates around striosomes (organization of afferent and efferent fibers in the striatum) (a-d). These aggregates were not found in saline-injected and α-synuclein-injected WT animals (e-l). Scale bars: $50 \mu \mathrm{~m}$.

Fig. S8 α-synucleinopathy in the substantia nigra (a-l). Arrows indicate α-synuclein aggregates, mainly in substantia nigra compact part (SNC) (a-d). These aggregates were not observed in salineinjected and α-synuclein-injected WT animals (e-l). Scale bars: $50 \mu \mathrm{~m}$.

