Supplementary Information for

Early neuronal accumulation of DNA double strand breaks in Alzheimer's disease

Niraj M. Shanbhag^{1,2†}, Mark D. Evans^{1†}, Wenjie Mao^{1†}, Alissa L. Nana^{2,3}, William W. Seeley^{2,3}, Anthony Adame⁴, Robert Rissman⁴, Eliezer Masliah^{4,5}, and Lennart Mucke^{1,2*}

 ¹Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
 ²Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
 ³Department of Pathology, University of California San Francisco, San Francisco, CA 94158, USA
 ⁴Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
 ⁵Present address: Division of Neuroscience, National Institute on Aging, Bethesda, MD 20892, USA

[†] These authors contributed equally to this study.

*Corresponding author email – lennart.mucke@gladstone.ucsf.edu tel – (415) 734-2504 fax – (415) 355-0131

This PDF file includes: Tables S1 – S3 Figures S1 – S9

Clinical Diagnosis	Age (years)	Gender	MMSE score	Braak stage	Duration (years)	PMI (hours)
Ctl	77	М	29	5	N/A	8.4
Ctl	76	М	29	2	N/A	8.2
MCI	77	М	28	2	ND	4.9
MCI	88	F	30	3	11	15.5
MCI	87	F	27	4	3	9.5
AD	69	F	27	6	9	12.9
AD	72	М	13	6	12	6.9
AD	63	М	7	6	6	17.8
AD	59	М	15	6	12	5.5
AD	65	F	18	6	11	10.9
AD	63	М	4	6	12	6
AD	80	М	23	6	9	6.5
AD	77	М	22	6	9	12.9
Ctl summary	77 ± 0.5	0% F	29 ± 0	3.5 ± 1.5	N/A	8.3 ± 0.1
MCI summary	84 ± 3.5	67% F	28.3 ± 0.9	3 ± 0.6	7 ± 4	10.0 ± 3.1
AD summary	69 ± 2.6	25% F	16.1 ± 2.8	6 ± 0	10 ± 0.8	9.9 ± 1.6

Table S1. Clinicopathological characteristics of human Cohort 1

AD, Alzheimer's disease; Ctl, control; MCl, mild cognitive impairment; MMSE, mini-mental state examination; N/A, not applicable; ND, not determined; PMI, *postmortem* interval. Summary data indicate means ± SEM, or percentage.

Clinical Diagnosis	Age (years)	Gender	Blessed score	MMSE score	Braak stage	Duration (years)	PMI (hours)
Ctl	83	F	0	29	1	N/A	12
Ctl	51	М	3	26	0	N/A	12
Ctl	77	F	0	29	0	N/A	12
Ctl	73	F	0	30	1	N/A	12
Ctl	102	F	2	27	1	N/A	9
Ctl	93	F	1	30	1	N/A	18
Ctl	95	F	0	30	1	N/A	6
Ctl	83	F	2	30	1	N/A	12
MCI	86	М	1	29	5	1	4
MCI	90	F	1	24	3	1	12
MCI	93	F	1	21	1	2	6
MCI	84	М	1	28	1	5	8
MCI	91	F	1	29	3	11	4
MCI	80	F	0	29	1	1	12
MCI	86	М	6	25	2	1	4
AD	88	М	32	6	5	10	5
AD	68	М	33	13	6	10	19
AD	79	М	24	11	6	12	10
AD	76	М	24	13	5	10	6
AD	89	F	30	27	5	9	18
AD	88	F	19	16	6	12	12
AD	81	М	26	15	6	13	8
AD	87	М	26	8	6	8	7
Ctl summary	82 ± 5.6	88% F	1 ± 0.4	28.9 ± 0.5	0.8 ± 0.2	N/A	12 ± 1
MCI summary	87 ± 1.6	57% F	1.6 ± 0.8	26.4 ± 1.2	2.3 ± 0.6	3.1 ± 1.4	7 ± 1
AD summary	82 ± 2.6	25% F	26.8 ± 1.7	13.6 ± 2.3	5.6 ± 0.2	10.5 ± 0.6	11 ± 2

 Table S2. Clinicopathological characteristics of human Cohort 2

AD, Alzheimer's disease; Ctl, control; MCI, mild cognitive impairment; MMSE, mini-mental state examination; N/A, not applicable; PMI, *postmortem* interval. Summary data indicate means ± SEM, or percentage.

Antibody target	Source	Cat. No.	Species/clonality	Application	Dilution	Figures
53BP1	Novus	NB100- 304	Rabbit/Polyclonal	IHC	1:10000	2, S4
53BP1	Novus	NB100- 304	Rabbit/Polyclonal	IHC	1:1000	S6, S8
53BP1	Abcam	ab87097	Rabbit/Polyclonal	IHC	1:1000	S7
Amyloid-β 82E1	IBL AMERICA	10323	Mouse/Monoclonal	IHC	1:500	S5
Biotin	Abcam	Ab53494	Rabbit/Polyclonal	DI-PLA	1:2000	6, 7d, S9
Calbindin	Abcam	AB82812	Mouse/Monoclonal	IHC	1:1000	S5
GFAP	Millipore	IF03L	Mouse/Monoclonal	IHC	1:500	1, 2, S4
γΗ2ΑΧ	Millipore	MABE205	Rabbit/Monoclonal	IHC	1:100	1, S2b, S4
γΗ2ΑΧ	Millipore	MABE205	Rabbit/Monoclonal	ICC	1:1000	4c, 5c
γΗ2ΑΧ	Abcam	ab26350	Mouse/Monoclonal	IHC	1:1000	3, 4a, 7b, 7c, S1, S2a, S3, S6, S8
γΗ2ΑΧ	Abcam	ab26350	Mouse/Monoclonal	DI-PLA	1:4000	6, 7d, S9
NeuN	Millipore	MAB377	Mouse/Monoclonal	IHC	1:2000	1, 2, S2b, S4
NeuN	Abcam	ab104224	Mouse/Monoclonal	IHC	1:1000- 1:2000	3, 4a, 5c, 6, 7, S1, S2a, S3, S6, S9
NeuN	Abcam	ab104224	Mouse/Monoclonal	ICC	1:2000	4c
Parvalbumin	Swant	PV27	Rabbit/Polyclonal	IHC	1:3000	3
Phospho- Tau PHF1	Dr. Peter Davis	N/A	Mouse/Monoclonal	IHC	1:2000	S5

Table S3. A	Antibodies	used in	this	study
-------------	------------	---------	------	-------

DI-PLA, DNA damage *in situ* ligation followed by proximity ligation assay; ICC, immunocytochemistry; IHC, immunohistochemistry; N/A, not applicable

Figure S1 Neuronal γ H2AX labeling in frontal cortex of humans with or without MCI or AD. **a** Representative confocal microscopic images of *postmortem* frontal cortex sections from a cognitively unimpaired control (CtI) and a case with AD of Cohort 1. Samples were immunostained for γ H2AX (green) and the neuronal marker NeuN (red). Nuclei were stained with TO-PRO-3 (blue). Scale bar: 10 µm. **b** Proportion (%) of neurons with at least one γ H2AX focus in the frontal cortex of cognitively unimpaired controls (CtI, n = 2) and cases with MCI (n = 3) or AD (n = 8) from Cohort 1. Bars indicate mean ± SEM and dots individual cases.

Figure S2 Neuronal γ H2AX labeling in frontal cortex of humans with or without MCI or AD. **a** Number of γ H2AX foci per neuron in the frontal cortex in cognitively unimpaired controls (CtI) and cases with MCI or AD of Cohort 1 (n = 2 CtI, 3 MCI, 8 AD). **b** Number of γ H2AX foci per neuron in the frontal cortex in cases of Cohort 2 (n = 8 CtI, 7 MCI, 8 AD). ***p < 0.001, ****p < 0.0001 vs. CtI by one-way ANOVA and Holm-Sidak test. Bars indicate mean ± SEM and dots individual cases.

Figure S3 Non-neuronal pan-nuclear H2AX phosphorylation in AD. Representative confocal microscopic images of frontal cortex sections from an AD case of Cohort 1. *Left*: γ H2AX alone. *Right*: Merge of γ H2AX (red) and NeuN co-labeling (gray). White arrows indicate γ H2AX foci suggestive of DSBs in neurons. Green arrows indicate pan-nuclear γ H2AX labeling in non-neuronal cells. Scale bar: 10 µm.

Figure S4 Neuronal and astroglial γ H2AX and 53BP1 labeling in the hippocampal CA1 region of cases with MCI or AD. **a**, **b** Proportion (%) of neurons (**a**) and astrocytes (**b**) with one or more γ H2AX foci in cognitively unimpaired controls (Ctl) and cases with MCI or AD. **c**, **d** Proportion (%) of 53BP1-labeled neurons (**c**) and astrocytes (**d**) in the same cases. n = 8 Ctl, 7 MCI and 8 AD cases from Cohort 2. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001 vs. Ctl by one-way ANOVA and Holm-Sidak test. Bars represent means ± SEM.

Figure S5 Neuropathological alterations in human Cohort 2. Sections of the frontal cortex were immunoperoxidase-stained for A β (4G8; top), phosphorylated tau (PHF-1; middle), or calbindin (bottom). **a** Representative light microscopic images. Scale bars: 20 µm (top and middle), 100 µm (bottom). **b** Quantitations of A β deposits, PHF-1-positive inclusions, and relative densities of calbindin immunoreactivity. n = 8 cognitively unimpaired controls (Ctl), 7 MCI and 8 AD cases. **p < 0.01, ****p < 0.001, ****p < 0.0001 vs. Ctl by Kruskall-Wallis and Holm-Sidak test. ns, not significant. Bars represent means ± SEM.

Figure S6 Ionizing radiation causes focal accumulation of γ H2AX and 53BP1 in neuronal nuclei of mice. Representative confocal microscopic images of somatosensory cortex sections immunostained for NeuN (gray), γ H2AX (red) and 53BP1 (green) from mice that were not irradiated (top) or exposed to whole-body ionizing radiation (4 Gy) 1 h before analysis (bottom). Scale bar: 10 μ m.

Figure S7 Increased hippocampal 53BP1 staining in humans with MCI or AD. Sections from the indicated cases (Cohort 2) and brain regions were immunoperoxidase-stained for 53BP1 and imaged by light microscopy. Preadsorption of the antibody with a peptide corresponding to the 53BP1 immunogen eliminated most of the staining (bottom). The preadsorption control was performed on tissues from an AD case. Scale bar: $30 \,\mu\text{m}$.

Figure S8 Increasing the *postmortem* interval (PMI) to 9 h does not change 53BP1 or γ H2AX labeling of irradiation-induced DSBs in mouse brains. Representative confocal images of somatosensory cortex from 4–6-month-old mice that were not irradiated (top) or exposed to whole-body ionizing radiation (4 Gy) 30 min before sacrifice (other rows). Brains were fixed immediately (PMI: 0 h) or left at room temperature for 2 h and then for 3 or 7 h at 4° C for total PMIs of 5 and 9 h, respectively. All brains were drop-fixed in 10% neutral buffered formalin for 48 h and processed for 53BP1 (green) and γ H2AX (red) immunostaining. Scale bar: 10 µm.

Figure S9 *Postmortem* delays in tissue processing and *postmortem* irradiation do not cause DI-PLA signals in mouse brains. **a** Schematic of experimental design. Mice were or were not exposed to whole-body ionizing radiation (4 Gy) 15 min before they were sacrificed. Brain tissues were processed for DI-PLA immediately after mice were killed or after mice were left for 2 h at room temperature and then for 2 h at 4° C for a total PMI of 4 h. **b** Representative confocal images of dentate gyrus sections. DI-PLA signals (top) and merged view with NeuN co-labeling (bottom) are shown. Scale bar: 10 µm. **c** Number of DI-PLA foci per 100 µm² neuronal area in the apex of the dentate gyrus. n = 7–8 mice per group. ***p < 0.001 vs leftmost bar by Kruskal-Wallis and Holm-Si-dak tests. Bars represent means ± SEM.