N368-Tau fragments generated by legumain asparagine endopeptidase are detected only in trace amount in the insoluble Tau aggregates isolated from AD brain.

Kerstin Schlegel¹*, Khader Awwad²*, Roland Heym¹*, David Holzinger¹, Annika Doell³, Stefan Barghorn¹, Thomas Jahn¹, Corinna Klein¹, Yulia Mordashova⁴, Michael Schulz² and Laura Gasparini¹

¹AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, ²AbbVie Deutschland GmbH & Co. KG, Drug Metabolism and Pharmacokinetics; ³AbbVie Deutschland GmbH & Co. KG, NBE Analytical, ⁴AbbVie Deutschland GmbH & Co. KG, Discovery and Exploratory Statistics (DIVES), Knollstrasse, 67061 Ludwigshafen, Germany.

*Equal contribution

Supplemental Material

Supplemental Method Table S1 Table S2 Figure S1 Figure S2 Figure S3 Figure S4 Figure S5 Figure S6

Supplemental Method

Tau ELISA in sarkosyl extracts of human brain tissue

Tau in human brain sarkosyl extracts was quantified with an ELISA using Tau-12 (BioLegend, # 806502) as capture antibody and Biotin-HT7 (Thermo Scientific # MN1000B) as detection antibody. 2N/4R Tau (Sigma-Aldrich, #T0576) was used as calibrator. For plate coating with the capture antibody, 100µl/well of 2 µg/ml Tau-12 in PBS with 20% Glycerol was adsorbed to Maxisorp NUNC-Immuno Plates (Thermo Scientific, #442404) overnight at 4°C. All following steps were performed at room temperature. The wells were blocked with 2% BSA in PBST and 20% Glycerol for 2h. Calibrators (15.6-1000 pg/ml) and samples were diluted in PBST with 0.1% BSA and applied in duplicates. Plates were incubated for 2 h. After rinsing in PBST, 0.2 µg/ml Biotin-HT7 was added and incubated for 1h. 0.05 µg/ml Streptavidin Poly-HRP (Thermo Scientific, # 21140) in 0.1% BSA in PBST was subsequently added for 1 h, followed by 100 µl/well of TMB substrate (KEM-EN-TEC Diagnostics, #4800A) for 10 min. The reaction was stopped by addition of 100 µl 0.18 M sulphuric acid and the absorbance was measured at 450 nm in a Ledetect 96 plate reader (Anthos Mikrosysteme GmbH).

Table S1 – Spike-in validation experiment for the quantification of Tau 354-369 in the PS1 and P3 sarkosyl-insoluble brain fractions.

Fraction	Spike	Mean	Standard deviation	Coefficient of	Precision
	Amount	(ng/mL)	(ng/mL)	Variation (%)	(%)
	(ng/mL)				
PS1	0	0	9	7	
PS1	245	245*	30	12	87
PS1	1000	830*	47	6	87
PS1	7500	6441*	205	3	83
P3	0	0	349	2	
Р3	245	218*	19	9	86
P3	1000	899*	48	5	92
P3	7500	5964*	86	1	79

Indicated levels of recombinant human Tau (2N4R) were spiked to pools of PS1 or P3 fractions from Tg4510 brains and analyzed by mass spectrometry as described in the Material and Method section. *Baseline corrected levels, Tau354-369 level in PS1 Tau levels were 135 ng/mL and in P3 17413 ng/mL of Tg4510 mice.

Table S2 – Statistical appendix

Figure [§]	Normality	Transformation	Homogeinity of variances	Stats method used	
ЗВ	Yes (after transformation) Shapiro-Wilk p=0.4441, p=0.6431, p=0.0835	Log- transformation	Yes (Levene's p=0.1686)	One-way ANOVA followed by Tukey's HSD test	
3С	No (non-param test used)	No	Yes (Levene's p=0.1041)	Wilcoxon each pair test	
4A	Yes (after transformation)	Box-Cox transformation	No (Levene's p=0.0090)	Welch's test	
4B	No (non-param test used)	No	No (Levene's p=0.0144)	Kruskall-Walis test	
5A	Yes (after transformation) Shapiro-Wilk's p=0.1798; p=0.7779	Log transformation	Yes (Levene's p=0.4218)	Two-samples t-test	
	Paired differences (after transformation) are normally distributed Shapiro-Wilk's p=0.1222	Power transformation		Paired t-test	
5B	Yes, Shapiro-Wilk's p=0.1238, p=0.2455	No	Yes (Levene's p=0.1067)	Two-samples t-test	
	Paired differences are normally distributed, Shapiro-Wilk's p=0.7974	No		Paired t-test	
5C	Yes (after transformation), Shapiro-Wilk's p=0.2800, p=0.6940	Log transformation	No (Levene's p<0.0001)	Welch's test (unequal variances)	
	Paired differences(after transformation) are normally distributed, Shapiro-Wilk's p=0.9132	Log transformation		Paired t-test	
5D	Yes (after transformation), Shapiro-Wilk's p=0.0.7612, p=0.2735	Log transformation	No (Levene's p=0.0026)	Welch's test (unequal variances)	
	Paired differences (after transformation) are normally distributed, Shapiro-Wilk's p=0.6136	Log transformation		Paired t-test	
5E	Yes (after transformation), Shapiro Wilk's test p=0.1076, p=0.3488	Power transformation	Yes (Levene's p=0.3336)	Two-samples t-test	
	Paired differences are normally distributed, Shapiro-Wilk's p=0.7245	No		Paired t-test	

5F	Yes (after transformation), Shapiro-Wilk's p=0.0545, p=0.5219	Log transformation	No (Levene's p<0.0001)	Welch's test (unequal variances)
	Paired differences are normally distributed, Shapiro-Wilk's p=0.4243	No		Paired t-test
6A	Yes (after transformation) Shapiro-Wilk's p=0.0851; p=0.6540	Log transformation	Yes (Levene's p=0.8302)	Two-samples t-test
	Paired differences (after transformation) are normally distributed, Shapiro-Wilk's p=0.2981	Log transformation		Paired t-test
6B	Yes, Shapiro-Wilk's p=0.9187, p=0.1407	No	Yes (Levene's p=0.7206)	Two-samples t-test
	Paired differences are normally distributed, Shapiro-Wilk's p=0.8878	Log transformation		Paired t-test
6C	Yes (after transformation), Shapiro-Wilk's p=0.3692, p=0.2113	Log transformation	Yes (Levene's p=0.6883)	Two-samples t-test
	Paired differences(after transformation) are normally distributed, Shapiro-Wilk's p=0.3847	No		Paired t-test
6D	No, Shapiro-Wilk's p=0.0325, p=0.0191	No	Yes (Levene's p=0.8307)	Wilcoxon's test (non- param)
	Paired differences are normally distributed, Shapiro-Wilk's p=0.8201	No		Paired t-test
6E	Yes (after transformation), Shapiro Wilk's test p=0.4601, p=0.2485	Power transformation	Yes (Levene's p=0.2081)	Two-samples t-test
	Paired differences (after transformation) are normally distributed, Shapiro-Wilk's p=0.2668	Log transformation		Paired t-test
6F	Yes (after transformation), Shapiro-Wilk's p=0.7944, p=0.1820	Log transformation	Yes(Levene's p=0.1871)	Two-samples t-test
	Paired differences (after transformation) are normally distributed, Shapiro-Wilk's p=0.4876	Log transformation		Paired t-test
<u>7B</u>	<u>Yes, Shapiro Wilk's p=</u> 0.5263, p=0.5855	No	<u>Yes (Levene's p=0.8979)</u>	Two-samples t-test
Suppl.3 A	Yes	No	Yes (Levene's p=0.1683)	Two sample t-test
Suppl. 4A	Yes (Shapiro-Wilk's test p=0.1455, p=0.5526, p=0.7471)	No	Yes (Levene's p=0.9693)	One-way ANOVA followed by Dunnett's test

Suppl.	Yes (Shapiro-Wilk's test	Log	Yes (Levene's	One-way ANOVA followed
4B	p=0.2851, p=0.2938,	transformation	p=0.0849)	by Dunnett's test
	p=0.9376)			
Suppl.	Yes (Shapiro-Wilk's test	Power	Yes (Levene's	One-way ANOVA followed
4C	p=0.3647, p=0.8023,	transformation	p=0.1095)	by Dunnett's test
	p=0.7516)			
Suppl.	No (non-param test used)	No	No	Steel test
4D				

[§]All graphs are data *scatterplot with mean ±SD*

SARKOSYL EXTRACTION

Figure S1 – Scheme of the sarkosyl extraction method.

Figure S2 – A. Coomassie stained gels of Tau fragments after enzymatic digestion with LGMN in vitro. Tau and LGMN were incubated in vitro at different molar ratios and the cleaved fragments were resolved by SDS-PAGE (the same gel is shown in Figure 1A). Bands B1 and B4 were confirmed by LC-MS/MS to contain Tau fragments containing amino acids x-N368 (Figure 1A). **B**. Western blot of cleaved Tau as detected by the anti N368-cleaved Tau antibody (Millipore, ABN1703). B1 and B4 bands are recognized by the N368-cleaved Tau antibody.

Figure S3 – The abundance of N368-cleaved Tau is reduced in <u>total homogenate of</u> cortex of 5 monthold rTg4510 mice. <u>The quantification of Tau in the total mouse brain homogenate was performed by</u> <u>LC-MS/MS as depicted in Figure 3A.</u> **A.** Percentage of cleaved-Tau over uncleaved Tau in total homogenate of rTg4510 cortex at 2 and 5 months of age (p=0.0007) as determined by targeted LC-MS/MS. In the graph, data points, mean and standard deviation are shown. **p<0.01. **B.** Insoluble Tau inclusions in the cortex of rTg4510 transgenic mice at 2 and 5 months of age. Tau inclusions are immunostained using AT100 antibody. Images in insets represent respective whole brain sagittal section and squared areas represent regions shown in the main panel at higher magnification. Scale bars: 100 μm in main panels; 1 mm in insets.

Figure S4 – Total Tau levels are increased in the insoluble fraction of AD hippocampus. Total Tau levels were measured by Tau12/HT7 ELISA in the sarkosyl-soluble SS1 (**A**) and S3 (**B**) fractions and in the sarkosyl-insoluble PS1 (**C**) and P3 (**D**) extracts of human brain samples. Levels of Tau are lower in the soluble SS1 and S3 extracts of human AD than control hippocampus (p=0.006 for SS1 and p=0.036 for S3). Tau is similar in AD hippocampus and cerebellum (p=0.937 for SS1 and p=0.758 for S3). In the insoluble PS1 and P3 extracts, Tau levels are significantly higher in AD hippocampus than control hippocampus (p<0.0001 for PS1 and p=0.002 for P3) and AD cerebellum (p<0.0001 for PS1 and p=0.002 for P3). In all graphs, data points, mean and standard deviation are shown. AD hippocampus, n=11; AD cerebellum, n=6; Control hippocampus, n=10. Hp, hippocampus; Cb, cerebellum. *p<0.01; **p<0.01

Figure S5 – Total Tau levels measured by ELISA correlates with levels of uncleaved Tau determined by LC-MS/MS. Correlations are shown for measurements in the sarkosyl-soluble SS1 (A) and S3 (B) fractions and in the sarkosyl-insoluble PS1 (C) and P3 (D) extracts of human brain samples. Symbol colors represent AD hippocampus, red; Control hippocampus, blue; AD cerebellum, black.

Figure S6: Fragment spectra of the experiment shown in Figure 1

Band B1* - N368/K369

Band 2 - N255/V256

Band 2 - N255/V256, Oxidized Methionine

Band B3 - N167/A168 Deaminated Asparagine

Band B3 - N167/A168

Band B4 - N368/K369

Band B5 – N167/1A68

Band B5 - N255/V256, Oxidized Methionine

Band B6 – N296/I297

Band B1*

