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Supplementary Text 1: Abbreviations 
 
1. Structural metrics 
 

Abbreviation Full Spelling 
vol Cortical volume 
area Surface area 
thick Cortical thickness 
curv Mean curvature 
lgi Local gyrification index 
sulc Sulcal depth 
  

 
2. Functional metrics 

 
Abbreviation Full Spelling 
alff Amplitude of low frequency fluctuation 
falff Fractional amplitude of low frequency fluctuation 
dc Degree centrality 
ec Eigenvector centrality 
reho Regional homogeneity 
reho2 Regional homogeneity with extended scope 
  

 
3. Datasets and scan parameters 
 

Abbreviation Full Spelling 
FCP 1000 Functional Connectomes Project 
INDI International Neuroimaging Data-Sharing Initiative 
FCP-Cambridge Cambridge-Buckner site in FCP 
CoRR Consortium for Reliability and Reproducibility 
CoRR-SWU Southwest University (China) site in CoRR 
MP-RAGE 3D Magnetization Prepared Rapid Gradient Echo 
rfMRI resting-state functional MRI 
EPI echo-planar imaging 
FOV field of view 
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4. General data processing terms 
 

Abbreviation Full Spelling 
CCS Connectome Computation System 
ICA Independent Component Analysis 
CSF cerebrospinal fluid 
GM gray matter 
WM white matter 
FWHM full width half magnitude 
BBR boundary-based registration 
maxTran the maximum distance of translational movement 
maxRot the maximum degree of rotational movement 
meanFD the mean frame-wise displacement 
mcBBR the minimal cost of the BBR co-registration 
  

 
5. gRAICAR related terms 

 
Abbreviation Full Spelling 
gRAICAR Generalized Ranking and Averaging Independent 

Component Analysis 
SCM Surface Component Map 
FSM Full Similarity Matrix 
MMCU Multi-Metric Covariance Unit 
ICC Intra-class Correlation Coefficient 
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Supplementary Text 2: Details of Functional Metrics 

In this study, we employed six metrics to characterize functional networks (for 
more details of their definitions, see our recent review in functional 
connectomics from Zuo and Xing, 2014). All of these metrics are defined on 
each vertex of the cortical surface. The alff and falff reflect local fluctuations on 
each vertex, the dc and ec reveals the role of each vertex in the entire 
functional network, and the reho and reho2 metrics describe local functional 
coherence of the network. Details on definitions, computations, and biological 
meanings for these metrics are summarized below: 

1. ALFF 

Amplitude of low-frequency fluctuations (ALFF) characterizes the amplitude of 
fluctuations of voxel-wise low-frequency signal in resting-state fMRI (rfMRI) 
time series (Zang et al., 2007). It indicates the strength or intensity of the 
low-frequency fluctuations by summing up the total root squared power within 
the frequency range between 0.01 and 0.1Hz. This metric is test-retest reliable 
(Zuo et al., 2010) and has been assigned with the biological meaning of the 
moment-to-moment variability of human brain function (Garrett et al., 2013, 
2010) as well as the associations with task-induced brain activity and 
behavioral performance (Mennes et al., 2011; Zou et al., 2013). 

In the current study, the ALFF maps were computed on cortical surface 
vertex-wise. First, the individual preprocessed 4D rfMRI time series were 
projected onto the fsaverage standard cortical surface with 163,842 vertices 
per hemisphere. The average distance between neighbor vertices was 1 mm. 
The data were then down-sampled onto the fsaverage5 standard cortical 
surface (average distance between neighbor vertices: 3.8 mm), which 
contained 10,242 vertices per hemisphere (Yeo et al. 2011). Fast Fourier 
transform were performed on the time times for each vertex, and ALFF metrics 
were then computed by averaging the square root of the power spectrum at 
frequencies between 0.01-0.1Hz for all vertices. 

2. fALFF 

Fractional ALFF (fALFF) is a normalized version of ALFF, where ALFF 
measured within the low-frequency range (0.01-0.1Hz) is divided by the total 
power in the entire detectable frequency range (Zou et al., 2008). It reveals the 
relative contribution of low frequency fluctuations against the entire rfMRI time 
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series. As demonstrated by Zuo et al. (2010), fALFF is less affected by 
physiological noise when compared to ALFF. In the present study, the 
computation of fALFF was also based on vertex-wise time series. Following 
the procedures described in the ALFF section, we divided vertex-wise ALFF 
within 0.01-0.1Hz range by the ALFF derived from the whole frequency range 
to generate fALFF maps. 

3. DC 

The degree centrality (DC) is a graph-theoretic metric. The brain network is 
modeled as a weighted graph, where each vertex is a node and the functional 
coherence between pairs of vertices is defined as edge. Given a node, its DC 
is defined as the sum of weights from edges connecting to the node (also 
referred to as nodal strength). In our analysis, we used Pearson’s Correlation 
to measure the functional coherence between time series from pairs of 
different vertices: 

 
where i denotes the current vertex, and j indices all vertices besides i, and rij 
represents Pearson’s correlation coefficient between time series on vertices i 
and j. The DC surface maps thus indicate the strength of full pictures of 
connections vertex-wise. This metric has been widely used to examine local 
property of brain networks (Fransson et al. 2011; Zuo et al., 2012). 

4. EC 

The eigenvector centrality (EC) is another graph-theoretical metric for brain 
networks proposed by Bonacich (1972). It is defined as the first eigenvector of 
the adjacency matrix: 

 

where λ1 represents the first eigenvalue of the adjacency matrix, and rij 
indicates the Pearson’s correlation coefficient between vertices i and j. This 
metric does not only depend on the strength of connection on the current node, 
but also influenced by the EC of the nodes connecting to the current node. 
This recursive nature allows taking the global features of the graph into 
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consideration in the local property. It metric has been increasingly used to 
characterize brain networks (Fagerholm et al., 2015; Wheeler et al., 2015). 
Same as the above metric, this metric was computed on cortical surface, 
where each node was defined as a vertex. 

5. ReHo 

The regional homogeneity (ReHo) is used to characterize local functional 
homogeneity that indicates boundaries between functional heterogeneous 
regions (Zang et al., 2004). The homogeneity of cell number/type and neuron 
density most likely contributes to functional homogeneity within a small region 
(Lichtman and Denk, 2011); thus, this regional variation in micro-level 
homogeneity could also contribute to the regional variation in local functional 
homogeneity (Jiang et al., 2015). The ReHo metric was initially computed in 
whole-brain 3D volume space by calculating Kendall’s coefficients of 
concordance between time series on neighbor voxels of a center voxel. 

In this study, we computed surface-based reho (Zuo et al., 2013), where for 
each vertex, the time series of its nearest 6 neighbors (directly connected in 
topology, length-one neighbors) were used to compute the Kendall’s 
coefficient of concordance: 

 

where  represents the ranks of the value in time series vi(t), n is the number 

of time points, is the mean rank across its neighbors at the ith time point, 

and  is the overall mean rank across all neighbors and across all time points. 

This computation is repeated for every vertex that has BOLD time series to 
produce a vertex-wise local functional homogeneity surface map. The reho 
computation is intrinsically a type of spatial and temporal smoothing operation 
on the cortical surface that is helpful for suppressing the time series noise and 
for mitigating the inter-individual spatial normalization issue. 

6. ReHo2 

The meaning of ReHo2 is similar to ReHo. The only difference in ReHo2 is that 
the Kendall’s coefficients of concordance were computed using 19 neighbor 
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vertices of the central vertex, which further included the second layer of 
neighbor vertices (length-two neighbors) that directly connect to the first layer 
of 6 neighbor vertices used in ReHo metric above. This metric extends the 
scope in measuring local functional homogeneity and is more comparable to 
the classic volume-based ReHo that uses 26 neighbor voxels. 
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Supplementary Text 3: Details of Structural Metrics 

We used six structural (morphological) metrics in this study, which were all 
computed by FreeSurfer. These metrics are well established, widely used, and 
easily computed with standard software. Here we list the definitions of these 
metrics. These definitions are from Rettmann et al. (2006) and the FreeSurfer 
Wiki: 

1. AREA 

The area metric on each vertex indicates the average area of all the triangles 
the vertex is associated with. A larger value of this metric suggests that the 
current vertex represents (occupies) relatively larger area on the cortex. 

2. THICK 

The thickness (THICK) metric reflects the distance between the grey-white 
matter boundary mesh and the pial mesh corresponding to the given vertex. 
Computationally, at each vertex, the nearest point on each surface to the other 
(grey-white matter boundary mesh and pial mesh) is identified, and the THICK 
metric is the average distance between the nearest points. 

3. VOL 

The volume (VOL) metric is the product of THICK and AREA metrics on the 
given vertex. 

4. CURV 

The mean curvature (CURV) metric on each vertex is defined as the mean of 
the maximum and minimum principle curvatures observed around the given 
vertex. A positive value of the CURV metric indicates the surface is bending 
outward, and a negative CURV indicates an inward bending. 

5. LGI 

The local gyrification index (LGI) is used to quantify the amount of cortex 
buried within the sulcal folds as compared with the amount of cortex on the 
outer visible cortex. A cortex with extensive folding has a large gyrification 
index, whereas a cortex with limited folding has a small gyrification index. LGI 
is computed by dividing the area of the pial surface by the area of the outer 
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smoothed surface corresponding to the same vertex. 

6. SULC 

The sulcal depth (SULC) metric on each vertex is defined as the length of the 
shortest path, along the surface, from the given vertex to the outer smooth 
surface of the cortex. 
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Supplementary Table 

 

Table S1. Number of independent components for 12 structural and functional metrics 

 

Structural Metrics  Functional Metrics 
vol area curv thick sulc lgi  alff dc ec reho reho2 falff 

67 65 26 12 99 88  85 80 11 41 27 27 
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Supplementary Figures 

 

	  
	  
Figure S1. Demonstration of gRAICAR algorithm used to propose multi-metric 
co-variance units (MMCUs). Here we use surface component maps (SCMs) from 
three different metrics, vol, alff, and dc as example to demonstrate the workflow. 
Assuming there are three SCMs obtained in each metric, as indicated by "IC1", "IC2", 
and "IC3". (A) gRAICAR first constructed a full similarity matrix (FSM) containing 
pair-wise similarity between all the SCMs from the 3 metrics. The similarity between 
the SCMs is defined as the Pearson’s correlation coefficients between their subject 
courses. The FSM is segmented into metric-blocks by purple lines, so that the FSMs 
from the same metric stayed together and the similarity values between them were 
represented in a block within the FSM. (B) The similarity values are then converted 
into relative values (Zrow) within each row in each metric-block. (C) The maximal 
value in each row of each metric-block in Zrow is then retained in a new matrix (Zmax), 
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and all other values are set to 0. Each row in the Zmax matrix thus reveals the most 
similar SCMs from different metrics to the SCM represented in current row. (D) The 
Zmax matrix is multiplied to its transform (multiply elements in corresponding 
locations). This operation eliminates unpaired inter-metric maximal similarities. In the 
resultant matrix, the sum of each row yields the “popularity” value for each SCM, 
representing a special form of centrality that takes specificity and mutual 
correspondence of SCMs into account. (E) A standardized FSM is formed by adding 
the Zrow matrix to its transpose, so that the similarity between a pair of SCMs from 
different metrics was standardized among all SCMs from the relevant metrics. (F) 
Starting from the top SCM in the popularity rank, 3 SCMs from different metrics were 
identified in the standardized FSM, by searching for maxima in metric-blocks on the 
top SCM’s row. The blue texts depict where the SCMs are identified in the 
standardized FSM. 
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Figure S2. MMCU1, ICC = 0.89, CC = 0.93 
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Figure S3. MMCU2, ICC = 0.81, CC = 0.90 
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Figure S4. MMCU3, ICC = 0.87, CC = 0.89 
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Figure S5. MMCU4, ICC = 0.82, CC = 0.87 
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Figure S6. MMCU5, ICC = 0.85, CC = 0.88 
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Figure S7. MMCU6, ICC = 0.86, CC = 0.88 
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Figure S8. MMCU7, ICC = 0.85, CC = 0.88 
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Figure S9. MMCU8, ICC = 0.87, CC = 0.88 
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Figure S10. MMCU9, ICC = 0.83, CC = 0.86 
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Figure S11. MMCU10, ICC = 0.82, CC = 0.85 
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Figure S12. MMCU11, ICC = 0.81, CC = 0.82 
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Figure S13. MMCU12, ICC = 0.87, CC = 0.89 
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Figure S14. MMCU13, ICC = 0.83, CC = 0.83 
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Figure S15. MMCU14, ICC = 0.84, CC = 0.87 
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Figure S16. MMCU15, ICC = 0.82, CC = 0.85 



29	  
	  

 

 

Figure S17. Correlation coefficients between the matched MMCUs when setting 
different numbers of components in ICA decompositions. The different numbers of 
components do not dramatically change the similarity across the matched MMCUs. 

 


