Influence of the Her-receptor ligand system on sensitivity to cetuximab and trastuzumab in gastric cancer cell lines

Journal of Cancer Research and Clinical Oncology

Julia Kneissl, Anja Hartmann, Nicole Pfarr, Franziska Erlmeier, Thomas Lorber, Simone Keller, Gwen Zwingenberger, Wilko Weichert, Birgit Luber

Correspondence to: Dr. Birgit Luber, Institute of Pathology, Technische Universität München, Klinikum rechts der Isar, Trogerstr. 18, D-81675 München, Germany, E-mail: birgit.luber@tum.de

Online Resource 1:

Online Resource 2: Suspected copy number variations in the gastric cancer cell lines GSU and H111TC

	Gene	GSU	H111TC
obr 1	MPL		
Chrit	NRAS		
	ALK		
chr 2	IDH1		
	ERBB4		
chr 3	VHL		
	CTNNB1		
	PIK3CA		
	FGFR3		
	PDGFRA		
chr 4	KIT		
	KDR		
	FBXW7		
	APC		
chr 5	CSF1R		
	NPM1		
	EGFR		
ohr 7	MEI		
	SMU		
chr 8	ECEP1		
chr 9	GNAQ		
	ABL1		
	NOTCH1		
	RET		
chr 10	PTEN		
	FGFR2		
obr 11	HRAS		
CHETT	ATM		
	KRAS		
chr 12	PTPN11		
	HNF1A		
chr 13	FLT3		
011110	RB1		
chr 14	AKT1		
chr 15	IDH2		
chr 16	CDH1		
chr 17	1P53 EDBD2		
obr 10			
CHI 10	SIMAD4		
chr 19	GNA11		
	SRC		
chr 20	GNAS		
chr 22	SMARCB1		

Amplification Deletion Deletion possible Online Resource 3:

Array-comparative genomic hybridization analysis for copy number status of locus *ERBB2* (*HER2*) for cell lines GSU (a) and H111TC (b).

Online Resource 4:

Amplifications and deletions of selected genes in GSU and H111TC cells

		GSU	H111TC
	mean CN of cell line	3.9	2.6
	Gene	С	N
chr 1	MPL	3	4
	NRAS	3	2
	ALK	4	4
chr 2	IDH1	4	4
	ERBB4	4	4
	VHL	5	2
chr 3	CTNNB1	3	2
	PIK3CA	3	8
	FGFR3	3	2
	PDGFRA	3	3
chr 4	кіт	3	3
	KDR	3	3
	FBXW7	3	2
	APC	3	2
chr 5	CSE1R	3	4
0111 0	NPM1	3	4
	FGFR	4	3
	MET		
obr 7	SMO	-	2
		4	2
	BRAF	4	2
	EZH2	4	2
cnr 8	FGFR1	4	/
	JAK2	3	
	CDKN2A	1	
chr 9	GNAQ	3	2
	ABL1	3	3
	NOTCH1	3	3
	RET	3	2
chr 10	PTEN	4	2
	FGFR2	4	3
chr 11	HRAS	4	5
	ATM	4	1
	KRAS	4	3
chr 12	PTPN11	4	3
	HNF1A	>10	4
chr 13	FLT3	3	3
	RB1	3	3
chr 14	AKT1	4	3
chr 15	IDH2	4	5
chr 16	CDH1	4	4
chr 17	TP53	4	2
Chr 17	ERBB2	4-5	6-8
chr 18	SMAD4	3	1
	STK11	4	2
chr 19	GNA11	3	2
	JAK3	3	2
	SRC	3	4
chr 20	GNAS	3	4
chr 22	SMARCB1	3	4
		5	т

CN of gene			
moon CN of coll line			

	mean CN of cell line			
Deletion	<0.5			
Amplification	>2			
CN: copy number				

Online Resource 7:

Figure legends

Online Resource 1 Effect of cetuximab treatment on the metabolic activity of the gastric cancer cell lines GSU, H111TC, HGC-27, and MKN7

The cell lines were treated for 48 h with the indicated amounts of cetuximab (0 / 0.1 / 1 / 10 / 100 / 200 µg/ml), a solvent control (Sol), an isotype control (ISO) or isotype solvent control (ISO-Sol). Afterwards, the metabolic activity was determined via WST-1 cell proliferation assay. The mean value of at least three independent experiments is shown. P-values at significance levels of \leq 0.050 and \leq 0.010 are indicated by (*) and (**), respectively. The cell lines GSU, H111TC and MKN7 were cetuximab sensitive, in contrast, HGC-27 displayed a cetuximab insensitive phenotype

Online Resource 2 Suspected copy number variations in GSU and H111TC cells

For H111TC cells, an HER2 amplification is suspected by next generation sequencing analysis

Online Resource 3 Array-comparative genomic hybridization analysis for copy number status of locus *ERBB2* (*HER2*)

Array-comparative genomic hybridization analysis for copy number status of locus *ERBB2* (*HER2*) for cell lines GSU (a) and H111TC (b). Left panels: overview of the log2ratios of probes on chr17q12-chr17q21.32. Right panels: Magnification for locus *ERBB2*. Focal aberrations defined as size <3 Mb according to literature (Krijgsman et al., 2014). CEP copy number defined as the lower of the two mean copy numbers of the p- and q-arm. CEP17: centromere 17

Online Resource 4 Amplifications and deletions of selected genes in GSU and H111TC cells

Amplifications and deletions of selected genes in the gastric cancer cell lines GSU and H111TC determined by array-comparative genomic hybridization analysis

Online Resource 5 Effect of treatment with trastuzumab for 8 days on the expression profile of HER and pHER-receptors – densitometric measurement

All gastric cancer cell lines were treated for 8 days with 10 μ g/ml trastuzumab, afterwards, the expression of EGFR, HER2, HER3, HER4, pEGFR, pHER2, pHER3, and pHER4 were determined via Western blot analysis. H111TC, HGC-27, MKN1 and MKN28 displayed a significant decrease in HER2 expression after trastuzumab treatment. pHER3 levels significantly decreased in Hs746T and MKN7 cells. The mean value of at least three independent experiments is shown. P-values at significance levels of ≤ 0.050 and ≤ 0.010 are indicated by (*) and (**), respectively

Online Resource 6 Effect of treatment with cetuximab for 8 days on the expression profile of HER and pHER-receptors – densitometric measurement

All gastric cancer cell lines were treated for 8 days with 10 µg/ml cetuximab, afterwards, the expression of EGFR, HER2, HER3, HER4, pEGFR, pHER2, pHER3, and pHER4 were determined via Western blot analysis. EGFR levels decreased significantly in MKN28 cells. Significant increases were detected for HER2 in H111TC cells and for HER2 and pHER2 in MKN7 cells. The mean value of at least three independent experiments is shown. P-values at significance levels of ≤ 0.050 and ≤ 0.010 are indicated by (*) and (**), respectively

Online Resource 7 Secretion of AREG in the gastric cancer cell lines GSU, H111TC, HGC-27 and MKN7

Cells were incubated for 24 h before the amount of secreted AREG was measured in the conditioned medium by ELISA-assay. GSU, H111TCand MKN7cells secreted high levels of AREG to the medium, AREG secretion was hardly detectable for HGC-27 cells. The mean value of at least three independent experiments is shown. P-values at significance levels of ≤ 0.050 and ≤ 0.010 are indicated by (*) and (**), respectively

Online Resource 9 Effect of exogenous ligand application on cetuximab sensitivity in MKN1 and Hs746T cells

MKN1 and Hs746T cells were treated for 3 days with100 μ g/ml cetuximab and/or different HER receptor ligands (AREG: 7.5/15/150 ng/ml; EGF: 0.05/0.1/1 ng/ml; HB-EGF: 0.2/0.4/4 ng/ml). The metabolic activity of the cells was measured using the WST-1 cell proliferation assay. HB-EGF and EGF but not AREG were effective in rescuing MKN1 from cetuximab inhibition. The mean value of three independent experiments is shown. P-values at significance levels of \leq 0.050 and \leq 0.010 are indicated by (*) and (**), respectively

Reference

Krijgsman, O., Carvalho, B., Meijer, G.A., Steenbergen, R.D., and Ylstra, B. (2014). Focal chromosomal copy number aberrations in cancer-Needles in a genome haystack. Biochim Biophys Acta 1843, 2698-2704.