imbi
 Heidelberg
 Institute of Medical
 Biometry and Informatics

Meta Analysis of Rectal Cancer Studies

November 11, 2019

Biometrician:	Svenja Seide seide@imbi.uni-heidelberg.de
Contacts:	Laura Seifert lauraseifert96@gmail.com
	Karl Kowalewski karl.kowalewski@googlemail.com
Data source:	rectal cancer statistic_neu.xlsx
Data supplied by: Karl Kowalewski	
Abstract:	[ToDo]

Contents

1 Urinary Retention 3
2 lleus 5
3 QLQ-Scores 7
3.1 QLQ-C-29 8
3.2 QLQ-C-30 8
4 IIEF Total Scores 10
5 IPSS Total Scores 11
6 Session Information 13

New names:

* 'Abdominal pain post op lap' -> 'Abdominal pain post op lap...34'
* 'Abdominal pain post op lap (SD)' $->$ 'Abdominal pain post op lap (SD)...35'
* 'Abdominal pain post op rob' \rightarrow 'Abdominal pain post op rob...36'
* 'Abdominal pain post op rob (SD)' $->$ 'Abdominal pain post op rob (SD)...37'
* 'Abdominal pain post op lap' $->$ 'Abdominal pain post op lap...80'
* ... and 3 more problems

New names:

* 'LAP directly postop (wert)' \rightarrow ' 'LAP directly postop (wert)...18'
* 'LAP directly postop (wert)' \rightarrow 'LAP directly postop (wert)...19'
* 'Postop 3 months rob (wert)' \rightarrow 'Postop 3 months rob (wert)...20'
* 'Postop 3months rob (Abweichung)' $->$ 'Postop 3months rob (Abweichung)...21'
* 'Postop 3 months rob (wert)' -> 'Postop 3 months rob (wert)...24'
* ... and 1 more problem

1 Urinary Retention

Robotic treatment (experimatal group) compared to laproscopic treatment (control group). Results on the OR-scale (nonlogarithmic). In case of 0 events in a study-arm, 0.5 is added to each arm of this study for continuity correction. Assuming that "urinary retention" is an undesirable event, OR <1 favors Rob, while OR >1 favors Lab. Studies are sorted by total sample size (from small to large) in the forest plot.

Figure 1: Forest plot for meta-analysis of urinary retention

	OR	$95 \%-C I$	z	p-value
Random effects model 0.6561	[0.4636;	$0.9286]$	-2.38	0.0174

Quantifying heterogeneity:
$\operatorname{tau}^{\wedge} 2=0 ; H=1.00[1.00 ; 1.20] ; I^{\wedge} 2=0.0 \%[0.0 \% ; 30.8 \%]$

Quantifying residual heterogeneity:
$H=1.00[1.00 ; 1.24] ; I^{\wedge} 2=0.0 \%[0.0 \% ; 34.7 \%]$

Test of heterogeneity:
Q d.f. p-value
$\begin{array}{lll}14.30 & 19 & 0.7659\end{array}$

Results for subgroups (random effects model):

	k	OR		95\%-CI	Q	tau^2	I~2
RCT $=$ no	19	0.6494	[0.4576;	$0.9215]$	14.08	0	0.0\%
RCT $=$ yes	1	1.2857	[0.0770;	21.4725]	0.00	--	

Test for subgroup differences (random effects model):
Q d.f. p-value
Between groups 0.2210 .6370

Details on meta-analytical method:

- Mantel-Haenszel method
- DerSimonian-Laird estimator for tau^2
- Continuity correction of 0.5 in studies with zero cell frequencies

Figure 2: Funnel plot for meta-analysis of urinary retention

2 lleus

Robotic treatment (experimental group) compared to laproscopic treatment (control group). Results on the OR-scale (nonlogarithmic). In case of 0 events in a study-arm, 0.5 is added to each arm of this study for continuity correction. Assuming that "ileus" is an undesirable event, OR <1 favors Rob, while OR >1 favors Lab. Studies are sorted by total sample size (from small to large) in the forest plot.

Figure 3: Forest plot for meta-analysis of lleus

Figure 4: Funnel plot for meta-analysis of lleus

3 QLQ-Scores

Robotic treatment (experimental group) compared to laproscopic treatment (control group). Results as difference in means. Designations in the forest plot assume a higher mean differences to be better in all cases which translates into a higher score being assumed better.

3.1 QLQ-C-29

Figure 5: Forest plot for meta-analysis of QLQ-C-29 global health
$\left.\begin{array}{rrrr}\text { MD } & 95 \%-C I & \text { z } & \text { p-value } \\ 0.7000 & {[-11.9076 ;} & 13.3076] & 0.11\end{array}\right) 0.9133$

Details:

- Inverse variance method

Figure 6: Funnel plot for meta-analysis of QLQ-C-29 global health

3.2 QLQ-C-30

Figure 7: Forest plot for meta-analysis of QLQ-C-30 global health

[^0]```
 MD 95%-CI z p-value
Random effects model 2.9864 [2.0185; 3.9544] 6.05 < 0.0001
Quantifying heterogeneity:
tau^2 = 0; H = 1.00 [1.00; 1.00]; I^2 = 0.0% [0.0%; 0.0%]
Test of heterogeneity:
 Q d.f. p-value
0.13 2 0.9384
```

Details on meta-analytical method:

- Inverse variance method
- DerSimonian-Laird estimator for tau^2


Figure 8: Funnel plot for meta-analysis of QLQ-C-30 global health

## 4 IIEF Total Scores

Robotic treatment (experimental group) compared to laproscopic treatment (control group). Results as mean differences and assuming a higher score being better. Assuming that the data is assymtotically normal (especially symmetric) in the studies reporting median and range, mean and standard deviation are estimated.


Figure 9: Forest plot for meta-analysis of IIEF at latest time point available, sorted by time of measurement from earliest to latest

Number of studies combined: $\mathrm{k}=5$


Test of heterogeneity:
Q d.f. p-value
9.4140 .0517

Results for subgroups (random effects model):
k SMD 95\%-CI Q tau^2 I~2

RCT $=$ no $30.4571[-0.1287 ; 1.0429] 7.130 .187172 .0 \%$
RCT = yes $20.0852[-0.1353 ; 0.3057] 0.840000 \%$
Test for subgroup differences (random effects model):
Q d.f. p-value
Between groups $1.36 \quad 1 \quad 0.2442$

Details on meta-analytical method:

- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Hedges' g (bias corrected standardised mean difference)


Figure 10: Funnel plot for meta-analysis of IIEF at latest time point available, sorted by time of measurement from earliest to latest

## 5 IPSS Total Scores

Robotic treatment (experimental group) compared to laproscopic treatment (control group). Results as mean differences and assuming a lower score to be better. Assuming that the data is assymtotically normal (especially symmetric) in the studies reporting median and range, mean and standard deviation are estimated.


Figure 11: Forest plot for meta-analysis of IPSS at latest time point available, sorted by time of measurement from earliest to latest

Number of studies combined: $\mathrm{k}=7$
$\begin{array}{rrrr} & \text { MD } & 95 \%-C I & z\end{array} \quad$ p-value

Quantifying heterogeneity
tau^2 $=0.0962 ; H=1.08[1.00 ; 1.99] ; I^{\wedge} 2=13.5 \%[0.0 \% ; 74.7 \%]$
Quantifying residual heterogeneity:
$H=1.13[1.00 ; 1.71] ; I^{\wedge} 2=21.5 \%[0.0 \% ; 65.9 \%]$
Test of heterogeneity:
Q d.f. p-value
$6.94 \quad 6 \quad 0.3268$

Results for subgroups (random effects model):
k MD 95\%-CI Q tau^2 I^2
RCT $=$ no $5-0.6020[-1.1706 ;-0.0335] 1.08 \quad 0 \quad 0.0 \%$
RCT $=$ yes $2-1.3733[-4.1832 ; 1.4367] 5.293 .340381 .1 \%$
Test for subgroup differences (random effects model):
Q d.f. p-value
Between groups 0.2810 .5980

Details on meta-analytical method:

- Inverse variance method
- DerSimonian-Laird estimator for tau^2


Figure 12: Funnel plot for meta-analysis of IPSS at latest time point available, sorted by time of measurement from earliest to latest

## 6 Session Information

$R$ version 3.5.1 (2018-07-02)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 17134)

Matrix products: default
locale:
[1] LC_COLLATE=German_Germany. 1252 LC_CTYPE=German_Germany. 1252
[3] LC_MONETARY=German_Germany. 1252 LC_NUMERIC=C
[5] LC_TIME=German_Germany. 1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:

| [1] readxl_1.1.0 | meta_4.9-2 | forcats_0.3.0 | stringr_1.3.1 |
| :--- | :--- | :--- | :--- | :--- |
| [5] dplyr_0.8.0.1 | purrr_0.2.5 | readr_1.1.1 | tidyr_0.8.2 |
| [9] tibble_2.1.1 | ggplot2_3.1.0 | tidyverse_1.2.1 |  |


| loaded via a namespace (and not attached): |  |  |  |
| :---: | :---: | :---: | :---: |
| [1] Rcpp_1.0.0 | cellranger_1.1.0 | pillar_1.3.1 | compiler_3.5.1 |
| [5] plyr_1.8.4 | tools_3.5.1 | digest_0.6.18 | lubridate_1.7.4 |
| [9] jsonlite_1.5 | evaluate_0.12 | nlme_3.1-137 | gtable_0.2.0 |
| [13] lattice_0.20-35 | pkgconfig_2.0.2 | rlang_0.3.4 | cli_1.0.1 |
| [17] rstudioapi_0.8 | yaml_2.2.0 | haven_1.1.2 | withr_2.1.2 |
| [21] xml2_1.2.0 | httr_1.3.1 | knitr_1.20 | hms_0.4.2 |
| [25] rprojroot_1.3-2 | imbiReport_0.1.0 | grid_3.5.1 | tidyselect_0.2.5 |
| [29] glue_1.3.0 | R6_2.3.0 | rmarkdown_1.10 | modelr_0.1.2 |
| [33] magrittr_1.5 | codetools_0.2-15 | backports_1.1.2 | scales_1.0.0 |
| [37] htmltools_0.3.6 | rvest_0.3.2 | assertthat_0.2.0 | colorspace_1.3-2 |
| [41] stringi_1.2.4 | lazyeval_0.2.1 | munsell_0.5.0 | broom_0.5.0 |
| [45] crayon_1.3.4 |  |  |  |


[^0]:    Number of studies combined: $\mathrm{k}=3$

