Reconsidering High Intensity Zones: Its Role in Intervertebral Disk

Degeneration and Low Back Pain

Journal: European Spine Journal

Authors: Stone Sima, Xiaolong Chen*, Kyle Sheldrick, Jeff Kuan, Ashish D. Diwan

*Corresponding author: Xiaolong Chen

Spine Labs, St George and Sutherland Clinical School, University of New South Wales, New

South Wales, Australia

Email Address: xiaolong.chen1@unsw.edu.au

Electronic Supplementary Material 1

Simulation demonstrating the effect of classification error in pain status.

This is a simulation of 5000 studies of 400 patients with a 50% chance of having pain (with a 60% chance of HIZ) and 50% chance of having no pain (with a 30% chance of HIZ), for a true underlying OR of 3.5. (Recall that OR will be substantially larger than RR for non-rare outcomes).

If we simulate patients with pain having a 20% chance of being misclassified as no pain (and vice versa) we can see there is a substantial bias towards the null, with the observed ORs centring on \sim 2.1 instead of the correct \sim 3.5 which is what was observed with no classification error.

Likewise, if we simulate such a classification error only in patients who genuinely have pain (i.e. false negatives but no false positives), we again see a substantial but smaller bias towards the null with the observed ORs centring on \sim 2.8 instead of the correct \sim 3.5 seen with no classification error.

Finally if the null hypothesis is true, classification error does not bias the results towards an effect (in either direction).

In short: any classification error would only result in a weakening of the observed association, not a spurious association. That is the underlying association is likely stronger than what we are reporting, and we have added a sentence to the discussion drawing this to the attention of readers.

The R code for the simulation study demonstrating the effect of classification error in pain status is written below:

```
Misclassification of Pain Code
#step 0, load the packages
library(car)
library(epitools)
library(ggplot2)
library(tidyr)
library(dplyr)
#Step 1, Set seed makes the RNG start at the same place
set.seed(1)
#Step 2, decide how many times to run
loops <- 5000
#Step 3, decide how many patients
nPatients <-400
# Step 4, make a vector for every outcome you want to save from the
study
errorlessOR = numeric(loops)
errorOR = numeric(loops)
#step 5 start a "for" loop, everything in this will be repeated
"loops" times
for (i in 1:loops) {
  #Step 6, simulate the measured pain status, and presence of HIZ
for each patient
  pid=seq(1, by=1, len=nPatients) #create consecutive pids
  truepain=rbinom(nPatients, 1, 0.5) # this randomly assigns each
patient to have or not have pain with a 1:1 ratio regardless of
what came before or after
  measuredpain = numeric(nPatients)
  HIZ = numeric(nPatients)
  for (j in 1:nPatients){
    if(truepain[j]==0){
```

measuredpain[j] = rbinom(1, 1, 0.2) #this introduces a 20%
error rate in pain classification, change to zero for no error in
this group

```
HIZ [j] = rbinom(1, 1, 0.3) #allocates HIZ with a 30% chance
in pain free participants
    }
    if(truepain[j]==1){
      measuredpain[j] = rbinom(1, 1, 0.8) #this introduces a 20%
error rate in pain classification
      HIZ [j] = rbinom(1, 1, 0.6) #allocates HIZ with a 60% chance
in participants with pain
    }
  }
  noerror = oddsratio(table(truepain,HIZ))
  witherror = oddsratio(table(measuredpain,HIZ))
  errorlessOR[i] = noerror$measure[2]
  errorOR[i] = witherror$measure[2]
}
data = data.frame(errorlessOR,errorOR)
datalong = gather(data, key="MeasureType", value="Val")
gqplot(datalong, aes(x=MeasureType, y=Val, fill=MeasureType)) +
  geom_violin() +
  geom_hline(yintercept=3.5, linetype="dashed", color = "red") +
  scale_y_continuous(trans='log2')+
  ggtitle("Misclassification in both arms")+
  ylab("Observed Odds Ratio")
```

```
quantile(errorlessOR)
quantile(errorOR)
```

```
If Null Hypothesis is True Code
#step 0, load the packages
library(car)
library(epitools)
library(ggplot2)
library(tidyr)
library(dplyr)
#Step 1, Set seed makes the RNG start at the same place
set.seed(1)
#Step 2, decide how many times to run
loops <- 5000
#Step 3, decide how many patients
nPatients <-400
# Step 4, make a vector for every outcome you want to save from the
studv
errorlessOR = numeric(loops)
errorOR = numeric(loops)
#step 5 start a "for" loop, everything in this will be repeated
"loops" times
for (i in 1:loops) {
  #Step 6, simulate the measured pain status, and presence of HIZ
for each patient
  pid=seq(1, by=1, len=nPatients) #create consecutive pids
  truepain=rbinom(nPatients, 1, 0.5) # this randomly assigns each
patient to have or not have pain with a 1:1 ratio regardless of
what came before or after
  measuredpain = numeric(nPatients)
 HIZ = numeric(nPatients)
  for (j in 1:nPatients){
    if(truepain[j]==0){
      measuredpain[j] = rbinom(1, 1, 0.2) #this introduces a 20%
error rate in pain classification, change to 0 for no error in this
group
      HIZ [j] = rbinom(1, 1, 0.5) #allocates HIZ with a 30% chance
in pain free participants
```

```
}
```

```
if(truepain[j]==1){
    measuredpain[j] = rbinom(1, 1, 0.8) #this introduces a 20%
error rate in pain classification
    HIZ [j] = rbinom(1, 1, 0.5) #allocates HIZ with a 60% chance
in participants with pain
    }
    noerror = oddsratio(table(truepain,HIZ))
    witherror = oddsratio(table(measuredpain,HIZ))
    errorlessOR[i] = noerror$measure[2]
}
```

```
data = data.frame(errorlessOR,errorOR)
datalong = gather(data, key="MeasureType", value="Val")
ggplot(datalong, aes(x=MeasureType, y=Val, fill=MeasureType)) +
   geom_violin() +
   geom_hline(yintercept=1, linetype="dashed", color = "red") +
   scale_y_continuous(trans='log2')+
   ggtitle("Misclassification in both arms - Null Hypothesis True")+
   ylab("Observed Odds Ratio")
```

```
quantile(errorlessOR)
quantile(errorOR)
```