SUPPLEMETARY MATERIALS

Brain blood flow pulse analysis may help to recognize individuals who suffer from hydrocephalus

Acta Neurochirurgica

Arkadiusz Ziólkowski ${ }^{1 *}$, Magdalena Kasprowicz ${ }^{\mathbf{1}}$, Marek Czosnyka ${ }^{2,3}$, Zofia Czosnyka ${ }^{\mathbf{2}}$
${ }^{1}$ Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
${ }^{2}$ Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
${ }^{3}$ Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
* Corresponding author
e-mail: arkadiusz.ziolkowski@pwr.edu.pl

Distorted pulses removing

Based on the visual inspection of all detected pulses, the following criteria were applied to the algorithm written in Python for the automatic removal of distorted pulses: 1) pulse shorter than 0.33 s or longer than 1.5 s (outside the physiological range of pulse length), 2) appearance time of the maximum CBFV pulse greater than 0.35 s (the maximum associated with a first or second peak of the CBFV pulse should appear within 0.3 s from the beginning of the pulse [1]), 3) the last
sample of a detrended and normalized $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse greater than 0.15 (the minimum value of the detrended $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse is expected at the end of the pulse, otherwise the pulse is detected incorrectly), 4) maximum triangle distance between triangle and $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse curve greater than 0.65 (high amplitude of $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ oscillation are not expected in the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse, based on the shape of the pulse observed in MRI studies [2]).

$\mathrm{Ca}_{\mathrm{a}} \mathrm{BV}$ calculation

To calculate $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulses from the non-invasively measured CBFV signal the constant flow forward model of cerebral blood circulation was applied [3]. The main assumptions of this model are that: 1) cerebral blood outflow $\left(\mathrm{CBF}_{\text {out }}\right)$ is significantly less pulsatile than cerebral blood inflow $\left(\mathrm{CBF}_{\text {in }}\right)[4]$ and therefore $\mathrm{CBF}_{\text {out }}$ can be approximated by the mean value of $\mathrm{CBF}_{\text {in }}$ over a 6 seconds window [3] (see Supplement Figure 1a); 2) cerebral blood inflow can be estimated with CBFV multiplied by cross-sectional area of insonated artery (see equations in Supplement Figure 1a,b).

Supplement Figure 1. a): visualization of cerebral blood volume (CBV) calculated over a single cardiac cycle using invasively measured cerebral blood inflow and cerebral blood outflow (based on [4]). b): visualization of non-invasively estimated cerebral arterial blood volume ($\mathrm{C}_{\mathrm{a}} \mathrm{BV}$) using constant flow forward model and TCD cerebral blood flow velocity signal. For the description of the assumptions see the content of Supplementary material. t_{0} - beginning of a cardiac cycle, S_{a} - cross-sectional area of the insonated artery.

It was also assumed that the cross-sectional area of the insonated artery remains constant over a series of cardiac cycles [4], [5]. With these assumptions, the cross-sectional area of the insonated artery can be neglected in the equation in Figure 1b), and changes in $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ can be estimated using Equation (1).

$$
\begin{equation*}
\Delta C_{a} B V(t)=\int_{t_{0}}^{t}(C B F V(x)-\operatorname{mean}(C B F V)) d x[\mathrm{~cm}] \tag{1}
\end{equation*}
$$

where $\Delta \mathrm{C}_{\mathrm{a}} \mathrm{BV}$ is the change in cerebral arterial blood volume during a single cardiac cycle, t_{0} is the beginning of a single cardiac cycle, $\operatorname{CBFV}(\mathrm{x})$ is cerebral blood flow velocity at the moment t $[\mathrm{cm} / \mathrm{s}]$, mean (CBFV) is a mean cerebral blood flow velocity calculated over a 6 seconds window [$\mathrm{cm} / \mathrm{s}]$.

It is important to note that $\Delta \mathrm{C}_{\mathrm{a}} \mathrm{BV}$ calculated in this way is normalized (divided) by the unknown cross-sectional area of the vessel S_{a}; therefore, units are not units of volume $\left(\mathrm{cm}^{3}\right)$ but cm and the value of $\Delta \mathrm{C}_{\mathrm{a}} \mathrm{BV}$ cannot be compared between subjects. This however does not affect the shape of the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse, making the comparison analysis of the pulse shapes between healthy volunteers and NPH patients possible.

Supplement Table 1. List of all triangle similarity parameters that were analyzed.

Parameter name	Acronym	Parameter name	Acronym
Total Area - sum of all areas where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse contour is above or below the triangle arm on both ascending and descending parts of the pulse	TA	mean Ascending Lower Distance - the average distance calculated from area where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ contour is below the triangle on ascending part of the pulse	mALD
mean Distance - the average distance calculated from all areas between $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse contour and triangle arms	mD	Maximum Ascending Lower Distance - the maximum distance calculated from area where the	MALD

Maximum Distance - the maximum distance from all areas between $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse contour and triangle arms	MD	Descending Upper Area - the area where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ contour is above the triangle on descending part of the pulse	DUA
Upper Area - sum of areas where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse contour is above the triangle arms	UA	mean Descending Upper Distance - the average distance calculated from area where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ contour is above the triangle on descending part of the pulse	mDUD
mean Upper Distance - the averaged distance calculated from all areas where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse contour is above the triangle arms	mUD	Maximum Descending Upper Distance - the maximum distance calculated from area where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ contour is above the triangle on descending part of the pulse	MDUD
Maximum Upper Distance the maximum distance from all areas where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse contour is above the triangle arms	MUD	Descending Lower Area - the area where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ contour is below the triangle on descending part of the pulse	DLA
Lower Area - sum of areas where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse contour is below the triangle arms	LA	mean Descending Lower Distance - the average distance calculated from area where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ contour is below the triangle on descending part of the pulse	mDLD
mean Lower Distance - the averaged distance calculated from all areas where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse contour is below the triangle arms	mLD	Maximum Descending Lower Distance - the maximum distance calculated from area where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ contour is below the triangle on descending part of the pulse	MDLD
Maximum Lower Distance the maximum distance from all areas where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse contour is below the triangle arms	MLD	Ascending Descending Duration Ratio - the ratio of the duration of the ascending and descending part of the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse	ADDR
Lower Upper Area Ratio - the ratio of the sum of the areas where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse is above the arms of the triangle to the sum of the areas where the	LUAR	Frechet Distance - distance between $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse contour and the triangle arms calculated with the use of frechetdist 0.6 Python package, based on [6]	FD

$\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse contour is below the arms of the triangle.

Ascending Upper Area - the area where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ contour is above the triangle on ascending part of the pulse
mean Ascending Upper
Distance - the average distance calculated from area where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ contour is above the triangle on ascending part of the pulse
Maximum Ascending Upper
Distance - the maximum distance calculated from area where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ contour is above the triangle on ascending part of the pulse
Ascending Lower Area - the area where the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ contour is below the triangle on ascending part of the pulse

Dynamic Time Wrapping
Distance - distance between $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$
pulse contour and the triangle arms DTWD calculated with the use of dtwpython 1.3.0 package, based on [7]
normalized Dynamic Time Wrapping Distance - normalized distance between $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse contour and the triangle arms calculated with the use of dtwpython 1.3.0 package, based on [7]

Maximum Appearance Time -

 the time of appearance of the MAT maximum value of the $C_{a} B V$ pulsenDTWD

MAUD	Maximum Appearance Time - the time of appearance of the maximum value of the $\mathrm{C}_{\mathrm{a}} \mathrm{BV}$ pulse	MAT

mAUD

Supplement Table 2. Medians, lower (Q1) and upper (Q3) quartiles of all triangle similarity parameters. P-values are from the Wilcoxon signed rank test. Medians and p-values above 0.05 are bolded. Parameter names are given as acronyms, see Table 1 for full names.

Healthy volunteers $\mathbf{n}=\mathbf{2 3} \quad$ NPH patients $\mathbf{n}=\mathbf{3 1}$

Parameter	Median	Q1	Q3	Median	Q1	Q3	p-value
TA	$\mathbf{2 6 . 4 5}$	23.56	27.81	$\mathbf{2 2 . 4 7}$	21.42	27.21	$\mathbf{0 . 0 2 5}$
mD	$\mathbf{0 . 1 3 2}$	0.118	0.139	$\mathbf{0 . 1 1 2}$	0.107	0.136	$\mathbf{0 . 0 2 5}$
MD	$\mathbf{0 . 2 9 0}$	0.251	0.310	$\mathbf{0 . 2 5 3}$	0.215	0.293	$\mathbf{0 . 0 1 7}$
UA	$\mathbf{2 6 . 1 3}$	23.19	27.57	$\mathbf{2 1 . 8 2}$	20.54	27.08	$\mathbf{0 . 0 1 7}$
mUD	$\mathbf{0 . 1 4 4}$	0.129	0.150	$\mathbf{0 . 1 3 0}$	0.122	0.145	$\mathbf{0 . 0 2 4}$
MUD	$\mathbf{0 . 2 8 9}$	0.251	0.308	$\mathbf{0 . 2 5 3}$	0.215	0.293	$\mathbf{0 . 0 1 7}$
LA	$\mathbf{0 . 3 7 4}$	0.265	0.497	$\mathbf{0 . 6 6 1}$	0.344	1.296	$\mathbf{0 . 0 0 5}$
mLD	$\mathbf{0 . 0 1 7}$	0.014	0.021	$\mathbf{0 . 0 2 6}$	0.019	0.032	$\mathbf{0 . 0 0 2}$
MLD	$\mathbf{0 . 0 3 3}$	0.027	0.041	$\mathbf{0 . 0 5 0}$	0.036	0.059	$\mathbf{0 . 0 0 3}$
LUAR	$\mathbf{0 . 0 1 7}$	0.008	0.030	$\mathbf{0 . 0 3 1}$	0.016	0.061	$\mathbf{0 . 0 4 8}$

AUA	$\mathbf{1 0 . 4 7}$	9.775	14.16	$\mathbf{6 . 7 6 0}$	5.497	8.870	$\ll \mathbf{0 . 0 0 1}$
mAUD	$\mathbf{0 . 1 5 3}$	0.141	0.170	$\mathbf{0 . 1 1 4}$	0.097	0.130	$\ll \mathbf{0 . 0 0 1}$
MAUD	$\mathbf{0 . 2 5 8}$	0.237	0.296	$\mathbf{0 . 1 8 3}$	0.152	0.239	$\ll \mathbf{0 . 0 0 1}$
ALA	$\mathbf{0 . 3 1 4}$	0.200	0.452	$\mathbf{0 . 5 9 9}$	0.322	1.241	$\mathbf{0 . 0 0 2}$
mALD	$\mathbf{0 . 0 2 1}$	0.017	0.025	$\mathbf{0 . 0 3 1}$	0.023	0.038	$\mathbf{0 . 0 0 3}$
MALD	$\mathbf{0 . 0 3 3}$	0.026	0.040	$\mathbf{0 . 0 4 9}$	0.035	0.059	$\mathbf{0 . 0 0 2}$
DUA	$\mathbf{1 3 . 4 8}$	12.91	15.08	$\mathbf{1 5 . 0 4}$	12.96	17.21	0.157
mDUD	$\mathbf{0 . 1 2 8}$	0.119	0.135	$\mathbf{0 . 1 3 1}$	0.119	0.143	0.421
MUDD	$\mathbf{0 . 1 9 8}$	0.187	0.213	$\mathbf{0 . 2 1 4}$	0.186	0.230	0.151
DLA	$\mathbf{0 . 0 4 3}$	0.036	0.060	$\mathbf{0 . 0 4 6}$	0.020	0.103	0.958
mDLD	$\mathbf{0 . 0 0 5}$	0.004	0.005	$\mathbf{0 . 0 0 4}$	0.003	0.007	0.875
MDLD	$\mathbf{0 . 0 0 8}$	0.006	0.009	$\mathbf{0 . 0 0 7}$	0.004	0.011	0.875
ADDR	$\mathbf{0 . 8 0 2}$	0.707	0.915	$\mathbf{0 . 6 8 8}$	0.623	0.794	$\mathbf{0 . 0 0 2}$
FD	$\mathbf{0 . 1 2 1}$	0.110	0.140	$\mathbf{0 . 1 2 7}$	0.104	0.155	0.916
DTWD	$\mathbf{1 . 2 7 7}$	1.227	1.341	$\mathbf{1 . 2 4 4}$	1.211	1.443	0.441
nDTWD	$\mathbf{0 . 0 0 3}$	0.003	0.003	$\mathbf{0 . 0 0 3}$	0.003	0.004	0.441
MAT	$\mathbf{4 3 1 . 7}$	408.6	459.4	$\mathbf{3 9 8 . 9}$	377.6	437.5	$\mathbf{0 . 0 1 0}$

References:

[1] A. Ziółkowski et al., "Peak appearance time in pulse waveforms of intracranial pressure and cerebral blood flow velocity," Front Physiol, vol. 13, p. 2670, Jan. 2023, doi: 10.3389/FPHYS.2022.1077966/BIBTEX.
[2] A. Vallet et al., "Biomechanical response of the CNS is associated with frailty in NPH-suspected patients," J Neurol, vol. 267, no. 5, pp. 1389-1400, 2020, doi: 10.1007/s00415-019-09689-z.
[3] D. J. Kim et al., "The monitoring of relative changes in compartmental compliances of brain," Physiol Meas, vol. 30, no. 7, pp. 647-659, 2009, doi: 10.1088/0967-3334/30/7/009.
[4] C. J. J. Avezaat and J. H. M. van Eijndhoven, "The role of the pulsatile pressure variations in intracranial pressure monitoring," Neurosurg Rev, vol. 9, no. 1-2, pp. 113-33, 1986, doi: 10.1007/BF01743061.
[5] M. Tóth, G. L. Nádasy, I. Nyáry, T. Kerényi, and E. Monos, "Are there systemic changes in the arterial biomechanics of intracranial aneurysm patients?," Pflugers Arch, vol. 439, no. 5, pp. 573578, Mar. 2000, doi: 10.1007/s004249900154.
[6] T. Eiter and H. Mannila, " Computing discrete Fréchet distance. Tech. Report CD-TR 94/64," Vienna, 1994.
[7] T. Giorgino, "Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package," J Stat Softw, vol. 31, no. 7, pp. 1-24, Aug. 2009, doi: 10.18637/JSS.V031.IO7.

