SUPPLEMETARY MATERIALS

Brain blood flow pulse analysis may help to recognize individuals who suffer from hydrocephalus

Acta Neurochirurgica

Arkadiusz Ziółkowski^{1*}, Magdalena Kasprowicz¹, Marek Czosnyka^{2,3}, Zofia Czosnyka²

¹ Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology,

Wrocław University of Science and Technology, Wrocław, Poland

² Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital,
University of Cambridge, Cambridge, United Kingdom

³ Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland

* Corresponding author

e-mail: arkadiusz.ziolkowski@pwr.edu.pl

Distorted pulses removing

Based on the visual inspection of all detected pulses, the following criteria were applied to the algorithm written in Python for the automatic removal of distorted pulses: 1) pulse shorter than 0.33 s or longer than 1.5 s (outside the physiological range of pulse length), 2) appearance time of the maximum CBFV pulse greater than 0.35 s (the maximum associated with a first or second peak of the CBFV pulse should appear within 0.3 s from the beginning of the pulse [1]), 3) the last

sample of a detrended and normalized C_aBV pulse greater than 0.15 (the minimum value of the detrended C_aBV pulse is expected at the end of the pulse, otherwise the pulse is detected incorrectly), 4) maximum triangle distance between triangle and C_aBV pulse curve greater than 0.65 (high amplitude of C_aBV oscillation are not expected in the C_aBV pulse, based on the shape of the pulse observed in MRI studies [2]).

C_aBV calculation

To calculate C_aBV pulses from the non-invasively measured CBFV signal the constant flow forward model of cerebral blood circulation was applied [3]. The main assumptions of this model are that: 1) cerebral blood outflow (CBF_{out}) is significantly less pulsatile than cerebral blood inflow (CBF_{in}) [4] and therefore CBF_{out} can be approximated by the mean value of CBF_{in} over a 6 seconds window [3] (see Supplement Figure 1a); 2) cerebral blood inflow can be estimated with CBFV multiplied by cross-sectional area of insonated artery (see equations in Supplement Figure 1a,b).

Supplement Figure 1. a): visualization of cerebral blood volume (CBV) calculated over a single cardiac cycle using invasively measured cerebral blood inflow and cerebral blood outflow (based on [4]). b): visualization of non-invasively estimated cerebral arterial blood volume (C_aBV) using constant flow forward model and TCD cerebral blood flow velocity signal. For the description of the assumptions see the content of Supplementary material. t_0 – beginning of a cardiac cycle, S_a – cross-sectional area of the insonated artery.

It was also assumed that the cross-sectional area of the insonated artery remains constant over a series of cardiac cycles [4], [5]. With these assumptions, the cross-sectional area of the insonated artery can be neglected in the equation in Figure 1b), and changes in C_aBV can be estimated using Equation (1).

$$\Delta C_a BV(t) = \int_{t_0}^t (CBFV(x) - mean(CBFV)) \, dx \, [cm] \tag{1}$$

where $\Delta C_a BV$ is the change in cerebral arterial blood volume during a single cardiac cycle, t_0 is the beginning of a single cardiac cycle, CBFV(x) is cerebral blood flow velocity at the moment t [cm/s], mean(CBFV) is a mean cerebral blood flow velocity calculated over a 6 seconds window [cm/s].

It is important to note that $\Delta C_a BV$ calculated in this way is normalized (divided) by the unknown cross-sectional area of the vessel S_a ; therefore, units are not units of volume (cm³) but cm and the value of $\Delta C_a BV$ cannot be compared between subjects. This however does not affect the shape of the $C_a BV$ pulse, making the comparison analysis of the pulse shapes between healthy volunteers and NPH patients possible.

Parameter name	Acronym	Parameter name	Acronym
Total Area – sum of all areas where the C _a BV pulse contour is above or below the triangle arm on both ascending and descending parts of the pulse	ТА	mean Ascending Lower Distance – the average distance calculated from area where the C _a BV contour is below the triangle on ascending part of the pulse	mALD
mean Distance – the average distance calculated from all areas between C _a BV pulse contour and triangle arms	mD	Maximum Ascending Lower Distance – the maximum distance calculated from area where the C _a BV contour is below the triangle on ascending part of the pulse	MALD

Supplement	Table 1.	. List of all	triangle si	milarity	parameters	that were	analyzed.
Sappiement	14010 11	· Dist of an	and the state of t	many	parameters	that were	anary 200

Maximum Distance – the		Descending Upper Area – the				
maximum distance from all	MD	area where the C _a BV contour is				
areas between CaBV pulse	MD	above the triangle on descending	DUA			
contour and triangle arms		part of the pulse				
		mean Descending Upper				
Upper Area – sum of areas		Distance – the average distance				
where the C _a BV pulse contour is	UA	calculated from area where the	mDUD			
above the triangle arms		C _a BV contour is above the triangle				
		on descending part of the pulse				
mean Upper Distance - the		Maximum Descending Upper				
averaged distance calculated		Distance – the maximum distance				
from all areas where the $C_a BV$	mUD	calculated from area where the	MDUD			
pulse contour is above the		C _a BV contour is above the triangle				
triangle arms		on descending part of the pulse				
Maximum Upper Distance –		Descending Lower Area the				
the maximum distance from all		Descenting Lower Area – the $C_{\rm RV}$ contour is				
areas where the C _a BV pulse	MUD	below the triangle on descending	DLA			
contour is above the triangle		part of the pulse				
arms		part of the pulse				
		mean Descending Lower				
Lower Area – sum of areas		Distance – the average distance				
where the C _a BV pulse contour is	LA	calculated from area where the	mDLD			
below the triangle arms		C _a BV contour is below the triangle				
		on descending part of the pulse				
mean Lower Distance – the		Maximum Descending Lower				
averaged distance calculated		Distance – the maximum distance				
from all areas where the C_aBV	mLD	calculated from area where the	MDLD			
pulse contour is below the		C _a BV contour is below the triangle				
triangle arms		on descending part of the pulse				
Maximum Lower Distance –		Ascending Descending Duration				
the maximum distance from all		Ratio – the ratio of the duration of				
areas where the C _a BV pulse	MLD	the ascending and descending part	ADDR			
contour is below the triangle		of the C.BV pulse				
arms						
Lower Upper Area Ratio – the		Frechet Distance – distance				
ratio of the sum of the areas		between CaBV pulse contour and				
where the C _a BV pulse is above	LUAR	the triangle arms calculated with	FD			
the arms of the triangle to the		the use of frechetdist 0.6 Python				
sum of the areas where the		package, based on [6]				

C _a BV pulse contour is below the arms of the triangle.			
Ascending Upper Area – the area where the C_aBV contour is above the triangle on ascending part of the pulse	AUA	Dynamic Time Wrapping Distance – distance between C _a BV pulse contour and the triangle arms calculated with the use of dtw- python 1.3.0 package, based on [7]	DTWD
mean Ascending Upper Distance – the average distance calculated from area where the C _a BV contour is above the triangle on ascending part of the pulse	mAUD	normalized Dynamic Time Wrapping Distance – normalized distance between C _a BV pulse contour and the triangle arms calculated with the use of dtw- python 1.3.0 package, based on [7]	nDTWD
Maximum Ascending Upper Distance – the maximum distance calculated from area where the C _a BV contour is above the triangle on ascending part of the pulse	MAUD	Maximum Appearance Time – the time of appearance of the maximum value of the C _a BV pulse	MAT
Ascending Lower Area – the area where the C_aBV contour is below the triangle on ascending part of the pulse	ALA		

Supplement Table 2. Medians, lower (Q1) and upper (Q3) quartiles of all triangle similarity parameters. P-values are from the Wilcoxon signed rank test. Medians and p-values above 0.05 are bolded. Parameter names are given as acronyms, see Table 1 for full names.

	Healthy volunteers n=23			NPH patients n=31			
Parameter	Median	Q1	Q3	Median	Q1	Q3	p-value
ТА	26.45	23.56	27.81	22.47	21.42	27.21	0.025
mD	0.132	0.118	0.139	0.112	0.107	0.136	0.025
MD	0.290	0.251	0.310	0.253	0.215	0.293	0.017
UA	26.13	23.19	27.57	21.82	20.54	27.08	0.017
mUD	0.144	0.129	0.150	0.130	0.122	0.145	0.024
MUD	0.289	0.251	0.308	0.253	0.215	0.293	0.017
LA	0.374	0.265	0.497	0.661	0.344	1.296	0.005
mLD	0.017	0.014	0.021	0.026	0.019	0.032	0.002
MLD	0.033	0.027	0.041	0.050	0.036	0.059	0.003
LUAR	0.017	0.008	0.030	0.031	0.016	0.061	0.048

AUA	10.47	9.775	14.16	6.760	5.497	8.870	<< 0.001
mAUD	0.153	0.141	0.170	0.114	0.097	0.130	<< 0.001
MAUD	0.258	0.237	0.296	0.183	0.152	0.239	<< 0.001
ALA	0.314	0.200	0.452	0.599	0.322	1.241	0.002
mALD	0.021	0.017	0.025	0.031	0.023	0.038	0.003
MALD	0.033	0.026	0.040	0.049	0.035	0.059	0.002
DUA	13.48	12.91	15.08	15.04	12.96	17.21	0.157
mDUD	0.128	0.119	0.135	0.131	0.119	0.143	0.421
MUDD	0.198	0.187	0.213	0.214	0.186	0.230	0.151
DLA	0.043	0.036	0.060	0.046	0.020	0.103	0.958
mDLD	0.005	0.004	0.005	0.004	0.003	0.007	0.875
MDLD	0.008	0.006	0.009	0.007	0.004	0.011	0.875
ADDR	0.802	0.707	0.915	0.688	0.623	0.794	0.002
FD	0.121	0.110	0.140	0.127	0.104	0.155	0.916
DTWD	1.277	1.227	1.341	1.244	1.211	1.443	0.441
nDTWD	0.003	0.003	0.003	0.003	0.003	0.004	0.441
MAT	431.7	408.6	459.4	398.9	377.6	437.5	0.010

References:

- A. Ziółkowski *et al.*, "Peak appearance time in pulse waveforms of intracranial pressure and cerebral blood flow velocity," *Front Physiol*, vol. 13, p. 2670, Jan. 2023, doi: 10.3389/FPHYS.2022.1077966/BIBTEX.
- [2] A. Vallet *et al.*, "Biomechanical response of the CNS is associated with frailty in NPH-suspected patients," *J Neurol*, vol. 267, no. 5, pp. 1389–1400, 2020, doi: 10.1007/s00415-019-09689-z.
- D. J. Kim *et al.*, "The monitoring of relative changes in compartmental compliances of brain," *Physiol Meas*, vol. 30, no. 7, pp. 647–659, 2009, doi: 10.1088/0967-3334/30/7/009.
- C. J. J. Avezaat and J. H. M. van Eijndhoven, "The role of the pulsatile pressure variations in intracranial pressure monitoring," *Neurosurg Rev*, vol. 9, no. 1–2, pp. 113–33, 1986, doi: 10.1007/BF01743061.
- [5] M. Tóth, G. L. Nádasy, I. Nyáry, T. Kerényi, and E. Monos, "Are there systemic changes in the arterial biomechanics of intracranial aneurysm patients?," *Pflugers Arch*, vol. 439, no. 5, pp. 573– 578, Mar. 2000, doi: 10.1007/s004249900154.
- [6] T. Eiter and H. Mannila, "Computing discrete Fréchet distance. Tech. Report CD-TR 94/64," Vienna, 1994.
- [7] T. Giorgino, "Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package," *J Stat Softw*, vol. 31, no. 7, pp. 1–24, Aug. 2009, doi: 10.18637/JSS.V031.I07.