Internalizing and externalizing disorders in childhood and adolescence: A network approach

Eoin McElroy^{1,2}, Mark Shevlin¹, Jamie Murphy¹, Orla McBride¹

¹ School of Psychology, Ulster University, Northern Ireland

² Department of Psychological Sciences, University of Liverpool, United Kingdom

Supplementary materials

DAWBA recoding

Official diagnoses were only available at the 7.5 year time point. In order to make use of data from subsequent time points, a comprehensive recoding strategy was employed. The DAWBA contains skip patterns; first respondents are asked about the presence and severity of symptoms, e.g. "In the last 4 weeks, have there been times when [Name] has been very sad, miserable, unhappy or tearful?", "Over the last 4 weeks, has there been a period when s/he has been really miserable nearly every day?". If the respondent does not endorse the requisite symptoms/severity, they are deemed to have screened negative for that particular disorder. If the requisite pattern of symptoms/severity is endorsed, respondents are next asked to rate on a 4-point Likert scale the levels of distress associated with the symptoms (e.g. "How much has his/her sadness, irritability or loss of interest upset or distressed him/her?"), and overall impaired functionality (e.g. "Has his/her sadness, irritability or loss of interest interfered with..."). As per the ALSPAC codebook, the various impaired functionality questions can be summed to form a total burden score. In order to create quasi-diagnostic variables that closely mirror DSM-IV diagnoses, children were coded with a 1 if they endorsed the requisite symptoms and severity, along with significant distress (score of 3 or 4 on distress question) or impaired functionality/burden (a score of +2 standard deviations above the mean on total burden variable). In the case of ODD, teacher complaint was used in place of distress. For CD, a binary variable reflecting 'any frequent/definite troublesome behaviour' was computed, as per ALSPAC codebook guidelines. This recoding process resulted in 8 binary quasi-diagnostic variables at each of the three time points.

Table S1. Bivariate Correlations

	SPP_7	SOP_7	PTSD_7	GAD_7	DEP_7	ADHD_7
SPP_7	1					
SOP_7	.172**	1				
PTSD_7	.135**	.098 ^{**}	1			
GAD_7	.222**	.264**	.199**	1		
DEP_7	.161**	.177***	.175***	.402**	1	
ADHD_7	.092**	.144**	.101**	.240**	.223**	1
ODD_7	.098**	.160**	.128**	.219**	.228**	.576**
CD_7	.045**	.075***	.125***	.116**	.099**	.216***
SPP_10	.173**	.061**	.054**	.109**	.047**	$.037^{*}$
SOP_10	.112**	.285**	.057**	.166**	.111**	.157**
PTSD_10	0.023	0.027	.136***	.062**	.076***	.081**
GAD_10	.168**	.143**	$.087^{**}$.249**	.175***	.185**
DEP_10	$.090^{**}$	$.070^{**}$.099***	.140**	.202**	.131**
ADHD_10	.083**	.120**	.116***	.132**	.161**	.448**
ODD_10	$.100^{**}$.101**	.125***	.135**	.109**	.332**
CD_10	.044**	.038*	$.080^{**}$.050**	.090***	.145**
SPP_14	.113**	.050**	$.048^{**}$.122**	$.074^{**}$.067**
SOP_14	.118**	.221**	.056**	.130**	$.088^{**}$.116***
PTSD_14	.048**	0.029	.179**	.050**	.069**	.083**
GAD_14	.115**	.129**	.118**	.189**	.140**	.167**
DEP_14	$.097^{**}$.055***	$.058^{**}$.117**	.131**	.109**
ADHD_14	$.068^{**}$	$.088^{**}$.094**	.127**	$.097^{**}$.347**
ODD_14	.044**	.063**	.063**	.098**	$.085^{**}$.264**
CD_14	0.000	0.025	0.023	.035*	0.027	.133**

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

ODD 7	CD 7	SPP 10	SOP 10	PTSD 10	GAD 10	DEP 10

.260**	1					
.046***	0.009	1				
.155***	$.078^{**}$.093**	1			
.075**	.047**	.076**	.056**	1		
.161**	.079**	.175***	.205**	.120**	1	
.135**	.064**	.103**	.123**	.155**	.318**	1
.322**	.150**	.063**	.188**	.093**	.200**	.167**
.379**	.157**	.091**	.122**	.095**	.226**	.200**
.194**	.210**	.047**	.103**	.075**	.126**	.151**
.050***	0.023	.235**	$.077^{**}$	0.015	.141**	.063**
.124**	.053**	.095**	.280**	.058**	.155**	.093**
.056**	.046**	0.025	0.019	.213**	.084**	.107**
.128**	$.079^{**}$.114**	.150**	.092**	.306**	.200**
$.078^{**}$	$.079^{**}$.068**	.090**	.092**	.177**	.205**
.291**	.169**	.042**	.111**	.096**	.143**	.150**
.320***	.190**	.033*	.077**	.116**	.128**	.133**
.143**	.177**	-0.003	.058**	.088**	.086**	.100**

ADHD 10	ODD 10	CD 10	SPP 14	SOP 14	PTSD 14	GAD 14

						1
					1	.387**
				1	.280**	.216**
			1	.035*	.051**	.041**
		1	.147**	.056**	.098**	.128**
	1	.110**	.046**	.069**	.073**	.073**
1	.200**	.258**	.191**	.122**	.125**	.122**
.361**	.202**	.145**	.098**	.084**	.106**	.103**
.175***	.117**	.122**	.061**	.169**	.253**	.411***
.172**	.147**	.105***	.030*	.202**	.314**	.223**
.130**	.137**	.053**	0.013	.201**	.141**	.127**

1			
.203**	1		
.223**	.464**	1	
.165**	.231**	.335**	1

Fig S1. Bootstrapped edge weights

Fig S2. Average correlations between centrality indices in original sample and subsets

Fig S3. Results from non-parametric permutation test. Following Bonferroni adjustment, α value for statistical significance set at 0.016.