Skip to main content
Erschienen in: Brain Structure and Function 1/2018

08.12.2017 | Letter to the Editor

Respiration-coupled rhythms in prefrontal cortex: beyond if, to when, how, and why

verfasst von: Bernat Kocsis, Benjamin R. Pittman-Polletta, Alexis Roy

Erschienen in: Brain Structure and Function | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Excerpt

Dear Editor …
Literatur
Zurück zum Zitat Adhikari A, Topiwala MA, Gordon JA (2010) Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65:257–269CrossRefPubMedPubMedCentral Adhikari A, Topiwala MA, Gordon JA (2010) Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65:257–269CrossRefPubMedPubMedCentral
Zurück zum Zitat Andino-Pavlovsky V, Souza AC, Scheffer-Teixera R, Tort ABL, Etchenique R, Ribiero S (2017) Dopamine modulates delta-gamma phase-amplitude coupling in the prefrontal cortex of behaving rats. Front Neural Circuits 11:29CrossRefPubMedPubMedCentral Andino-Pavlovsky V, Souza AC, Scheffer-Teixera R, Tort ABL, Etchenique R, Ribiero S (2017) Dopamine modulates delta-gamma phase-amplitude coupling in the prefrontal cortex of behaving rats. Front Neural Circuits 11:29CrossRefPubMedPubMedCentral
Zurück zum Zitat Bagur S, Benchenane K (2017) Taming the oscillatory zoo in the hippocampus and neo-cortex: a review of Lockammn and Tort on Roy et al. Brain Struct Funct. (in press) Bagur S, Benchenane K (2017) Taming the oscillatory zoo in the hippocampus and neo-cortex: a review of Lockammn and Tort on Roy et al. Brain Struct Funct. (in press)
Zurück zum Zitat Bower JM (1995) Reverse engineering the nervous system: an in vivo, in vitro, and in compute approach to understanding the mammalian olfactory system. In: Zornetzer S, Davis J, Lau C (eds) An introduction to neurl and electronic networks. Academic Press, New York, pp 3–28 Bower JM (1995) Reverse engineering the nervous system: an in vivo, in vitro, and in compute approach to understanding the mammalian olfactory system. In: Zornetzer S, Davis J, Lau C (eds) An introduction to neurl and electronic networks. Academic Press, New York, pp 3–28
Zurück zum Zitat Dejean C, Courtin J, Karalis N, Chaudun F, Wurtz H, Bienvenu TC, Herry C (2016) Prefrontal neuronal assemblies temporally control fear behaviour. Nature 535:420–424CrossRefPubMed Dejean C, Courtin J, Karalis N, Chaudun F, Wurtz H, Bienvenu TC, Herry C (2016) Prefrontal neuronal assemblies temporally control fear behaviour. Nature 535:420–424CrossRefPubMed
Zurück zum Zitat Fontanini A, Spano P, Bower JM (2003) Ketamine-xylazine-induced slow (< 1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J Neurosci 23:7993–8001PubMed Fontanini A, Spano P, Bower JM (2003) Ketamine-xylazine-induced slow (< 1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J Neurosci 23:7993–8001PubMed
Zurück zum Zitat Gebber GL, Barman SM (1977) Brain stem vasomotor circuits involved in the genesis and entrainment of sympathetic nervous rhythms. Prog Brain Res 47:61–75CrossRefPubMed Gebber GL, Barman SM (1977) Brain stem vasomotor circuits involved in the genesis and entrainment of sympathetic nervous rhythms. Prog Brain Res 47:61–75CrossRefPubMed
Zurück zum Zitat Gebber GL, Barman SM (1981) Sympathetic-related activity of brain stem neurons in baroreceptor-denervated cats. Am J Physiol 240:R348–R355PubMed Gebber GL, Barman SM (1981) Sympathetic-related activity of brain stem neurons in baroreceptor-denervated cats. Am J Physiol 240:R348–R355PubMed
Zurück zum Zitat Gebber GL, Barman SM, Kocsis B (1990) Coherence of medullary unit activity and sympathetic nerve discharge. Am J Physiol 259:R561–R571PubMed Gebber GL, Barman SM, Kocsis B (1990) Coherence of medullary unit activity and sympathetic nerve discharge. Am J Physiol 259:R561–R571PubMed
Zurück zum Zitat Hunt MJ, Raynaud B, Garcia R (2006) Ketamine dose-dependently induces high-frequency oscillations in the nucleus accumbens in freely moving rats. Biol Psychiatry 60:1206–1214CrossRefPubMed Hunt MJ, Raynaud B, Garcia R (2006) Ketamine dose-dependently induces high-frequency oscillations in the nucleus accumbens in freely moving rats. Biol Psychiatry 60:1206–1214CrossRefPubMed
Zurück zum Zitat Kafetzopoulos V, Kokras N, Sotiropoulos I, Oliveira JF, Leite-Almeida H, Vasalou A, Sardinha VM, Papadopoulou-Daifoti Z, Almeida OF, Antoniou K, Sousa N, Dalla C (2017) The nucleus reuniens: a key node in the neurocircuitry of stress and depression. Mol Psychiatry 11:1–8 (Epub ahead of print) Kafetzopoulos V, Kokras N, Sotiropoulos I, Oliveira JF, Leite-Almeida H, Vasalou A, Sardinha VM, Papadopoulou-Daifoti Z, Almeida OF, Antoniou K, Sousa N, Dalla C (2017) The nucleus reuniens: a key node in the neurocircuitry of stress and depression. Mol Psychiatry 11:1–8 (Epub ahead of print)
Zurück zum Zitat Kang D, Ding M, Topchiy I, Kocsis (2017) Reciprocal interactions between medial septum and hippocampus in theta generation: granger causality decomposition of mixed spike-field recordings. Front Neuroanat. 11:120 Kang D, Ding M, Topchiy I, Kocsis (2017) Reciprocal interactions between medial septum and hippocampus in theta generation: granger causality decomposition of mixed spike-field recordings. Front Neuroanat. 11:120
Zurück zum Zitat Karalis N, Dejean C, Chaudun F, Khoder S, Rozeske RR, Wurtz H, Bagur S, Benchenane K, Sirota A, Courtin J, Herry C (2016) 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat Neurosci 19:605–612CrossRefPubMedPubMedCentral Karalis N, Dejean C, Chaudun F, Khoder S, Rozeske RR, Wurtz H, Bagur S, Benchenane K, Sirota A, Courtin J, Herry C (2016) 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat Neurosci 19:605–612CrossRefPubMedPubMedCentral
Zurück zum Zitat Kittelberger K, Hur EE, Sazegar S, Keshavan V, Kocsis B (2012) Comparison of the effects of acute and chronic administration of ketamine on hippocampal oscillations: relevance for the NMDA receptor hypofunction model of schizophrenia. Brain Struct Funct 217:395–409CrossRefPubMed Kittelberger K, Hur EE, Sazegar S, Keshavan V, Kocsis B (2012) Comparison of the effects of acute and chronic administration of ketamine on hippocampal oscillations: relevance for the NMDA receptor hypofunction model of schizophrenia. Brain Struct Funct 217:395–409CrossRefPubMed
Zurück zum Zitat Kocsis K, Kaminski M (2006) Dynamic changes in the direction of the theta rhythmic drive between supramammillary nucleus and the septohippocampal system. Hippocampus 16:531–540CrossRefPubMed Kocsis K, Kaminski M (2006) Dynamic changes in the direction of the theta rhythmic drive between supramammillary nucleus and the septohippocampal system. Hippocampus 16:531–540CrossRefPubMed
Zurück zum Zitat Lockmann ALV, Tort ABL (2017) Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents. Brain Struct Funct. (in press) Lockmann ALV, Tort ABL (2017) Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents. Brain Struct Funct. (in press)
Zurück zum Zitat Lockmann AL, Laplagne DA, Leao RN, Tort AB (2016) A respiration-coupled rhythm in the rat hippocampus independent of theta and slow oscillations. J Neurosci 36:5338–5352CrossRefPubMed Lockmann AL, Laplagne DA, Leao RN, Tort AB (2016) A respiration-coupled rhythm in the rat hippocampus independent of theta and slow oscillations. J Neurosci 36:5338–5352CrossRefPubMed
Zurück zum Zitat Ly S, Pishdari B, Lok LL, Hajos M, Kocsis B (2013) Activation of 5-HT6 receptors modulates sleep-wake activity and hippocampal theta oscillation. ACS Chem Neurosci 4:191–199CrossRefPubMed Ly S, Pishdari B, Lok LL, Hajos M, Kocsis B (2013) Activation of 5-HT6 receptors modulates sleep-wake activity and hippocampal theta oscillation. ACS Chem Neurosci 4:191–199CrossRefPubMed
Zurück zum Zitat Pittman-Polletta BR, Kocsis B, Viayan S, Whittington MA, Kopell NJ (2015) Brain rhythms connect impaired inhibition to altered cognition in schizophrenia. Biol Psychiatry 77:1020–1030CrossRefPubMedPubMedCentral Pittman-Polletta BR, Kocsis B, Viayan S, Whittington MA, Kopell NJ (2015) Brain rhythms connect impaired inhibition to altered cognition in schizophrenia. Biol Psychiatry 77:1020–1030CrossRefPubMedPubMedCentral
Zurück zum Zitat Pittman-Polletta BR, Hu K, Kocsis B (2017) Modeling the schizophrenias: subunit-specific NMDAR antagonism dissociates oscillatory signatures of frontal hypofunction and hippocampal hyperfunction. BioRxiv. https://doi.org/10.1101/191882 Pittman-Polletta BR, Hu K, Kocsis B (2017) Modeling the schizophrenias: subunit-specific NMDAR antagonism dissociates oscillatory signatures of frontal hypofunction and hippocampal hyperfunction. BioRxiv. https://​doi.​org/​10.​1101/​191882
Zurück zum Zitat Roy A, Svensson FP, Mazeh A, Kocsis B (2017) Prefrontal-hippocampal coupling by theta rhythm and by 2–5 Hz oscillation in the delta band: The role of the nucleus reuniens of the thalamus. Brain Struct Funct 222:2819–2830CrossRefPubMed Roy A, Svensson FP, Mazeh A, Kocsis B (2017) Prefrontal-hippocampal coupling by theta rhythm and by 2–5 Hz oscillation in the delta band: The role of the nucleus reuniens of the thalamus. Brain Struct Funct 222:2819–2830CrossRefPubMed
Zurück zum Zitat Tort AB, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H (2009) Theta-gamma coupling increases during the learning of item-context associations. Proc Natl Acad Sci USA 106:20942–20947CrossRefPubMedPubMedCentral Tort AB, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H (2009) Theta-gamma coupling increases during the learning of item-context associations. Proc Natl Acad Sci USA 106:20942–20947CrossRefPubMedPubMedCentral
Zurück zum Zitat Viczko J, Sharma AV, Pagliardini S, Wolansky T, Dickson CT (2014) Lack of respiratory coupling with neocortical and hippocampal slow oscillations. J Neurosci 34:3937–3946CrossRefPubMed Viczko J, Sharma AV, Pagliardini S, Wolansky T, Dickson CT (2014) Lack of respiratory coupling with neocortical and hippocampal slow oscillations. J Neurosci 34:3937–3946CrossRefPubMed
Zurück zum Zitat Zhong W, Ciatipis M, Wolfenstetter T, Jessberger J, Muller C, Ponsel S, Yanovsky Y, Brankack J, Tort ALB, Draguhn A (2017) Selective entrainment of gamma subbands by different slow network oscillations. Proc Natl Acad Sci USA 114:4519–4524CrossRefPubMedPubMedCentral Zhong W, Ciatipis M, Wolfenstetter T, Jessberger J, Muller C, Ponsel S, Yanovsky Y, Brankack J, Tort ALB, Draguhn A (2017) Selective entrainment of gamma subbands by different slow network oscillations. Proc Natl Acad Sci USA 114:4519–4524CrossRefPubMedPubMedCentral
Metadaten
Titel
Respiration-coupled rhythms in prefrontal cortex: beyond if, to when, how, and why
verfasst von
Bernat Kocsis
Benjamin R. Pittman-Polletta
Alexis Roy
Publikationsdatum
08.12.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 1/2018
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1587-8

Weitere Artikel der Ausgabe 1/2018

Brain Structure and Function 1/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Neu im Fachgebiet Neurologie

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.