Skip to main content
Erschienen in: European Journal of Applied Physiology 1/2009

01.09.2009 | Original Article

Respiratory compensation and blood pH regulation during variable intensity exercise in trained versus untrained subjects

verfasst von: Juan Del Coso, Nassim Hamouti, Roberto Aguado-Jimenez, Ricardo Mora-Rodriguez

Erschienen in: European Journal of Applied Physiology | Ausgabe 1/2009

Einloggen, um Zugang zu erhalten

Abstract

To determine whether endurance-trained cyclists (T; n = 10) have a superior blood-respiratory buffering for metabolic acidosis relative to untrained subjects (UT; n = 10) during variable intensity exercise (VAR). On three occasions, T and UT pedaled for 24 min alternating high- and low-intensities as percentage of their second ventilatory threshold (VT2): VARLOW 87.5–37.5% VT2, VARMODERATE 125–25% VT2, and VARHIGH 162.5–12.5% VT2 to complete the same amount of work. Before and just after each VAR trial, maximal cycling power (PMAX) was assessed. For each trial, the respiratory compensation for exercise acidosis (ventilatory equivalent for CO2) and the final blood pH, lactate and bicarbonate concentrations were similar for T and UT subjects. However, after VARHIGH, UT reduced PMAX (−14 ± 1%; P < 0.05) while T did not. Our data suggest that endurance training confers adaptations to withstand the low pH provoked by VAR without losing cycling power, although this response is not due to differences in blood-respiratory buffering.
Literatur
Zurück zum Zitat Balady GJ, Berra KA, Golding LA et al (2000) ACSM’s guidelines for exercise testing and prescription. Williams and Wilkins, Baltimore Balady GJ, Berra KA, Golding LA et al (2000) ACSM’s guidelines for exercise testing and prescription. Williams and Wilkins, Baltimore
Zurück zum Zitat Bell GJ, Wenger HA (1988) The effect of one-legged sprint training on intramuscular pH and nonbicarbonate buffering capacity. Eur J Appl Physiol Occup Physiol 58:158–164. doi:10.1007/BF00636620 PubMedCrossRef Bell GJ, Wenger HA (1988) The effect of one-legged sprint training on intramuscular pH and nonbicarbonate buffering capacity. Eur J Appl Physiol Occup Physiol 58:158–164. doi:10.​1007/​BF00636620 PubMedCrossRef
Zurück zum Zitat Bergström M, Hultman E (1988) Energy cost and fatigue during intermittent electrical stimulation of human skeletal muscle. J Appl Physiol 65:1500–1505PubMed Bergström M, Hultman E (1988) Energy cost and fatigue during intermittent electrical stimulation of human skeletal muscle. J Appl Physiol 65:1500–1505PubMed
Zurück zum Zitat Castagna C, Manzi V, D’Ottavio S et al (2007) Relation between maximal aerobic power and the ability to repeat sprints in young basketball players. J Strength Cond Res 21:1172–1176. doi:10.1519/R-20376.1 PubMedCrossRef Castagna C, Manzi V, D’Ottavio S et al (2007) Relation between maximal aerobic power and the ability to repeat sprints in young basketball players. J Strength Cond Res 21:1172–1176. doi:10.​1519/​R-20376.​1 PubMedCrossRef
Zurück zum Zitat Coso JD, Mora-Rodríguez R (2006) Validity of cycling peak power as measured by a short-sprint test versus the Wingate anaerobic test. Appl Physiol Nutr Metab 31:186–189. doi:10.1139/H05-026 PubMedCrossRef Coso JD, Mora-Rodríguez R (2006) Validity of cycling peak power as measured by a short-sprint test versus the Wingate anaerobic test. Appl Physiol Nutr Metab 31:186–189. doi:10.​1139/​H05-026 PubMedCrossRef
Zurück zum Zitat Dempsey JA, Forster HV, Ainsworth DM (1995) Regulation of hyperpnea, hyperventilation and respiratory muscle recruitment during exercise. In: Dempsey JA, Pack AI (eds) Regulation of breathing. Marcel Dekker, New York, pp 1065–1134 Dempsey JA, Forster HV, Ainsworth DM (1995) Regulation of hyperpnea, hyperventilation and respiratory muscle recruitment during exercise. In: Dempsey JA, Pack AI (eds) Regulation of breathing. Marcel Dekker, New York, pp 1065–1134
Zurück zum Zitat Edge J, Bishop D, Hill-Haas S et al (2006b) Comparison of muscle buffer capacity and repeated-sprint ability of untrained, endurance-trained and team-sports athletes. Eur J Appl Physiol 96:225–234. doi:10.1007/s00421-005-0056-x CrossRef Edge J, Bishop D, Hill-Haas S et al (2006b) Comparison of muscle buffer capacity and repeated-sprint ability of untrained, endurance-trained and team-sports athletes. Eur J Appl Physiol 96:225–234. doi:10.​1007/​s00421-005-0056-x CrossRef
Zurück zum Zitat Favero TG, Zable AC, Bowman MB et al (1995) Metabolic end products inhibit sarcoplasmic reticulum Ca2 + release and [3H] ryanodine binding. J Appl Physiol 78:1665–1672PubMed Favero TG, Zable AC, Bowman MB et al (1995) Metabolic end products inhibit sarcoplasmic reticulum Ca2 + release and [3H] ryanodine binding. J Appl Physiol 78:1665–1672PubMed
Zurück zum Zitat Forster HV (2000) Exercise hyperpnea: where do we go from here? Exerc Sport Sci Rev 28:133–137PubMed Forster HV (2000) Exercise hyperpnea: where do we go from here? Exerc Sport Sci Rev 28:133–137PubMed
Zurück zum Zitat Gibala MJ, Little JP, van Essen M et al (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 15:901–911. doi:10.1113/jphysiol.2006.112094 CrossRef Gibala MJ, Little JP, van Essen M et al (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 15:901–911. doi:10.​1113/​jphysiol.​2006.​112094 CrossRef
Zurück zum Zitat Kaufman M, Forster HV (1996) Reflexes controlling circulatory, ventilatory and airway responses to exercise. In: Rowell LB, Shepherd JT (eds) Handbook of physiology. exercise: regulation and integration of multiple systems. American Physiological Society, New York, pp 381–447 Kaufman M, Forster HV (1996) Reflexes controlling circulatory, ventilatory and airway responses to exercise. In: Rowell LB, Shepherd JT (eds) Handbook of physiology. exercise: regulation and integration of multiple systems. American Physiological Society, New York, pp 381–447
Zurück zum Zitat Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol 287:R502–R516 Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol 287:R502–R516
Zurück zum Zitat Röcker K, Striegel H, Freund T et al (1994) Relative functional buffering capacity in 400-meter runners, long-distance runners and untrained individuals. Eur J Appl Physiol Occup Physiol 5:430–434. doi:10.1007/BF00843741 CrossRef Röcker K, Striegel H, Freund T et al (1994) Relative functional buffering capacity in 400-meter runners, long-distance runners and untrained individuals. Eur J Appl Physiol Occup Physiol 5:430–434. doi:10.​1007/​BF00843741 CrossRef
Zurück zum Zitat Spriet LL, Lindinger MI, McKelvie RS et al (1989) Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol 66:8–13PubMed Spriet LL, Lindinger MI, McKelvie RS et al (1989) Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol 66:8–13PubMed
Zurück zum Zitat Stringer W, Casaburi R, Wasserman K (1992) Acid-base regulation during exercise and recovery in humans. J Appl Physiol 72:954–961PubMed Stringer W, Casaburi R, Wasserman K (1992) Acid-base regulation during exercise and recovery in humans. J Appl Physiol 72:954–961PubMed
Metadaten
Titel
Respiratory compensation and blood pH regulation during variable intensity exercise in trained versus untrained subjects
verfasst von
Juan Del Coso
Nassim Hamouti
Roberto Aguado-Jimenez
Ricardo Mora-Rodriguez
Publikationsdatum
01.09.2009
Verlag
Springer-Verlag
Erschienen in
European Journal of Applied Physiology / Ausgabe 1/2009
Print ISSN: 1439-6319
Elektronische ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-009-1101-y

Weitere Artikel der Ausgabe 1/2009

European Journal of Applied Physiology 1/2009 Zur Ausgabe