Skip to main content
Erschienen in:

02.05.2023 | Editorial

Results from an EANM survey on time estimates and personnel responsible for main tasks in molecular radiotherapy dosimetry

verfasst von: Pablo Mínguez Gabiña, Katarina Sjögreen Gleisner, Marta Cremonesi, Caroline Stokke, Glenn Flux, Francesco Cicone, Mark Konijnenberg, Matt Aldridge, Mattias Sandstrom, Carlo Chiesa, Maria Paphiti, Eero Hippeläinen, Carlos Uribe, Pavel Solny, Silvano Gnesin, Peter Bernhardt, Nicolas Chouin, Pedro Fragoso Costa, Gerhard Glatting, Frederik Verburg, Jonathan Gear

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 9/2023

Einloggen, um Zugang zu erhalten

Excerpt

Molecular radiotherapy (MRT) is the selective delivery of radionuclides to target and destroy malignant cells, mainly by exposure to the emitted beta or alpha particles [1, 2]. In most cases, these radionuclides are labelled to carrier molecules, also called vectors, for which tumour cells show avidity [35]. There is a wide variety of radionuclides and vectors used to treat a diversity of diseases [69], and their number is increasing, favoured by intense research in the field of theranostics in nuclear medicine [1012]. …
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Gudkov SV, Shilyagina NY, Vodeneev VA, Zvyagin AV. Targeted radionuclide therapy of human tumors. Int J Mol Sci. 2016;17:33.CrossRef Gudkov SV, Shilyagina NY, Vodeneev VA, Zvyagin AV. Targeted radionuclide therapy of human tumors. Int J Mol Sci. 2016;17:33.CrossRef
3.
Zurück zum Zitat Stokke C, MínguezGabiña P, Solny P, Cicone F, Sandström M, SjögreenGleisner K, et al. Dosimetry-based treatment planning for molecular radiotherapy: a summary of the 2017 report from the Internal Dosimetry Task Force. EJNMMI Phys. 2017;4:27.PubMedCentralCrossRefPubMed Stokke C, MínguezGabiña P, Solny P, Cicone F, Sandström M, SjögreenGleisner K, et al. Dosimetry-based treatment planning for molecular radiotherapy: a summary of the 2017 report from the Internal Dosimetry Task Force. EJNMMI Phys. 2017;4:27.PubMedCentralCrossRefPubMed
4.
Zurück zum Zitat Kwekkeboom DJ, Teunissen JJ, Bakker WH, de Herder WW, Feelders RA, et al. Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3] octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol. 2005;23(12):2754–62.CrossRefPubMed Kwekkeboom DJ, Teunissen JJ, Bakker WH, de Herder WW, Feelders RA, et al. Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3] octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol. 2005;23(12):2754–62.CrossRefPubMed
5.
Zurück zum Zitat Sisson JC, Shapiro B, Beierwaltes WH, Glowniak JV, Nakajo M, Mangner TJ, et al. Radiopharmaceutical treatment of malignant pheochromocytoma. J Nucl Med. 1984;25(2):197–206.PubMed Sisson JC, Shapiro B, Beierwaltes WH, Glowniak JV, Nakajo M, Mangner TJ, et al. Radiopharmaceutical treatment of malignant pheochromocytoma. J Nucl Med. 1984;25(2):197–206.PubMed
6.
Zurück zum Zitat Sawin CT, Becker DV. Radioiodine and the treatment of hyperthyroidism: the early history. Thyroid. 1997;7:163–76.CrossRefPubMed Sawin CT, Becker DV. Radioiodine and the treatment of hyperthyroidism: the early history. Thyroid. 1997;7:163–76.CrossRefPubMed
7.
Zurück zum Zitat Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossá SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.CrossRefPubMed Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossá SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.CrossRefPubMed
8.
Zurück zum Zitat Zweit J. Radionuclides and carrier molecules for therapy. Phys Med Biol. 1996;41(10):1905–14.CrossRefPubMed Zweit J. Radionuclides and carrier molecules for therapy. Phys Med Biol. 1996;41(10):1905–14.CrossRefPubMed
9.
Zurück zum Zitat Aerts A, Impens MR, Gijs M, D’Huyvetter M, Vanmarcke H, Ponsard B, et al. Biological carrier molecules of radiopharmaceuticals for molecular cancer imaging and targeted cancer therapy. Curr Pharm Des. 2014;20(32):5218–44.CrossRefPubMed Aerts A, Impens MR, Gijs M, D’Huyvetter M, Vanmarcke H, Ponsard B, et al. Biological carrier molecules of radiopharmaceuticals for molecular cancer imaging and targeted cancer therapy. Curr Pharm Des. 2014;20(32):5218–44.CrossRefPubMed
10.
Zurück zum Zitat Umbricht CA, Benesova M, Schmid RM, Turler A, Schibli R, van der Meulen MP, et al. 44Sc-PSMA-617 for radiotheragnostics in tandem with 177Lu-PSMA-617—preclinical investigations in comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617. EJNMMI Res. 2017;7(1): https://doi.org/10.1186/s13550-017-0257-4 Umbricht CA, Benesova M, Schmid RM, Turler A, Schibli R, van der Meulen MP, et al. 44Sc-PSMA-617 for radiotheragnostics in tandem with 177Lu-PSMA-617—preclinical investigations in comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617. EJNMMI Res. 2017;7(1): https://​doi.​org/​10.​1186/​s13550-017-0257-4
11.
Zurück zum Zitat Scarpa L, Buxbaum S, Kendler D, Fink K, Bektic J, Gruber L, et al. The 68Ga/177Lu theragnostic concept in PSMA targeting of castration-resistant prostate cancer: correlation of SUVmax values and absorbed dose estimates. Eur J Nucl Med Mol Imaging. 2017;44(5): https://doi.org/10.1007/s00259-016-3609-9 Scarpa L, Buxbaum S, Kendler D, Fink K, Bektic J, Gruber L, et al. The 68Ga/177Lu theragnostic concept in PSMA targeting of castration-resistant prostate cancer: correlation of SUVmax values and absorbed dose estimates. Eur J Nucl Med Mol Imaging. 2017;44(5): https://​doi.​org/​10.​1007/​s00259-016-3609-9
12.
Zurück zum Zitat Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, et al. 225Ac-PSMA-617 for PSMA-targeted a-radiation therapy of metastatic castration-resistant prostate Cancer. J Nucl Med. 2016;57:1941–4.CrossRefPubMed Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, et al. 225Ac-PSMA-617 for PSMA-targeted a-radiation therapy of metastatic castration-resistant prostate Cancer. J Nucl Med. 2016;57:1941–4.CrossRefPubMed
13.
Zurück zum Zitat ICRU International Commission on Radiation Units and Measurements. Prescribing Recording and Reporting Photon Beam Therapy. Bethesda, MD: ICRU Report 50; 1993. ICRU International Commission on Radiation Units and Measurements. Prescribing Recording and Reporting Photon Beam Therapy. Bethesda, MD: ICRU Report 50; 1993.
14.
Zurück zum Zitat ICRU International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon beam therapy (Supplement to ICRU Report 50). Bethesda, MD: ICRU Report 50; 1999. ICRU International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon beam therapy (Supplement to ICRU Report 50). Bethesda, MD: ICRU Report 50; 1999.
15.
Zurück zum Zitat ICRU International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting electron beam therapy. Oxford: ICRU Report 71; 2004. ICRU International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting electron beam therapy. Oxford: ICRU Report 71; 2004.
16.
Zurück zum Zitat ICRU International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting proton-beam therapy. Oxford: ICRU Report 78; 2007. ICRU International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting proton-beam therapy. Oxford: ICRU Report 78; 2007.
17.
Zurück zum Zitat ICRU International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting photon-beam intensity modulated radiotherapy (IMRT). Oxford: ICRU Report 83; 2010. ICRU International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting photon-beam intensity modulated radiotherapy (IMRT). Oxford: ICRU Report 83; 2010.
18.
Zurück zum Zitat ICRU International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting brachytherapy for cancer of the cervix. Oxford: ICRU Report 89; 2013. ICRU International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting brachytherapy for cancer of the cervix. Oxford: ICRU Report 89; 2013.
19.
Zurück zum Zitat International Atomic Energy Agency. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on absorbed dose to water. Vienna: IAEA TRS-398. IAEA; 2000. International Atomic Energy Agency. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on absorbed dose to water. Vienna: IAEA TRS-398. IAEA; 2000.
20.
Zurück zum Zitat International Atomic Energy Agency. Specification and acceptance testing of radiotherapy treatment planning systems. Vienna: IAEA TECDOC-1540. IAEA; 2007. International Atomic Energy Agency. Specification and acceptance testing of radiotherapy treatment planning systems. Vienna: IAEA TECDOC-1540. IAEA; 2007.
21.
Zurück zum Zitat International Atomic Energy Agency. Commissioning and quality assurance of computerized planning systems for radiation. IAEA TRS-: Treatment of Cancer, IAEA TRS-430. Vienna; 2004. International Atomic Energy Agency. Commissioning and quality assurance of computerized planning systems for radiation. IAEA TRS-: Treatment of Cancer, IAEA TRS-430. Vienna; 2004.
22.
Zurück zum Zitat SjögreenGleisner K, Spezi E, Solny P, MínguezGabiña P, Cicone F, Stokke C, et al. Variations in the practice of molecular radiotherapy and implementation of dosimetry: results from a European survey. EJNMMI Phys. 2017;4:28.CrossRef SjögreenGleisner K, Spezi E, Solny P, MínguezGabiña P, Cicone F, Stokke C, et al. Variations in the practice of molecular radiotherapy and implementation of dosimetry: results from a European survey. EJNMMI Phys. 2017;4:28.CrossRef
23.
Zurück zum Zitat Council of the European Union. European Council Directive 2013/59/Euratom on basic safety standards for protection against the dangers arising from exposure to ionising radiation and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Official Journal of the EU. 2014;L13:1–73. Council of the European Union. European Council Directive 2013/59/Euratom on basic safety standards for protection against the dangers arising from exposure to ionising radiation and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Official Journal of the EU. 2014;L13:1–73.
25.
Zurück zum Zitat Craig AJ, Rojas B, Wevrett JL, Hamer H, Fenwick A, Gregory R. IPEM topical report: current molecular radiotherapy service provision and guidance on the implications of setting up a dosimetry service. Phys Med Biol. 2020;65: 245038.CrossRefPubMed Craig AJ, Rojas B, Wevrett JL, Hamer H, Fenwick A, Gregory R. IPEM topical report: current molecular radiotherapy service provision and guidance on the implications of setting up a dosimetry service. Phys Med Biol. 2020;65: 245038.CrossRefPubMed
26.
Zurück zum Zitat International Atomic Energy Agency. Nuclear Medicine Resources Manual. Vienna: IAEA; 2006. International Atomic Energy Agency. Nuclear Medicine Resources Manual. Vienna: IAEA; 2006.
27.
Zurück zum Zitat International Atomic Energy Agency. Medical physics staffing needs in diagnostic imaging and radionuclide therapy: an activity based approach. Vienna: Human Health Reports No. 15 IAEA; 2018. International Atomic Energy Agency. Medical physics staffing needs in diagnostic imaging and radionuclide therapy: an activity based approach. Vienna: Human Health Reports No. 15 IAEA; 2018.
28.
Zurück zum Zitat Evans S, Christofides S, Brambilla M. The European Federation of Organisations for Medical Physics. Policy Statement No. 7.1: The roles, responsibilities and status of the medical physicist including the criteria for the staffing levels in a Medical Physics. Phys Med. 2016;32:533–40.CrossRefPubMed Evans S, Christofides S, Brambilla M. The European Federation of Organisations for Medical Physics. Policy Statement No. 7.1: The roles, responsibilities and status of the medical physicist including the criteria for the staffing levels in a Medical Physics. Phys Med. 2016;32:533–40.CrossRefPubMed
29.
Zurück zum Zitat Gear J, Chiesa C, Lassmann M, MínguezGabiña P, Tran-Gia J, Stokke C, Flux G. EANM Dosimetry Committee series on standard operational procedures for internal dosimetry for 131I mIBG treatment of neuroendocrine tumours. EJNMMI Phys. 2020;7:15.PubMedCentralCrossRefPubMed Gear J, Chiesa C, Lassmann M, MínguezGabiña P, Tran-Gia J, Stokke C, Flux G. EANM Dosimetry Committee series on standard operational procedures for internal dosimetry for 131I mIBG treatment of neuroendocrine tumours. EJNMMI Phys. 2020;7:15.PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Klein EE, Hanley J, Bayouth J, Yin F, Simon W, Dresser S, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36:4197–212.CrossRefPubMed Klein EE, Hanley J, Bayouth J, Yin F, Simon W, Dresser S, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36:4197–212.CrossRefPubMed
31.
Zurück zum Zitat Butler WM, Bice WS, DeWerd LA, Hevezi JM, SaifulHuq M, Ibbott GS, et al. Third-party brachytherapy source calibrations and physicist responsibilities: report of the AAPM Low Energy Brachytherapy Source Calibration Working Group. Med Phys. 2008;35:3860–5.CrossRefPubMed Butler WM, Bice WS, DeWerd LA, Hevezi JM, SaifulHuq M, Ibbott GS, et al. Third-party brachytherapy source calibrations and physicist responsibilities: report of the AAPM Low Energy Brachytherapy Source Calibration Working Group. Med Phys. 2008;35:3860–5.CrossRefPubMed
32.
Zurück zum Zitat Aletti P, et al. Recommendations for a quality assurance programme in external radiotherapy, ESTRO, Booklet No.2, 1995 Aletti P, et al. Recommendations for a quality assurance programme in external radiotherapy, ESTRO, Booklet No.2, 1995
33.
Zurück zum Zitat Klein EE, Hanley J, Bayouth J, Yin F-F, Simon W, Dresser S, Serago C, Aguirre F, Ma L, Arjomandy B, Liu C, Sandin C, Holmes T. Task Group 142 report: Quality assurance of medical acceleratorsa). Med Phys. 2009;36:4197–212. https://doi.org/10.1118/1.3190392 Klein EE, Hanley J, Bayouth J, Yin F-F, Simon W, Dresser S, Serago C, Aguirre F, Ma L, Arjomandy B, Liu C, Sandin C, Holmes T. Task Group 142 report: Quality assurance of medical acceleratorsa). Med Phys. 2009;36:4197–212. https://​doi.​org/​10.​1118/​1.​3190392
34.
Zurück zum Zitat Lassmann M, Hänscheid H, Chiesa C, Hindorf C, Flux G, Luster M; EANM Dosimetry Committee. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging. 2008;35(7):1405–12. https://doi.org/10.1007/s00259-008-0761-x Lassmann M, Hänscheid H, Chiesa C, Hindorf C, Flux G, Luster M; EANM Dosimetry Committee. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging. 2008;35(7):1405–12. https://​doi.​org/​10.​1007/​s00259-008-0761-x
35.
Zurück zum Zitat Hindorf C, Glatting G, Chiesa C, Linden O, Flux G. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. 2010;37(6):1238–50.CrossRefPubMed Hindorf C, Glatting G, Chiesa C, Linden O, Flux G. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. 2010;37(6):1238–50.CrossRefPubMed
36.
Zurück zum Zitat Hänscheid H, Canzi C, Eschner W, Flux G, Luster M, Strigari L, Lassmann M. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases. Eur J Nucl Med Mol Imaging. 2013;40(7):1126–34.CrossRefPubMed Hänscheid H, Canzi C, Eschner W, Flux G, Luster M, Strigari L, Lassmann M. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases. Eur J Nucl Med Mol Imaging. 2013;40(7):1126–34.CrossRefPubMed
37.
Zurück zum Zitat Dewaraja YK, Frey EC, Sgouros G, Brill AB, Roberson P, Zanzonico PB, Ljungberg M. MIRD Pamphlet No. 23: Quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med. 2012;53(8):1310–25.CrossRefPubMed Dewaraja YK, Frey EC, Sgouros G, Brill AB, Roberson P, Zanzonico PB, Ljungberg M. MIRD Pamphlet No. 23: Quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med. 2012;53(8):1310–25.CrossRefPubMed
38.
Zurück zum Zitat Dewaraja YK, Ljungberg M, Green AJ, Zanzonico PB, Frey EC. MIRD Pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications. J Nucl Med. 2013;54(12):2182–8.CrossRefPubMed Dewaraja YK, Ljungberg M, Green AJ, Zanzonico PB, Frey EC. MIRD Pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications. J Nucl Med. 2013;54(12):2182–8.CrossRefPubMed
39.
Zurück zum Zitat Ljungberg M, Celler A, Konijnenberg MW, Eckerman KF, Dewaraja YK, Sjögreen-Gleisner K. MIRD Pamphlet No. 26: Joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy. J Nucl Med. 2016;57(1):151–62.CrossRefPubMed Ljungberg M, Celler A, Konijnenberg MW, Eckerman KF, Dewaraja YK, Sjögreen-Gleisner K. MIRD Pamphlet No. 26: Joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy. J Nucl Med. 2016;57(1):151–62.CrossRefPubMed
40.
Zurück zum Zitat Hänscheid H, Lapa C, Buck AK, Lassmann M, Werner RA. Dose mapping after endoradiotherapy with 177Lu-DOTATATE/DOTATOC by a single measurement after 4 days. J Nucl Med. 2018;59:75–81.CrossRefPubMed Hänscheid H, Lapa C, Buck AK, Lassmann M, Werner RA. Dose mapping after endoradiotherapy with 177Lu-DOTATATE/DOTATOC by a single measurement after 4 days. J Nucl Med. 2018;59:75–81.CrossRefPubMed
41.
Zurück zum Zitat Gear JI, Cox MG, Gustafsson J, SjögreenGleisner K, Murray I, Glatting G, et al. EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations. Eur J Nucl Med Mol Imaging. 2018;45:2456–74.PubMedCentralCrossRefPubMed Gear JI, Cox MG, Gustafsson J, SjögreenGleisner K, Murray I, Glatting G, et al. EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations. Eur J Nucl Med Mol Imaging. 2018;45:2456–74.PubMedCentralCrossRefPubMed
42.
Zurück zum Zitat Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD Pamphlet No. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999;40(2):37S-61S.PubMed Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD Pamphlet No. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999;40(2):37S-61S.PubMed
43.
Zurück zum Zitat BusemannSokole E, Plachcinska A, Brittenn A. Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging. 2010;37:662–71.CrossRef BusemannSokole E, Plachcinska A, Brittenn A. Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging. 2010;37:662–71.CrossRef
44.
Zurück zum Zitat Zanzonico P. Routine quality control of clinical nuclear medicine instrumentation: a brief review. J Nucl Med. 2008;49(7):1114–31.CrossRefPubMed Zanzonico P. Routine quality control of clinical nuclear medicine instrumentation: a brief review. J Nucl Med. 2008;49(7):1114–31.CrossRefPubMed
45.
Zurück zum Zitat SjögreenGleisner K, Ljunberg M, Wingardh K, Minarik D, Strand SE. The LundADose method for planar image activity quantification and absorbed-dose assessment in radionuclide therapy. Cancer Biother Radiopharm. 2005;20(1):92–7. SjögreenGleisner K, Ljunberg M, Wingardh K, Minarik D, Strand SE. The LundADose method for planar image activity quantification and absorbed-dose assessment in radionuclide therapy. Cancer Biother Radiopharm. 2005;20(1):92–7.
46.
Zurück zum Zitat Glatting G, Landmann M, Kull T, Wunderlich A, Blumstein NM, Buck AK, et al. Internal radionuclide therapy: the ULMDOS software for treatment planning. Med Phys. 2005;32(7):2399–405.CrossRefPubMed Glatting G, Landmann M, Kull T, Wunderlich A, Blumstein NM, Buck AK, et al. Internal radionuclide therapy: the ULMDOS software for treatment planning. Med Phys. 2005;32(7):2399–405.CrossRefPubMed
47.
Zurück zum Zitat Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46(6):1023–7.PubMed Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46(6):1023–7.PubMed
48.
Zurück zum Zitat Kletting P, Schimmel S, Hänscheid H, Luster M, Fernandez M, Nosske D, et al. The NUKDOS software for treatment planning in molecular radiotherapy. Z Med Phys. 2015;25(3):264–74.CrossRefPubMed Kletting P, Schimmel S, Hänscheid H, Luster M, Fernandez M, Nosske D, et al. The NUKDOS software for treatment planning in molecular radiotherapy. Z Med Phys. 2015;25(3):264–74.CrossRefPubMed
49.
Zurück zum Zitat Hippelainen ET, Tenhunen MJ, Maenpaa HO, Heikkonen JJ, Sohlberg AO. Dosimetry software Hermes Internal Radiation Dosimetry: from quantitative image reconstruction to voxel-level absorbed dose distribution. Nucl Med Commun. 2017;38(5):357–65.CrossRefPubMed Hippelainen ET, Tenhunen MJ, Maenpaa HO, Heikkonen JJ, Sohlberg AO. Dosimetry software Hermes Internal Radiation Dosimetry: from quantitative image reconstruction to voxel-level absorbed dose distribution. Nucl Med Commun. 2017;38(5):357–65.CrossRefPubMed
50.
Zurück zum Zitat Andersson M, Johansson L, Eckerman K, Mattsson S. IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms. EJNMMI Res. 2017;7(1):88.PubMedCentralCrossRefPubMed Andersson M, Johansson L, Eckerman K, Mattsson S. IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms. EJNMMI Res. 2017;7(1):88.PubMedCentralCrossRefPubMed
51.
Zurück zum Zitat Mora-Ramirez E, Cassol E, Santoro L, Chouaf E, Trauchessec D, Pouget J, et al. 60 Comparison of organ-based absorbed doses estimations by using PLANET®Dose and OLINDA/EXM V2.0 in patients with peptide receptor radionuclide therapy (PRRT) treated with Lutathera®. Phys Med. 2018;56(1):34.CrossRef Mora-Ramirez E, Cassol E, Santoro L, Chouaf E, Trauchessec D, Pouget J, et al. 60 Comparison of organ-based absorbed doses estimations by using PLANET®Dose and OLINDA/EXM V2.0 in patients with peptide receptor radionuclide therapy (PRRT) treated with Lutathera®. Phys Med. 2018;56(1):34.CrossRef
52.
Zurück zum Zitat Maughan NM, Garcia-Ramirez J, Arpidone M, Swallen A, Laforest R, Goddu SM, et al. Validation of post-treatment PET-based dosimetry software for hepatic radioembolization of Yttrium-90 microspheres. Med Phys. 2019;46(5):2394–402.CrossRefPubMed Maughan NM, Garcia-Ramirez J, Arpidone M, Swallen A, Laforest R, Goddu SM, et al. Validation of post-treatment PET-based dosimetry software for hepatic radioembolization of Yttrium-90 microspheres. Med Phys. 2019;46(5):2394–402.CrossRefPubMed
54.
Zurück zum Zitat Jackson P, Hardcastle N, Dawe N, Kron T, Hofman MS, Hicks RJ. Deep learning renal segmentation for fully automated radiation dose estimation in unsealed source therapy. Front Oncol. 2018;8:215.PubMedCentralCrossRefPubMed Jackson P, Hardcastle N, Dawe N, Kron T, Hofman MS, Hicks RJ. Deep learning renal segmentation for fully automated radiation dose estimation in unsealed source therapy. Front Oncol. 2018;8:215.PubMedCentralCrossRefPubMed
55.
Zurück zum Zitat Grau C, Defourny N, Malicki J, Dunscombe P, Borras JM, Coffey M, et al. Radiotherapy equipment and departments in the European countries: final results from the ESTRO-HERO survey. Radiother Oncol. 2014;112(2):155–64.CrossRefPubMed Grau C, Defourny N, Malicki J, Dunscombe P, Borras JM, Coffey M, et al. Radiotherapy equipment and departments in the European countries: final results from the ESTRO-HERO survey. Radiother Oncol. 2014;112(2):155–64.CrossRefPubMed
56.
Zurück zum Zitat Lievens Y, Defourny N, Coffey M, Borras JM, Dunscombe P, Slotman B, et al. Radiotherapy staffing in the European countries: final results from the ESTRO-HERO survey. Radiother Oncol. 2014;112(2):178–86.CrossRefPubMed Lievens Y, Defourny N, Coffey M, Borras JM, Dunscombe P, Slotman B, et al. Radiotherapy staffing in the European countries: final results from the ESTRO-HERO survey. Radiother Oncol. 2014;112(2):178–86.CrossRefPubMed
Metadaten
Titel
Results from an EANM survey on time estimates and personnel responsible for main tasks in molecular radiotherapy dosimetry
verfasst von
Pablo Mínguez Gabiña
Katarina Sjögreen Gleisner
Marta Cremonesi
Caroline Stokke
Glenn Flux
Francesco Cicone
Mark Konijnenberg
Matt Aldridge
Mattias Sandstrom
Carlo Chiesa
Maria Paphiti
Eero Hippeläinen
Carlos Uribe
Pavel Solny
Silvano Gnesin
Peter Bernhardt
Nicolas Chouin
Pedro Fragoso Costa
Gerhard Glatting
Frederik Verburg
Jonathan Gear
Publikationsdatum
02.05.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 9/2023
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-023-06215-2