Skip to main content
Erschienen in: Current Atherosclerosis Reports 6/2021

01.06.2021 | Vascular Biology (H. Pownall, Section Editor)

Reverse Cholesterol Transport Dysfunction Is a Feature of Familial Hypercholesterolemia

verfasst von: Joan Carles Escolà-Gil, Noemí Rotllan, Josep Julve, Francisco Blanco-Vaca

Erschienen in: Current Atherosclerosis Reports | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

We seek to establish whether high-density lipoprotein HDL metabolism and reverse cholesterol transport (RCT) impairment is an intrinsic feature of familial hypercholesterolemia (FH).

Recent Findings

RCT from macrophages (m-RCT), a vascular cell type of major influence on atherosclerosis, is impaired in FH due to defective low-density lipoprotein receptor (LDLR) function via both the HDL- and LDL-mediated pathways. Potential mechanisms include impaired HDL metabolism, which is linked to increased LDL levels, as well as the increased transport of cellular unesterified cholesterol to LDL, which presents a defective catabolism.

Summary

RCT dysfunction is consistently associated with mutation-positive FH linked to decreased HDL levels as well as impaired HDL remodeling and LDLR function. It remains to be explored whether these alterations are also present in less well-characterized forms of FH, such as cases with no identified mutations, and whether they are fully corrected by current standard treatments.
Literatur
1.
Zurück zum Zitat Nordestgaard BG, Chapman MJ, Humphries SE, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34(45):3478–3490a.PubMedPubMedCentralCrossRef Nordestgaard BG, Chapman MJ, Humphries SE, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34(45):3478–3490a.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Talmud PJ, Shah S, Whittall R, Futema M, Howard P, Cooper JA, et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. Lancet. 2013;381(9874):1293–301.PubMedCrossRef Talmud PJ, Shah S, Whittall R, Futema M, Howard P, Cooper JA, et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. Lancet. 2013;381(9874):1293–301.PubMedCrossRef
3.•
Zurück zum Zitat Martin-Campos JM, Ruiz-Nogales S, Ibarretxe D, et al. Polygenic markers in patients diagnosed of autosomal dominant hypercholesterolemia in catalonia: distribution of weighted LDL-c-raising SNP scores and refinement of variant selection. Biomedicines. 2020;8(9):353. In line with previous findings of different groups, the increased LDL genetic score based on selected SNPs in mutation-negative FH patients suggest the existence of polygenic forms of the disease. Martin-Campos JM, Ruiz-Nogales S, Ibarretxe D, et al. Polygenic markers in patients diagnosed of autosomal dominant hypercholesterolemia in catalonia: distribution of weighted LDL-c-raising SNP scores and refinement of variant selection. Biomedicines. 2020;8(9):353. In line with previous findings of different groups, the increased LDL genetic score based on selected SNPs in mutation-negative FH patients suggest the existence of polygenic forms of the disease.
4.••
Zurück zum Zitat Kontush A. HDL and reverse remnant-cholesterol transport (RRT): Relevance to cardiovascular disease. Trends Mol Med. 2020;26(12):1086–100. This review proposes a potential novel pathway that explains the U-shaped relationship between plasma HDL-C levels and cardiovascular disease via the impairment of the transfer of unesterified cholesterol from triglyceride-rich lipoproteins to HDL.PubMedCrossRef Kontush A. HDL and reverse remnant-cholesterol transport (RRT): Relevance to cardiovascular disease. Trends Mol Med. 2020;26(12):1086–100. This review proposes a potential novel pathway that explains the U-shaped relationship between plasma HDL-C levels and cardiovascular disease via the impairment of the transfer of unesterified cholesterol from triglyceride-rich lipoproteins to HDL.PubMedCrossRef
5.••
Zurück zum Zitat Rosales C, Gillard BK, Xu B, Gotto AM Jr, Pownall HJ. Revisiting reverse cholesterol transport in the context of high-density lipoprotein free cholesterol bioavailability. Methodist Debakey Cardiovasc J. 2019;15(1):47–54. This review hypothesizes that an increased bioavailability of unesterified cholesterol in dysfunctional HDL would promote the excess transfer of this molecule to cells, thus constituting a potential proatherogenic mechanism.PubMedPubMedCentralCrossRef Rosales C, Gillard BK, Xu B, Gotto AM Jr, Pownall HJ. Revisiting reverse cholesterol transport in the context of high-density lipoprotein free cholesterol bioavailability. Methodist Debakey Cardiovasc J. 2019;15(1):47–54. This review hypothesizes that an increased bioavailability of unesterified cholesterol in dysfunctional HDL would promote the excess transfer of this molecule to cells, thus constituting a potential proatherogenic mechanism.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Jansen AC, van Aalst-Cohen ES, Tanck MW, et al. The contribution of classical risk factors to cardiovascular disease in familial hypercholesterolaemia: data in 2400 patients. J Intern Med. 2004;256(6):482–90.PubMedCrossRef Jansen AC, van Aalst-Cohen ES, Tanck MW, et al. The contribution of classical risk factors to cardiovascular disease in familial hypercholesterolaemia: data in 2400 patients. J Intern Med. 2004;256(6):482–90.PubMedCrossRef
7.
Zurück zum Zitat van Aalst-Cohen ES, Jansen AC, Boekholdt SM, et al. Genetic determinants of plasma HDL-cholesterol levels in familial hypercholesterolemia. Eur J Hum Genet. 2005;13(10):1137–42.PubMedCrossRef van Aalst-Cohen ES, Jansen AC, Boekholdt SM, et al. Genetic determinants of plasma HDL-cholesterol levels in familial hypercholesterolemia. Eur J Hum Genet. 2005;13(10):1137–42.PubMedCrossRef
8.
Zurück zum Zitat Inazu A, Koizumi J, Mabuchi H, Kajinami K, Takeda R. Enhanced cholesteryl ester transfer protein activities and abnormalities of high density lipoproteins in familial hypercholesterolemia. Horm Metab Res. 1992;24(6):284–8.PubMedCrossRef Inazu A, Koizumi J, Mabuchi H, Kajinami K, Takeda R. Enhanced cholesteryl ester transfer protein activities and abnormalities of high density lipoproteins in familial hypercholesterolemia. Horm Metab Res. 1992;24(6):284–8.PubMedCrossRef
9.
Zurück zum Zitat Bellanger N, Orsoni A, Julia Z, Fournier N, Frisdal E, Duchene E, et al. Atheroprotective reverse cholesterol transport pathway is defective in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2011;31(7):1675–81.PubMedCrossRef Bellanger N, Orsoni A, Julia Z, Fournier N, Frisdal E, Duchene E, et al. Atheroprotective reverse cholesterol transport pathway is defective in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2011;31(7):1675–81.PubMedCrossRef
10.•
Zurück zum Zitat Badimon L, Padro T, Cubedo J. Protein changes in non-LDL-lipoproteins in familial hypercholesterolemia: implications in cardiovascular disease manifestation and outcome. Curr Opin Lipidol. 2017;28(5):427–33. This review focuses on the identification of HDL protein changes that might contribute to the increased cardiovascular risk of familial hypercholesterolemia.PubMedCrossRef Badimon L, Padro T, Cubedo J. Protein changes in non-LDL-lipoproteins in familial hypercholesterolemia: implications in cardiovascular disease manifestation and outcome. Curr Opin Lipidol. 2017;28(5):427–33. This review focuses on the identification of HDL protein changes that might contribute to the increased cardiovascular risk of familial hypercholesterolemia.PubMedCrossRef
11.
Zurück zum Zitat Hogue JC, Lamarche B, Gaudet D, Tremblay AJ, Després JP, Bergeron J, et al. Association of heterozygous familial hypercholesterolemia with smaller HDL particle size. Atherosclerosis. 2007;190(2):429–35.PubMedCrossRef Hogue JC, Lamarche B, Gaudet D, Tremblay AJ, Després JP, Bergeron J, et al. Association of heterozygous familial hypercholesterolemia with smaller HDL particle size. Atherosclerosis. 2007;190(2):429–35.PubMedCrossRef
12.
Zurück zum Zitat Hussein H, Saheb S, Couturier M, Atassi M, Orsoni A, Carrié A, et al. Small, dense high-density lipoprotein 3 particles exhibit defective antioxidative and anti-inflammatory function in familial hypercholesterolemia: Partial correction by low-density lipoprotein apheresis. J Clin Lipidol. 2016;10(1):124–33.PubMedCrossRef Hussein H, Saheb S, Couturier M, Atassi M, Orsoni A, Carrié A, et al. Small, dense high-density lipoprotein 3 particles exhibit defective antioxidative and anti-inflammatory function in familial hypercholesterolemia: Partial correction by low-density lipoprotein apheresis. J Clin Lipidol. 2016;10(1):124–33.PubMedCrossRef
13.
Zurück zum Zitat Koizumi J, Inazu A, Fujita H, et al. Removal of apolipoprotein E-enriched high density lipoprotein by LDL-apheresis in familial hypercholesterolaemia: a possible activation of the reverse cholesterol transport system. Atherosclerosis. 1988;74(1-2):1–8.PubMedCrossRef Koizumi J, Inazu A, Fujita H, et al. Removal of apolipoprotein E-enriched high density lipoprotein by LDL-apheresis in familial hypercholesterolaemia: a possible activation of the reverse cholesterol transport system. Atherosclerosis. 1988;74(1-2):1–8.PubMedCrossRef
14.••
Zurück zum Zitat Cedo L, Plana N, Metso J, et al. Altered HDL remodeling and functionality in familial hypercholesterolemia. J Am Coll Cardiol. 2018;71(4):466–8. Short communication showing impairment in lipid transfer proteins and enzymes regulating HDL remodeling and cholesterol efflux in untreated heterozygous patients with an LDLR identified mutation.PubMedCrossRef Cedo L, Plana N, Metso J, et al. Altered HDL remodeling and functionality in familial hypercholesterolemia. J Am Coll Cardiol. 2018;71(4):466–8. Short communication showing impairment in lipid transfer proteins and enzymes regulating HDL remodeling and cholesterol efflux in untreated heterozygous patients with an LDLR identified mutation.PubMedCrossRef
15.
Zurück zum Zitat Miida T, Nakamura Y, Okada M. Development of coronary atherosclerosis in asymptomatic heterozygous patients with familial hypercholesterolemia. J Cardiol. 1996;28(2):71–7.PubMed Miida T, Nakamura Y, Okada M. Development of coronary atherosclerosis in asymptomatic heterozygous patients with familial hypercholesterolemia. J Cardiol. 1996;28(2):71–7.PubMed
16.
Zurück zum Zitat Frenais R, Ouguerram K, Maugeais C, et al. Apolipoprotein A-I kinetics in heterozygous familial hypercholesterolemia: a stable isotope study. J Lipid Res. 1999;40(8):1506–11.PubMedCrossRef Frenais R, Ouguerram K, Maugeais C, et al. Apolipoprotein A-I kinetics in heterozygous familial hypercholesterolemia: a stable isotope study. J Lipid Res. 1999;40(8):1506–11.PubMedCrossRef
17.
Zurück zum Zitat Schaefer JR, Rader DJ, Ikewaki K, Fairwell T, Zech LA, Kindt MR, et al. In vivo metabolism of apolipoprotein A-I in a patient with homozygous familial hypercholesterolemia. Arterioscler Thromb. 1992;12(7):843–8.PubMedCrossRef Schaefer JR, Rader DJ, Ikewaki K, Fairwell T, Zech LA, Kindt MR, et al. In vivo metabolism of apolipoprotein A-I in a patient with homozygous familial hypercholesterolemia. Arterioscler Thromb. 1992;12(7):843–8.PubMedCrossRef
18.
Zurück zum Zitat Gibson JC, Goldberg RB, Rubinstein A, Ginsberg HN, Brown WV, Baker S, et al. Plasma lipoprotein distribution of apolipoprotein E in familial hypercholesterolemia. Arteriosclerosis. 1987;7(4):401–7.PubMedCrossRef Gibson JC, Goldberg RB, Rubinstein A, Ginsberg HN, Brown WV, Baker S, et al. Plasma lipoprotein distribution of apolipoprotein E in familial hypercholesterolemia. Arteriosclerosis. 1987;7(4):401–7.PubMedCrossRef
19.
Zurück zum Zitat Miltiadous G, Cariolou MA, Elisaf M. HDL cholesterol levels in patients with molecularly defined familial hypercholesterolemia. Ann Clin Lab Sci. 2002;32(1):50–4.PubMed Miltiadous G, Cariolou MA, Elisaf M. HDL cholesterol levels in patients with molecularly defined familial hypercholesterolemia. Ann Clin Lab Sci. 2002;32(1):50–4.PubMed
20.
Zurück zum Zitat Cubedo J, Padro T, Alonso R, Mata P, Badimon L. ApoL1 levels in high density lipoprotein and cardiovascular event presentation in patients with familial hypercholesterolemia. J Lipid Res. 2016;57(6):1059–73.PubMedPubMedCentralCrossRef Cubedo J, Padro T, Alonso R, Mata P, Badimon L. ApoL1 levels in high density lipoprotein and cardiovascular event presentation in patients with familial hypercholesterolemia. J Lipid Res. 2016;57(6):1059–73.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Swertfeger DK, Rebholz S, Li H, Shah AS, Davidson WS, Lu LJ. Feasibility of a plasma bioassay to assess oxidative protection of low-density lipoproteins by high-density lipoproteins. J Clin Lipidol. 2018;12(6):1539–48.PubMedPubMedCentralCrossRef Swertfeger DK, Rebholz S, Li H, Shah AS, Davidson WS, Lu LJ. Feasibility of a plasma bioassay to assess oxidative protection of low-density lipoproteins by high-density lipoproteins. J Clin Lipidol. 2018;12(6):1539–48.PubMedPubMedCentralCrossRef
22.••
Zurück zum Zitat Cedo L, Metso J, Santos D, et al. LDL receptor regulates the reverse transport of macrophage-derived unesterified cholesterol via concerted action of the HDL-LDL axis: insight from mouse models. Circ Res. 2020;127(6):778–92. In vivo demonstration of impaired m-RCT in mouse models of familial hypercholesterolemia due to major LDLR dysfunction, but not in models with a similar phenotype but conserved LDLR capacity, such as the apoB100 transgenic mice.PubMedCrossRef Cedo L, Metso J, Santos D, et al. LDL receptor regulates the reverse transport of macrophage-derived unesterified cholesterol via concerted action of the HDL-LDL axis: insight from mouse models. Circ Res. 2020;127(6):778–92. In vivo demonstration of impaired m-RCT in mouse models of familial hypercholesterolemia due to major LDLR dysfunction, but not in models with a similar phenotype but conserved LDLR capacity, such as the apoB100 transgenic mice.PubMedCrossRef
23.
Zurück zum Zitat Lakomy D, Rebe C, Sberna AL, et al. Liver X receptor-mediated induction of cholesteryl ester transfer protein expression is selectively impaired in inflammatory macrophages. Arterioscler Thromb Vasc Biol. 2009;29(11):1923–9.PubMedCrossRef Lakomy D, Rebe C, Sberna AL, et al. Liver X receptor-mediated induction of cholesteryl ester transfer protein expression is selectively impaired in inflammatory macrophages. Arterioscler Thromb Vasc Biol. 2009;29(11):1923–9.PubMedCrossRef
24.
Zurück zum Zitat Laffitte BA, Joseph SB, Chen M, Castrillo A, Repa J, Wilpitz D, et al. The phospholipid transfer protein gene is a liver X receptor target expressed by macrophages in atherosclerotic lesions. Mol Cell Biol. 2003;23(6):2182–91.PubMedPubMedCentralCrossRef Laffitte BA, Joseph SB, Chen M, Castrillo A, Repa J, Wilpitz D, et al. The phospholipid transfer protein gene is a liver X receptor target expressed by macrophages in atherosclerotic lesions. Mol Cell Biol. 2003;23(6):2182–91.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371(25):2383–93.PubMedPubMedCentralCrossRef Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371(25):2383–93.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Saleheen D, Scott R, Javad S, Zhao W, Rodrigues A, Picataggi A, et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol. 2015;3(7):507–13.PubMedPubMedCentralCrossRef Saleheen D, Scott R, Javad S, Zhao W, Rodrigues A, Picataggi A, et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol. 2015;3(7):507–13.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Ottestad IO, Halvorsen B, Balstad TR, Otterdal K, Borge GI, Brosstad F, et al. Triglyceride-rich HDL3 from patients with familial hypercholesterolemia are less able to inhibit cytokine release or to promote cholesterol efflux. J Nutr. 2006;136(4):877–81.PubMedCrossRef Ottestad IO, Halvorsen B, Balstad TR, Otterdal K, Borge GI, Brosstad F, et al. Triglyceride-rich HDL3 from patients with familial hypercholesterolemia are less able to inhibit cytokine release or to promote cholesterol efflux. J Nutr. 2006;136(4):877–81.PubMedCrossRef
28.
Zurück zum Zitat Ogura M, Hori M, Harada-Shiba M. Association between cholesterol efflux capacity and atherosclerotic cardiovascular disease in patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2016;36(1):181–8.PubMedCrossRef Ogura M, Hori M, Harada-Shiba M. Association between cholesterol efflux capacity and atherosclerotic cardiovascular disease in patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2016;36(1):181–8.PubMedCrossRef
29.••
Zurück zum Zitat Soria-Florido MT, Schroder H, Grau M, Fito M, Lassale C. High density lipoprotein functionality and cardiovascular events and mortality: a systematic review and meta-analysis. Atherosclerosis. 2020;302:36–42. Systematic review and meta-analysis showing that although increased HDL cholesterol efflux capacity and antioxidant/anti-inflammatory capacities are associated with a lower risk of cardiovascular disease, there is a need of larger prospective studies with predefined standardized assays and outcomes.PubMedCrossRef Soria-Florido MT, Schroder H, Grau M, Fito M, Lassale C. High density lipoprotein functionality and cardiovascular events and mortality: a systematic review and meta-analysis. Atherosclerosis. 2020;302:36–42. Systematic review and meta-analysis showing that although increased HDL cholesterol efflux capacity and antioxidant/anti-inflammatory capacities are associated with a lower risk of cardiovascular disease, there is a need of larger prospective studies with predefined standardized assays and outcomes.PubMedCrossRef
30.
Zurück zum Zitat Guerin M, Silvain J, Gall J, Darabi M, Berthet M, Frisdal E, et al. Association of serum cholesterol efflux capacity with mortality in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2018;72(25):3259–69.PubMedCrossRef Guerin M, Silvain J, Gall J, Darabi M, Berthet M, Frisdal E, et al. Association of serum cholesterol efflux capacity with mortality in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2018;72(25):3259–69.PubMedCrossRef
31.••
Zurück zum Zitat von Eckardstein A. LDL contributes to reverse cholesterol transport. Circ Res. 2020;127(6):793–5. Insightful editorial comment on the role of LDL on CEC measurements and on the potential significance of unesterified cholesterol transfer from HDL to LDL in atherogenesis.CrossRef von Eckardstein A. LDL contributes to reverse cholesterol transport. Circ Res. 2020;127(6):793–5. Insightful editorial comment on the role of LDL on CEC measurements and on the potential significance of unesterified cholesterol transfer from HDL to LDL in atherogenesis.CrossRef
32.
Zurück zum Zitat Guerin M, Dolphin PJ, Chapman MJ. Preferential cholesteryl ester acceptors among the LDL subspecies of subjects with familial hypercholesterolemia. Arterioscler Thromb. 1994;14(5):679–85.PubMedCrossRef Guerin M, Dolphin PJ, Chapman MJ. Preferential cholesteryl ester acceptors among the LDL subspecies of subjects with familial hypercholesterolemia. Arterioscler Thromb. 1994;14(5):679–85.PubMedCrossRef
33.••
Zurück zum Zitat Feng M, Darabi M, Tubeuf E, et al. Free cholesterol transfer to high-density lipoprotein (HDL) upon triglyceride lipolysis underlies the U-shape relationship between HDL-cholesterol and cardiovascular disease. Eur J Prev Cardiol. 2020;27(15):1606–16. Study revealing that unesterified cholesterol transfer to HDL is linked to triglyceride-rich lipoprotein lipolysis and parallels the U-shape relationship between HDL-C and cardiovascular disease.PubMedCrossRef Feng M, Darabi M, Tubeuf E, et al. Free cholesterol transfer to high-density lipoprotein (HDL) upon triglyceride lipolysis underlies the U-shape relationship between HDL-cholesterol and cardiovascular disease. Eur J Prev Cardiol. 2020;27(15):1606–16. Study revealing that unesterified cholesterol transfer to HDL is linked to triglyceride-rich lipoprotein lipolysis and parallels the U-shape relationship between HDL-C and cardiovascular disease.PubMedCrossRef
34.
Zurück zum Zitat Sankaranarayanan S, de la Llera-Moya M, Drazul-Schrader D, Phillips MC, Kellner-Weibel G, Rothblat GH. Serum albumin acts as a shuttle to enhance cholesterol efflux from cells. J Lipid Res. 2013;54(3):671–6.PubMedPubMedCentralCrossRef Sankaranarayanan S, de la Llera-Moya M, Drazul-Schrader D, Phillips MC, Kellner-Weibel G, Rothblat GH. Serum albumin acts as a shuttle to enhance cholesterol efflux from cells. J Lipid Res. 2013;54(3):671–6.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Mosig S, Rennert K, Buttner P, et al. Monocytes of patients with familial hypercholesterolemia show alterations in cholesterol metabolism. BMC Med Genet. 2008;1:60. Mosig S, Rennert K, Buttner P, et al. Monocytes of patients with familial hypercholesterolemia show alterations in cholesterol metabolism. BMC Med Genet. 2008;1:60.
36.
Zurück zum Zitat Canfran-Duque A, Lin CS, Goedeke L, Suarez Y, Fernandez-Hernando C. Micro-RNAs and high-density lipoprotein metabolism. Arterioscler Thromb Vasc Biol. 2016;36(6):1076–84.PubMedPubMedCentralCrossRef Canfran-Duque A, Lin CS, Goedeke L, Suarez Y, Fernandez-Hernando C. Micro-RNAs and high-density lipoprotein metabolism. Arterioscler Thromb Vasc Biol. 2016;36(6):1076–84.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–33.PubMedPubMedCentralCrossRef Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–33.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.PubMedCrossRef Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.PubMedCrossRef
41.
Zurück zum Zitat Wang L, Jia XJ, Jiang HJ, du Y, Yang F, Si SY, et al. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol Cell Biol. 2013;33(10):1956–64.PubMedPubMedCentralCrossRef Wang L, Jia XJ, Jiang HJ, du Y, Yang F, Si SY, et al. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol Cell Biol. 2013;33(10):1956–64.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Vickers KC, Landstreet SR, Levin MG, Shoucri BM, Toth CL, Taylor RC, et al. MicroRNA-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci U S A. 2014;111(40):14518–23.PubMedPubMedCentralCrossRef Vickers KC, Landstreet SR, Levin MG, Shoucri BM, Toth CL, Taylor RC, et al. MicroRNA-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci U S A. 2014;111(40):14518–23.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Martino F, Carlomosti F, Avitabile D, Persico L, Picozza M, Barillà F, et al. Circulating miR-33a and miR-33b are up-regulated in familial hypercholesterolaemia in paediatric age. Clin Sci (Lond). 2015;129(11):963–72.CrossRef Martino F, Carlomosti F, Avitabile D, Persico L, Picozza M, Barillà F, et al. Circulating miR-33a and miR-33b are up-regulated in familial hypercholesterolaemia in paediatric age. Clin Sci (Lond). 2015;129(11):963–72.CrossRef
44.•
Zurück zum Zitat D'Agostino M, Martino F, Sileno S, et al. Circulating miR-200c is up-regulated in paediatric patients with familial hypercholesterolaemia and correlates with miR-33a/b levels: implication of a ZEB1-dependent mechanism. Clin Sci (Lond). 2017;131(18):2397–408. Study showing that circulating miR-200c is upregulated in pediatric FH, probably due to oxidative stress and inflammation and via a miR-33a/b-ZEB1-dependent mechanism.CrossRef D'Agostino M, Martino F, Sileno S, et al. Circulating miR-200c is up-regulated in paediatric patients with familial hypercholesterolaemia and correlates with miR-33a/b levels: implication of a ZEB1-dependent mechanism. Clin Sci (Lond). 2017;131(18):2397–408. Study showing that circulating miR-200c is upregulated in pediatric FH, probably due to oxidative stress and inflammation and via a miR-33a/b-ZEB1-dependent mechanism.CrossRef
45.
Zurück zum Zitat Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328(5985):1570–3.PubMedPubMedCentralCrossRef Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328(5985):1570–3.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328(5985):1566–9.PubMedCrossRef Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328(5985):1566–9.PubMedCrossRef
47.
Zurück zum Zitat Marquart TJ, Allen RM, Ory DS. Baldan A: miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A. 2010;107(27):12228–32.PubMedPubMedCentralCrossRef Marquart TJ, Allen RM, Ory DS. Baldan A: miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A. 2010;107(27):12228–32.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Rinninger F, Heine M, Singaraja R, Hayden M, Brundert M, Ramakrishnan R, et al. High density lipoprotein metabolism in low density lipoprotein receptor-deficient mice. J Lipid Res. 2014;55(9):1914–24.PubMedPubMedCentralCrossRef Rinninger F, Heine M, Singaraja R, Hayden M, Brundert M, Ramakrishnan R, et al. High density lipoprotein metabolism in low density lipoprotein receptor-deficient mice. J Lipid Res. 2014;55(9):1914–24.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Tanigawa H, Billheimer JT, Tohyama J, Zhang Y, Rothblat G, Rader DJ. Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation. 2007;116(11):1267–73.PubMedCrossRef Tanigawa H, Billheimer JT, Tohyama J, Zhang Y, Rothblat G, Rader DJ. Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation. 2007;116(11):1267–73.PubMedCrossRef
50.
Zurück zum Zitat Le May C, Berger JM, Lespine A, et al. Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol. 2013;33(7):1484–93.PubMedCrossRef Le May C, Berger JM, Lespine A, et al. Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol. 2013;33(7):1484–93.PubMedCrossRef
51.
Zurück zum Zitat Orsoni A, Saheb S, Levels JH, et al. LDL-apheresis depletes apoE-HDL and pre-beta1-HDL in familial hypercholesterolemia: relevance to atheroprotection. J Lipid Res. 2011;52(12):2304–13.PubMedPubMedCentralCrossRef Orsoni A, Saheb S, Levels JH, et al. LDL-apheresis depletes apoE-HDL and pre-beta1-HDL in familial hypercholesterolemia: relevance to atheroprotection. J Lipid Res. 2011;52(12):2304–13.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Orsoni A, Villard EF, Bruckert E, Robillard P, Carrie A, Bonnefont-Rousselot D, et al. Impact of LDL apheresis on atheroprotective reverse cholesterol transport pathway in familial hypercholesterolemia. J Lipid Res. 2012;53(4):767–75.PubMedPubMedCentralCrossRef Orsoni A, Villard EF, Bruckert E, Robillard P, Carrie A, Bonnefont-Rousselot D, et al. Impact of LDL apheresis on atheroprotective reverse cholesterol transport pathway in familial hypercholesterolemia. J Lipid Res. 2012;53(4):767–75.PubMedPubMedCentralCrossRef
53.••
Zurück zum Zitat Tao H, Huang J, Yancey PG, et al. Scavenging of reactive dicarbonyls with 2-hydroxybenzylamine reduces atherosclerosis in hypercholesterolemic Ldlr(-/-) mice. Nat Commun. 2020;11(1):4084. Treatment of FH mice with reactive dicarbonyl scavengers reduced HDL oxidative modification and increased HDL cholesterol efflux capacity; HDL from subjects with FH had increased MDA-apoAI adducts and defective cholesterol efflux capacity.PubMedPubMedCentralCrossRef Tao H, Huang J, Yancey PG, et al. Scavenging of reactive dicarbonyls with 2-hydroxybenzylamine reduces atherosclerosis in hypercholesterolemic Ldlr(-/-) mice. Nat Commun. 2020;11(1):4084. Treatment of FH mice with reactive dicarbonyl scavengers reduced HDL oxidative modification and increased HDL cholesterol efflux capacity; HDL from subjects with FH had increased MDA-apoAI adducts and defective cholesterol efflux capacity.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Yahya R, Favari E, Calabresi L, Verhoeven AJM, Zimetti F, Adorni MP, et al. Lomitapide affects HDL composition and function. Atherosclerosis. 2016;251:15–8.PubMedCrossRef Yahya R, Favari E, Calabresi L, Verhoeven AJM, Zimetti F, Adorni MP, et al. Lomitapide affects HDL composition and function. Atherosclerosis. 2016;251:15–8.PubMedCrossRef
55.
Zurück zum Zitat Lappegard KT, Kjellmo CA, Ljunggren S, et al. Lipoprotein apheresis affects lipoprotein particle subclasses more efficiently compared to the PCSK9 inhibitor evolocumab, a pilot study. Transfus Apher Sci. 2018;57(1):91–6.PubMedCrossRef Lappegard KT, Kjellmo CA, Ljunggren S, et al. Lipoprotein apheresis affects lipoprotein particle subclasses more efficiently compared to the PCSK9 inhibitor evolocumab, a pilot study. Transfus Apher Sci. 2018;57(1):91–6.PubMedCrossRef
56.
Zurück zum Zitat Adorni MP, Cipollari E, Favari E, Zanotti I, Zimetti F, Corsini A, et al. Inhibitory effect of PCSK9 on Abca1 protein expression and cholesterol efflux in macrophages. Atherosclerosis. 2017;256:1–6.PubMedCrossRef Adorni MP, Cipollari E, Favari E, Zanotti I, Zimetti F, Corsini A, et al. Inhibitory effect of PCSK9 on Abca1 protein expression and cholesterol efflux in macrophages. Atherosclerosis. 2017;256:1–6.PubMedCrossRef
57.••
Zurück zum Zitat Christensen JJ, Ulven SM, Retterstol K, et al. Comprehensive lipid and metabolite profiling of children with and without familial hypercholesterolemia: a cross-sectional study. Atherosclerosis. 2017;266:48–57. Interesting study showing that the NMR plasma analysis of children uncovers major changes in FH HDL.PubMedCrossRef Christensen JJ, Ulven SM, Retterstol K, et al. Comprehensive lipid and metabolite profiling of children with and without familial hypercholesterolemia: a cross-sectional study. Atherosclerosis. 2017;266:48–57. Interesting study showing that the NMR plasma analysis of children uncovers major changes in FH HDL.PubMedCrossRef
58.
Zurück zum Zitat Shimizu T, Miura S, Tanigawa H, Kuwano T, Zhang B, Uehara Y, et al. Rosuvastatin activates ATP-binding cassette transporter A1-dependent efflux ex vivo and promotes reverse cholesterol transport in macrophage cells in mice fed a high-fat diet. Arterioscler Thromb Vasc Biol. 2014;34(10):2246–53.PubMedCrossRef Shimizu T, Miura S, Tanigawa H, Kuwano T, Zhang B, Uehara Y, et al. Rosuvastatin activates ATP-binding cassette transporter A1-dependent efflux ex vivo and promotes reverse cholesterol transport in macrophage cells in mice fed a high-fat diet. Arterioscler Thromb Vasc Biol. 2014;34(10):2246–53.PubMedCrossRef
59.
Zurück zum Zitat Tardy C, Goffinet M, Boubekeur N, Ackermann R, Sy G, Bluteau A, et al. CER-001, a HDL-mimetic, stimulates the reverse lipid transport and atherosclerosis regression in high cholesterol diet-fed LDL-receptor deficient mice. Atherosclerosis. 2014;232(1):110–8.PubMedCrossRef Tardy C, Goffinet M, Boubekeur N, Ackermann R, Sy G, Bluteau A, et al. CER-001, a HDL-mimetic, stimulates the reverse lipid transport and atherosclerosis regression in high cholesterol diet-fed LDL-receptor deficient mice. Atherosclerosis. 2014;232(1):110–8.PubMedCrossRef
60.
Zurück zum Zitat Hovingh GK, Smits LP, Stefanutti C, Soran H, Kwok S, de Graaf J, et al. The effect of an apolipoprotein A-I-containing high-density lipoprotein-mimetic particle (CER-001) on carotid artery wall thickness in patients with homozygous familial hypercholesterolemia: The Modifying Orphan Disease Evaluation (MODE) study. Am Heart J. 2015;169(5):736–42 e731.PubMedCrossRef Hovingh GK, Smits LP, Stefanutti C, Soran H, Kwok S, de Graaf J, et al. The effect of an apolipoprotein A-I-containing high-density lipoprotein-mimetic particle (CER-001) on carotid artery wall thickness in patients with homozygous familial hypercholesterolemia: The Modifying Orphan Disease Evaluation (MODE) study. Am Heart J. 2015;169(5):736–42 e731.PubMedCrossRef
61.
Zurück zum Zitat Zheng KH, Kaiser Y, van Olden CC, Santos RD, Dasseux JL, Genest J, et al. No benefit of HDL mimetic CER-001 on carotid atherosclerosis in patients with genetically determined very low HDL levels. Atherosclerosis. 2020;311:13–9.PubMedCrossRef Zheng KH, Kaiser Y, van Olden CC, Santos RD, Dasseux JL, Genest J, et al. No benefit of HDL mimetic CER-001 on carotid atherosclerosis in patients with genetically determined very low HDL levels. Atherosclerosis. 2020;311:13–9.PubMedCrossRef
Metadaten
Titel
Reverse Cholesterol Transport Dysfunction Is a Feature of Familial Hypercholesterolemia
verfasst von
Joan Carles Escolà-Gil
Noemí Rotllan
Josep Julve
Francisco Blanco-Vaca
Publikationsdatum
01.06.2021
Verlag
Springer US
Erschienen in
Current Atherosclerosis Reports / Ausgabe 6/2021
Print ISSN: 1523-3804
Elektronische ISSN: 1534-6242
DOI
https://doi.org/10.1007/s11883-021-00928-1

Weitere Artikel der Ausgabe 6/2021

Current Atherosclerosis Reports 6/2021 Zur Ausgabe

Evidence-Based Medicine, Clinical Trials and Their Interpretations (K. Nasir, Section Editor)

How Do We Incorporate Polygenic Risk Scores in Cardiovascular Disease Risk Assessment and Management?

Nutrition (K. Petersen, Section Editor)

Food Insecurity and Cardiovascular Disease Risk

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.