Skip to main content
Erschienen in: Inflammation 1/2019

07.09.2018 | REVIEW

Review: the Role and Mechanisms of Macrophage Autophagy in Sepsis

verfasst von: Peng Qiu, Yang Liu, Jin Zhang

Erschienen in: Inflammation | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Sepsis is a systemic inflammatory response syndrome caused by infection. The core mechanism underlying sepsis is immune dysfunction, with macrophages, as important cells of the innate immune system, playing an essential role. Autophagy has been shown to be closely related to inflammation and immunity, and autophagy enhancement in sepsis can play a protective role by negatively regulating abnormal macrophage activation, modulating macrophage polarization phenotype, reducing activation of the inflammasome and release of inflammatory factors, and affecting macrophage apoptosis. However, excessive autophagy may also lead to autophagic death of macrophages, which further aggravates the inflammatory response. The mechanisms underlying these functions are relatively complex and remain unclear, but may be related to a variety of signaling pathways such as NF-κB, mTOR, and PI3K/AKT. The administration of drugs to assist in the regulation of macrophage autophagy has become a novel treatment for sepsis. The present review focuses on the role and the potential mechanisms of macrophage autophagy in sepsis.
Literatur
1.
Zurück zum Zitat Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The Third International Consensus Definitions for sepsis and Septic Shock (Sepsis-3). JAMA 315 (8): 801–810.CrossRefPubMedPubMedCentral Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The Third International Consensus Definitions for sepsis and Septic Shock (Sepsis-3). JAMA 315 (8): 801–810.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Delano, M.J., and P.A. Ward. 2016. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunological Reviews 274 (1): 330–353.CrossRefPubMedPubMedCentral Delano, M.J., and P.A. Ward. 2016. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunological Reviews 274 (1): 330–353.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Kovach, M.A., and T.J. Standiford. 2012. The function of neutrophils in sepsis. Current Opinion in Infectious Diseases 25 (3): 321–327.CrossRefPubMed Kovach, M.A., and T.J. Standiford. 2012. The function of neutrophils in sepsis. Current Opinion in Infectious Diseases 25 (3): 321–327.CrossRefPubMed
4.
Zurück zum Zitat Pastille, E., et al. 2010. Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis. Journal of Immunology 186 (2): 977–986.CrossRef Pastille, E., et al. 2010. Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis. Journal of Immunology 186 (2): 977–986.CrossRef
6.
Zurück zum Zitat Luan, Y.-Y., N. Dong, M. Xie, X.Z. Xiao, and Y.M. Yao. 2014. The significance and regulatory mechanisms of innate immune cells in the development of sepsis. Journal of Interferon & Cytokine Research 34 (1): 2–15.CrossRef Luan, Y.-Y., N. Dong, M. Xie, X.Z. Xiao, and Y.M. Yao. 2014. The significance and regulatory mechanisms of innate immune cells in the development of sepsis. Journal of Interferon & Cytokine Research 34 (1): 2–15.CrossRef
7.
Zurück zum Zitat Giamarellos-Bourboulis, E.J. 2014. Natural killer cells in sepsis: Detrimental role for final outcome. Critical Care Medicine 42 (6): 1579–1580.CrossRefPubMed Giamarellos-Bourboulis, E.J. 2014. Natural killer cells in sepsis: Detrimental role for final outcome. Critical Care Medicine 42 (6): 1579–1580.CrossRefPubMed
10.
Zurück zum Zitat Lauvau, G., P.’. Loke, and T.M. Hohl. 2015. Monocyte-mediated defense against bacteria, fungi, and parasites. Seminars in Immunology 27 (6): 397–409.CrossRefPubMed Lauvau, G., P.’. Loke, and T.M. Hohl. 2015. Monocyte-mediated defense against bacteria, fungi, and parasites. Seminars in Immunology 27 (6): 397–409.CrossRefPubMed
11.
Zurück zum Zitat Hamidzadeh, K., S.M. Christensen, E. Dalby, P. Chandrasekaran, and D.M. Mosser. 2017. Macrophages and the recovery from acute and chronic inflammation. Annual Review of Physiology 79: 567–592.CrossRefPubMed Hamidzadeh, K., S.M. Christensen, E. Dalby, P. Chandrasekaran, and D.M. Mosser. 2017. Macrophages and the recovery from acute and chronic inflammation. Annual Review of Physiology 79: 567–592.CrossRefPubMed
12.
Zurück zum Zitat Winkler, M.S., A. Rissiek, M. Priefler, E. Schwedhelm, L. Robbe, A. Bauer, C. Zahrte, C. Zoellner, S. Kluge, and A. Nierhaus. 2017. Human leucocyte antigen (HLA-DR) gene expression is reduced in sepsis and correlates with impaired TNFalpha response: a diagnostic tool for immunosuppression? PLoS One 12 (8): e0182427.CrossRefPubMedPubMedCentral Winkler, M.S., A. Rissiek, M. Priefler, E. Schwedhelm, L. Robbe, A. Bauer, C. Zahrte, C. Zoellner, S. Kluge, and A. Nierhaus. 2017. Human leucocyte antigen (HLA-DR) gene expression is reduced in sepsis and correlates with impaired TNFalpha response: a diagnostic tool for immunosuppression? PLoS One 12 (8): e0182427.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Wang, T.S., and J.C. Deng. 2008. Molecular and cellular aspects of sepsis-induced immunosuppression. Journal of Molecular Medicine 86 (5): 495–506.CrossRefPubMed Wang, T.S., and J.C. Deng. 2008. Molecular and cellular aspects of sepsis-induced immunosuppression. Journal of Molecular Medicine 86 (5): 495–506.CrossRefPubMed
14.
Zurück zum Zitat Lee, C.R., and D.C. Zeldin. 2015. Resolvin infectious inflammation by targeting the host response. The New England Journal of Medicine 373: 2183–2185.CrossRefPubMedPubMedCentral Lee, C.R., and D.C. Zeldin. 2015. Resolvin infectious inflammation by targeting the host response. The New England Journal of Medicine 373: 2183–2185.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Kumar, V. 2018. Targeting macrophage immunometabolism: dawn in the darkness of sepsis. International Immunopharmacology 58: 173–185.CrossRefPubMed Kumar, V. 2018. Targeting macrophage immunometabolism: dawn in the darkness of sepsis. International Immunopharmacology 58: 173–185.CrossRefPubMed
17.
Zurück zum Zitat Saitoh, T., and S. Akira. 2016. Regulation of inflammasomes by autophagy. The Journal of Allergy and Clinical Immunology 138 (1): 28–36.CrossRefPubMed Saitoh, T., and S. Akira. 2016. Regulation of inflammasomes by autophagy. The Journal of Allergy and Clinical Immunology 138 (1): 28–36.CrossRefPubMed
18.
19.
Zurück zum Zitat Deretic, V., T. Kimura, G. Timmins, P. Moseley, S. Chauhan, and M. Mandell. 2015. Immunologic manifestations of autophagy. The Journal of Clinical Investigation 125 (1): 75–84.CrossRefPubMedPubMedCentral Deretic, V., T. Kimura, G. Timmins, P. Moseley, S. Chauhan, and M. Mandell. 2015. Immunologic manifestations of autophagy. The Journal of Clinical Investigation 125 (1): 75–84.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Bonilla, D.L., A. Bhattacharya, Y. Sha, Y. Xu, Q. Xiang, A. Kan, C. Jagannath, M. Komatsu, and N.T. Eissa. 2013. Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity 39 (3): 537–547.CrossRefPubMedPubMedCentral Bonilla, D.L., A. Bhattacharya, Y. Sha, Y. Xu, Q. Xiang, A. Kan, C. Jagannath, M. Komatsu, and N.T. Eissa. 2013. Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity 39 (3): 537–547.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Komatsu, M., H. Kurokawa, S. Waguri, K. Taguchi, A. Kobayashi, Y. Ichimura, Y.S. Sou, I. Ueno, A. Sakamoto, K.I. Tong, M. Kim, Y. Nishito, S.I. Iemura, T. Natsume, T. Ueno, E. Kominami, H. Motohashi, K. Tanaka, and M. Yamamoto. 2010. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology 12 (3): 213–223.CrossRefPubMed Komatsu, M., H. Kurokawa, S. Waguri, K. Taguchi, A. Kobayashi, Y. Ichimura, Y.S. Sou, I. Ueno, A. Sakamoto, K.I. Tong, M. Kim, Y. Nishito, S.I. Iemura, T. Natsume, T. Ueno, E. Kominami, H. Motohashi, K. Tanaka, and M. Yamamoto. 2010. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology 12 (3): 213–223.CrossRefPubMed
22.
Zurück zum Zitat Cadwell, K., J.Y. Liu, S.L. Brown, H. Miyoshi, J. Loh, J.K. Lennerz, C. Kishi, W. Kc, J.A. Carrero, S. Hunt, C.D. Stone, E.M. Brunt, R.J. Xavier, B.P. Sleckman, E. Li, N. Mizushima, T.S. Stappenbeck, and H.W. Virgin IV. 2008. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456 (7219): 259–263.CrossRefPubMedPubMedCentral Cadwell, K., J.Y. Liu, S.L. Brown, H. Miyoshi, J. Loh, J.K. Lennerz, C. Kishi, W. Kc, J.A. Carrero, S. Hunt, C.D. Stone, E.M. Brunt, R.J. Xavier, B.P. Sleckman, E. Li, N. Mizushima, T.S. Stappenbeck, and H.W. Virgin IV. 2008. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456 (7219): 259–263.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Saitoh, T., N. Fujita, M.H. Jang, S. Uematsu, B.G. Yang, T. Satoh, H. Omori, T. Noda, N. Yamamoto, M. Komatsu, K. Tanaka, T. Kawai, T. Tsujimura, O. Takeuchi, T. Yoshimori, and S. Akira. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456 (7219): 264–268.CrossRefPubMed Saitoh, T., N. Fujita, M.H. Jang, S. Uematsu, B.G. Yang, T. Satoh, H. Omori, T. Noda, N. Yamamoto, M. Komatsu, K. Tanaka, T. Kawai, T. Tsujimura, O. Takeuchi, T. Yoshimori, and S. Akira. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456 (7219): 264–268.CrossRefPubMed
26.
Zurück zum Zitat Qu, X., Z. Zou, Q. Sun, K. Luby-Phelps, P. Cheng, R.N. Hogan, C. Gilpin, and B. Levine. 2007. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128 (5): 931–946.CrossRefPubMed Qu, X., Z. Zou, Q. Sun, K. Luby-Phelps, P. Cheng, R.N. Hogan, C. Gilpin, and B. Levine. 2007. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128 (5): 931–946.CrossRefPubMed
27.
Zurück zum Zitat Chargui, A., and M.V. El May. 2014. Autophagy mediates neutrophil responses to bacterial infection. APMIS 122 (11): 1047–1058.PubMed Chargui, A., and M.V. El May. 2014. Autophagy mediates neutrophil responses to bacterial infection. APMIS 122 (11): 1047–1058.PubMed
28.
Zurück zum Zitat Schultze, J.L., and S.V. Schmidt. 2015. Molecular features of macrophage activation. Seminars in Immunology 27 (6): 416–423.CrossRefPubMed Schultze, J.L., and S.V. Schmidt. 2015. Molecular features of macrophage activation. Seminars in Immunology 27 (6): 416–423.CrossRefPubMed
29.
Zurück zum Zitat Hotchkiss, R.S., C.M. Coopersmith, J.E. McDunn, and T.A. Ferguson. 2009. The sepsis seesaw: tilting toward immunosuppression. Nature Medicine 15 (5): 496–497.CrossRefPubMedPubMedCentral Hotchkiss, R.S., C.M. Coopersmith, J.E. McDunn, and T.A. Ferguson. 2009. The sepsis seesaw: tilting toward immunosuppression. Nature Medicine 15 (5): 496–497.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Nakahira, K., J.A. Haspel, V.A.K. Rathinam, S.J. Lee, T. Dolinay, H.C. Lam, J.A. Englert, M. Rabinovitch, M. Cernadas, H.P. Kim, K.A. Fitzgerald, S.W. Ryter, and A.M.K. Choi. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology 12 (3): 222–230.CrossRefPubMed Nakahira, K., J.A. Haspel, V.A.K. Rathinam, S.J. Lee, T. Dolinay, H.C. Lam, J.A. Englert, M. Rabinovitch, M. Cernadas, H.P. Kim, K.A. Fitzgerald, S.W. Ryter, and A.M.K. Choi. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology 12 (3): 222–230.CrossRefPubMed
31.
Zurück zum Zitat Lin, C.W., S. Lo, C. Hsu, C.H. Hsieh, Y.F. Chang, B.S. Hou, Y.H. Kao, C.C. Lin, M.L. Yu, S.S. Yuan, and Y.C. Hsieh. 2014. T-cell autophagy deficiency increases mortality and suppresses immune responses after sepsis. PLoS One 9 (7): e102066.CrossRefPubMedPubMedCentral Lin, C.W., S. Lo, C. Hsu, C.H. Hsieh, Y.F. Chang, B.S. Hou, Y.H. Kao, C.C. Lin, M.L. Yu, S.S. Yuan, and Y.C. Hsieh. 2014. T-cell autophagy deficiency increases mortality and suppresses immune responses after sepsis. PLoS One 9 (7): e102066.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Mansilla Pareja, M.E., and M.I. Colombo. 2013. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms. Frontiers in Cellular and Infection Microbiology 3:54. Mansilla Pareja, M.E., and M.I. Colombo. 2013. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms. Frontiers in Cellular and Infection Microbiology 3:54.
33.
Zurück zum Zitat Maurer, K., T. Reyes-Robles, F. Alonzo III, J. Durbin, V.J. Torres, and K. Cadwell. 2015. Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host & Microbe 17 (4): 429–440.CrossRef Maurer, K., T. Reyes-Robles, F. Alonzo III, J. Durbin, V.J. Torres, and K. Cadwell. 2015. Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host & Microbe 17 (4): 429–440.CrossRef
35.
Zurück zum Zitat Liu, Y., and B. Levine. 2015. Autosis and autophagic cell death: the dark side of autophagy. Cell Death and Differentiation 22 (3): 367–376.CrossRefPubMed Liu, Y., and B. Levine. 2015. Autosis and autophagic cell death: the dark side of autophagy. Cell Death and Differentiation 22 (3): 367–376.CrossRefPubMed
36.
Zurück zum Zitat Aguirre, A., I. López-Alonso, A. González-López, L. Amado-Rodríguez, E. Batalla-Solís, A. Astudillo, J. Blázquez-Prieto, A.F. Fernández, J.A. Galván, C.C. dos Santos, and G.M. Albaiceta. 2014. Defective autophagy impairs ATF3 activity and worsens lung injury during endotoxemia. Journal of Molecular Medicine (Berlin, Germany) 92 (6): 665–676.CrossRef Aguirre, A., I. López-Alonso, A. González-López, L. Amado-Rodríguez, E. Batalla-Solís, A. Astudillo, J. Blázquez-Prieto, A.F. Fernández, J.A. Galván, C.C. dos Santos, and G.M. Albaiceta. 2014. Defective autophagy impairs ATF3 activity and worsens lung injury during endotoxemia. Journal of Molecular Medicine (Berlin, Germany) 92 (6): 665–676.CrossRef
37.
Zurück zum Zitat Lin, C.W., S. Lo, D.S. Perng, D.B.C. Wu, P.H. Lee, Y.F. Chang, P.L. Kuo, M.L. Yu, S.S.F. Yuan, and Y.C. Hsieh. 2014. Complete activation of autophagic process attenuates liver injury and improves survival in septic mice. Shock 41 (3): 241–249.CrossRefPubMed Lin, C.W., S. Lo, D.S. Perng, D.B.C. Wu, P.H. Lee, Y.F. Chang, P.L. Kuo, M.L. Yu, S.S.F. Yuan, and Y.C. Hsieh. 2014. Complete activation of autophagic process attenuates liver injury and improves survival in septic mice. Shock 41 (3): 241–249.CrossRefPubMed
38.
Zurück zum Zitat Hsieh, C.H., P.Y. Pai, H.W. Hsueh, S.S. Yuan, and Y.C. Hsieh. 2011. Complete induction of autophagy is essential for cardioprotection in sepsis. Annals of Surgery 253 (6): 1190–1200.CrossRefPubMed Hsieh, C.H., P.Y. Pai, H.W. Hsueh, S.S. Yuan, and Y.C. Hsieh. 2011. Complete induction of autophagy is essential for cardioprotection in sepsis. Annals of Surgery 253 (6): 1190–1200.CrossRefPubMed
39.
Zurück zum Zitat Unuma, K., T. Aki, T. Funakoshi, K. Hashimoto, and K. Uemura. 2015. Extrusion of mitochondrial contents from lipopolysaccharide-stimulated cells: Involvement of autophagy. Autophagy 11 (9): 1520–1536.CrossRefPubMedPubMedCentral Unuma, K., T. Aki, T. Funakoshi, K. Hashimoto, and K. Uemura. 2015. Extrusion of mitochondrial contents from lipopolysaccharide-stimulated cells: Involvement of autophagy. Autophagy 11 (9): 1520–1536.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Waltz, P., E.H. Carchman, A.C. Young, J. Rao, M.R. Rosengart, D. Kaczorowski, and B.S. Zuckerbraun. 2011. Lipopolysaccaride induces autophagic signaling in macrophages via a TLR4, heme oxygenase-1 dependent pathway. Autophagy 7 (3): 315–320.CrossRefPubMed Waltz, P., E.H. Carchman, A.C. Young, J. Rao, M.R. Rosengart, D. Kaczorowski, and B.S. Zuckerbraun. 2011. Lipopolysaccaride induces autophagic signaling in macrophages via a TLR4, heme oxygenase-1 dependent pathway. Autophagy 7 (3): 315–320.CrossRefPubMed
42.
Zurück zum Zitat Carchman, E.H., J. Rao, P.A. Loughran, M.R. Rosengart, and B.S. Zuckerbraun. 2011. Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology 53 (6): 2053–2062.CrossRefPubMed Carchman, E.H., J. Rao, P.A. Loughran, M.R. Rosengart, and B.S. Zuckerbraun. 2011. Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology 53 (6): 2053–2062.CrossRefPubMed
43.
Zurück zum Zitat Tang, Z., L. Ni, S. Javidiparsijani, F. Hu, L. A Gatto, R. Cooney, and G. Wang. 2013. Enhanced liver autophagic activity improves survival of septic mice lacking surfactant proteins A and D. The Tohoku Journal of Experimental Medicine 231 (2): 127–138.CrossRefPubMedPubMedCentral Tang, Z., L. Ni, S. Javidiparsijani, F. Hu, L. A Gatto, R. Cooney, and G. Wang. 2013. Enhanced liver autophagic activity improves survival of septic mice lacking surfactant proteins A and D. The Tohoku Journal of Experimental Medicine 231 (2): 127–138.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Mei, S., M. Livingston, J. Hao, L. li, C. Mei, and Z. Dong. 2016. Autophagy is activated to protect against endotoxic acute kidney injury. Scientific Reports 6: 22171.CrossRefPubMedPubMedCentral Mei, S., M. Livingston, J. Hao, L. li, C. Mei, and Z. Dong. 2016. Autophagy is activated to protect against endotoxic acute kidney injury. Scientific Reports 6: 22171.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Howell, G.M., H. Gomez, R.D. Collage, P. Loughran, X. Zhang, D.A. Escobar, T.R. Billiar, B.S. Zuckerbraun, and M.R. Rosengart. 2013. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLoS One 8 (7): e69520.CrossRefPubMedPubMedCentral Howell, G.M., H. Gomez, R.D. Collage, P. Loughran, X. Zhang, D.A. Escobar, T.R. Billiar, B.S. Zuckerbraun, and M.R. Rosengart. 2013. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLoS One 8 (7): e69520.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Su, Y., Y. Qu, F.Y. Zhao, H.F. Li, D.Z. Mu, and X.H. Li. 2015. Regulation of autophagy by the nuclear factor κB signaling pathway in the hippocampus of rats with sepsis. Journal of Neuroinflammation 12 (1): 116.CrossRefPubMedPubMedCentral Su, Y., Y. Qu, F.Y. Zhao, H.F. Li, D.Z. Mu, and X.H. Li. 2015. Regulation of autophagy by the nuclear factor κB signaling pathway in the hippocampus of rats with sepsis. Journal of Neuroinflammation 12 (1): 116.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Colell, A., J.E. Ricci, S. Tait, S. Milasta, U. Maurer, L. Bouchier-Hayes, P. Fitzgerald, A. Guio-Carrion, N.J. Waterhouse, C.W. Li, B. Mari, P. Barbry, D.D. Newmeyer, H.M. Beere, and D.R. Green. 2007. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129 (5): 983–997.CrossRefPubMed Colell, A., J.E. Ricci, S. Tait, S. Milasta, U. Maurer, L. Bouchier-Hayes, P. Fitzgerald, A. Guio-Carrion, N.J. Waterhouse, C.W. Li, B. Mari, P. Barbry, D.D. Newmeyer, H.M. Beere, and D.R. Green. 2007. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129 (5): 983–997.CrossRefPubMed
49.
Zurück zum Zitat Takaoka, Y., et al. 2014. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) prevents lipopolysaccharide (LPS)-induced, sepsis-related severe acute lung injury in mice. Scientific Reports 4: 5204.CrossRefPubMedPubMedCentral Takaoka, Y., et al. 2014. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) prevents lipopolysaccharide (LPS)-induced, sepsis-related severe acute lung injury in mice. Scientific Reports 4: 5204.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Lo, S., S.S.F. Yuan, C. Hsu, Y.J. Cheng, Y.F. Chang, H.W. Hsueh, P.H. Lee, and Y.C. Hsieh. 2013. Lc3 over-expression improves survival and attenuates lung injury through increasing autophagosomal clearance in septic mice. Annals of Surgery 257 (2): 352–363.CrossRefPubMed Lo, S., S.S.F. Yuan, C. Hsu, Y.J. Cheng, Y.F. Chang, H.W. Hsueh, P.H. Lee, and Y.C. Hsieh. 2013. Lc3 over-expression improves survival and attenuates lung injury through increasing autophagosomal clearance in septic mice. Annals of Surgery 257 (2): 352–363.CrossRefPubMed
51.
Zurück zum Zitat Tanaka, A., Y. Jin, S.J. Lee, M. Zhang, H.P. Kim, D.B. Stolz, S.W. Ryter, and A.M.K. Choi. 2012. Hyperoxia-induced LC3B interacts with the Fas apoptotic pathway in epithelial cell death. American Journal of Respiratory Cell and Molecular Biology 46 (4): 507–514.CrossRefPubMedPubMedCentral Tanaka, A., Y. Jin, S.J. Lee, M. Zhang, H.P. Kim, D.B. Stolz, S.W. Ryter, and A.M.K. Choi. 2012. Hyperoxia-induced LC3B interacts with the Fas apoptotic pathway in epithelial cell death. American Journal of Respiratory Cell and Molecular Biology 46 (4): 507–514.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Lee, S.J., S.W. Ryter, J.F. Xu, K. Nakahira, H.P. Kim, A.M.K. Choi, and Y.S. Kim. 2011. Carbon monoxide activates autophagy via mitochondrial reactive oxygen species formation. American Journal of Respiratory Cell and Molecular Biology 45 (4): 867–873.CrossRefPubMedPubMedCentral Lee, S.J., S.W. Ryter, J.F. Xu, K. Nakahira, H.P. Kim, A.M.K. Choi, and Y.S. Kim. 2011. Carbon monoxide activates autophagy via mitochondrial reactive oxygen species formation. American Journal of Respiratory Cell and Molecular Biology 45 (4): 867–873.CrossRefPubMedPubMedCentral
53.
54.
Zurück zum Zitat Chen, H.R., Y.C. Chuang, C.H. Chao, and T.M. Yeh. 2015. Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biology Open 4 (2): 244–252.CrossRefPubMedPubMedCentral Chen, H.R., Y.C. Chuang, C.H. Chao, and T.M. Yeh. 2015. Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biology Open 4 (2): 244–252.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Lorne, E., et al. 2009. Participation of mammalian target of rapamycin complex 1 in toll-like receptor 2- and 4-induced neutrophil activation and acute lung injury. American Journal of Respiratory Cell and Molecular Biology 41 (2): 237–245.CrossRefPubMedPubMedCentral Lorne, E., et al. 2009. Participation of mammalian target of rapamycin complex 1 in toll-like receptor 2- and 4-induced neutrophil activation and acute lung injury. American Journal of Respiratory Cell and Molecular Biology 41 (2): 237–245.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Gong, L., R.J. Devenish, and M. Prescott. 2012. Autophagy as a macrophage response to bacterial infection. IUBMB Life 64 (9): 740–747.CrossRefPubMed Gong, L., R.J. Devenish, and M. Prescott. 2012. Autophagy as a macrophage response to bacterial infection. IUBMB Life 64 (9): 740–747.CrossRefPubMed
57.
Zurück zum Zitat Xu, Y., C. Jagannath, X.D. Liu, A. Sharafkhaneh, K.E. Kolodziejska, and N.T. Eissa. 2007. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27 (1): 135–144.CrossRefPubMedPubMedCentral Xu, Y., C. Jagannath, X.D. Liu, A. Sharafkhaneh, K.E. Kolodziejska, and N.T. Eissa. 2007. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27 (1): 135–144.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Xu, Y., et al. 2014. Signaling pathway of autophagy associated with innate immunity. Autophagy 4 (1): 110–112.CrossRef Xu, Y., et al. 2014. Signaling pathway of autophagy associated with innate immunity. Autophagy 4 (1): 110–112.CrossRef
59.
Zurück zum Zitat Fujita, K.-I., and S.M. Srinivasula. 2014. TLR4-mediated autophagy in macrophages is a p62-dependent type of selective autophagy of aggresome-like induced structures (ALIS). Autophagy 7 (5): 552–554.CrossRef Fujita, K.-I., and S.M. Srinivasula. 2014. TLR4-mediated autophagy in macrophages is a p62-dependent type of selective autophagy of aggresome-like induced structures (ALIS). Autophagy 7 (5): 552–554.CrossRef
60.
Zurück zum Zitat Harris, J., M. Hartman, C. Roche, S.G. Zeng, A. O'Shea, F.A. Sharp, E.M. Lambe, E.M. Creagh, D.T. Golenbock, J. Tschopp, H. Kornfeld, K.A. Fitzgerald, and E.C. Lavelle. 2011. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. The Journal of Biological Chemistry 286 (11): 9587–9597.CrossRefPubMedPubMedCentral Harris, J., M. Hartman, C. Roche, S.G. Zeng, A. O'Shea, F.A. Sharp, E.M. Lambe, E.M. Creagh, D.T. Golenbock, J. Tschopp, H. Kornfeld, K.A. Fitzgerald, and E.C. Lavelle. 2011. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. The Journal of Biological Chemistry 286 (11): 9587–9597.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Ko, J., et al. 2017. Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy- and p62-dependent manners. Oncotarget 8: 40817–40831.PubMedPubMedCentral Ko, J., et al. 2017. Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy- and p62-dependent manners. Oncotarget 8: 40817–40831.PubMedPubMedCentral
62.
Zurück zum Zitat Lee, J.P., et al. 2016. Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages. Autophagy 12 (6): 907–916.CrossRefPubMedPubMedCentral Lee, J.P., et al. 2016. Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages. Autophagy 12 (6): 907–916.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Chuang, Y.C., W.H. Su, H.Y. Lei, Y.S. Lin, H.S. Liu, C.P. Chang, and T.M. Yeh. 2012. Macrophage migration inhibitory factor induces autophagy via reactive oxygen species generation. PLoS One 7 (5): e37613.CrossRefPubMedPubMedCentral Chuang, Y.C., W.H. Su, H.Y. Lei, Y.S. Lin, H.S. Liu, C.P. Chang, and T.M. Yeh. 2012. Macrophage migration inhibitory factor induces autophagy via reactive oxygen species generation. PLoS One 7 (5): e37613.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Zhang, Y., M.J. Morgan, K. Chen, S. Choksi, and Z.G. Liu. 2012. Induction of autophagy is essential for monocyte-macrophage differentiation. Blood 119 (12): 2895–2905.CrossRefPubMedPubMedCentral Zhang, Y., M.J. Morgan, K. Chen, S. Choksi, and Z.G. Liu. 2012. Induction of autophagy is essential for monocyte-macrophage differentiation. Blood 119 (12): 2895–2905.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Boulakirba, S., et al. 2018. IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential. Scientific Reports 8 (1):256. Boulakirba, S., et al. 2018. IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential. Scientific Reports 8 (1):256.
67.
Zurück zum Zitat Jacquel, A., S. Obba, L. Boyer, M. Dufies, G. Robert, P. Gounon, E. Lemichez, F. Luciano, E. Solary, and P. Auberger. 2012. Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions. Blood 119 (19): 4527–4531.CrossRefPubMed Jacquel, A., S. Obba, L. Boyer, M. Dufies, G. Robert, P. Gounon, E. Lemichez, F. Luciano, E. Solary, and P. Auberger. 2012. Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions. Blood 119 (19): 4527–4531.CrossRefPubMed
68.
Zurück zum Zitat Jacquel, A., et al. 2014. Proper macrophagic differentiation requires both autophagy and caspase activation. Autophagy 8 (7): 1141–1143.CrossRef Jacquel, A., et al. 2014. Proper macrophagic differentiation requires both autophagy and caspase activation. Autophagy 8 (7): 1141–1143.CrossRef
70.
Zurück zum Zitat Colosetti, P., et al. 2014. Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line. Autophagy 5 (8): 1092–1098.CrossRef Colosetti, P., et al. 2014. Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line. Autophagy 5 (8): 1092–1098.CrossRef
71.
Zurück zum Zitat Mortensen, M., D.J.P. Ferguson, M. Edelmann, B. Kessler, K.J. Morten, M. Komatsu, and A.K. Simon. 2010. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proceedings of the National Academy of Sciences of the United States of America 107 (2): 832–837.CrossRefPubMed Mortensen, M., D.J.P. Ferguson, M. Edelmann, B. Kessler, K.J. Morten, M. Komatsu, and A.K. Simon. 2010. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proceedings of the National Academy of Sciences of the United States of America 107 (2): 832–837.CrossRefPubMed
72.
Zurück zum Zitat da Silva, B.J., et al. 2014. Physalis angulata induces in vitro differentiation of murine bone marrow cells into macrophages. BMC Cell Biology 15: 37–48.CrossRefPubMedPubMedCentral da Silva, B.J., et al. 2014. Physalis angulata induces in vitro differentiation of murine bone marrow cells into macrophages. BMC Cell Biology 15: 37–48.CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Sun, K.T., et al. 2015. MicroRNA-20a regulates autophagy related protein-ATG16L1 in hypoxia-induced osteoclast differentiation. Bone 73: 145–153.CrossRefPubMed Sun, K.T., et al. 2015. MicroRNA-20a regulates autophagy related protein-ATG16L1 in hypoxia-induced osteoclast differentiation. Bone 73: 145–153.CrossRefPubMed
74.
Zurück zum Zitat Singh, A., and E. Sen. 2017. Reciprocal role of SIRT6 and hexokinase 2 in the regulation of autophagy driven monocyte differentiation. Experimental Cell Research 360 (2): 365–374.CrossRefPubMed Singh, A., and E. Sen. 2017. Reciprocal role of SIRT6 and hexokinase 2 in the regulation of autophagy driven monocyte differentiation. Experimental Cell Research 360 (2): 365–374.CrossRefPubMed
75.
Zurück zum Zitat Chen, P., M. Cescon, and P. Bonaldo. 2014. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy 10 (2): 192–200.CrossRefPubMed Chen, P., M. Cescon, and P. Bonaldo. 2014. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy 10 (2): 192–200.CrossRefPubMed
76.
Zurück zum Zitat Droin, N., et al. 2010. Alpha-defensins secreted by dysplastic granulocytes inhibit the differentiation of monocytes in chronic myelomonocytic leukemia. Blood 115: 78–88.CrossRefPubMed Droin, N., et al. 2010. Alpha-defensins secreted by dysplastic granulocytes inhibit the differentiation of monocytes in chronic myelomonocytic leukemia. Blood 115: 78–88.CrossRefPubMed
77.
Zurück zum Zitat Obba, S., Z. Hizir, L. Boyer, D. Selimoglu-Buet, A. Pfeifer, G. Michel, M.A. Hamouda, D. Gonçalvès, M. Cerezo, S. Marchetti, S. Rocchi, N. Droin, T. Cluzeau, G. Robert, F. Luciano, B. Robaye, M. Foretz, B. Viollet, L. Legros, E. Solary, P. Auberger, and A. Jacquel. 2015. The PRKAA1/AMPKα1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML. Autophagy 11 (7): 1114–1129.CrossRefPubMedPubMedCentral Obba, S., Z. Hizir, L. Boyer, D. Selimoglu-Buet, A. Pfeifer, G. Michel, M.A. Hamouda, D. Gonçalvès, M. Cerezo, S. Marchetti, S. Rocchi, N. Droin, T. Cluzeau, G. Robert, F. Luciano, B. Robaye, M. Foretz, B. Viollet, L. Legros, E. Solary, P. Auberger, and A. Jacquel. 2015. The PRKAA1/AMPKα1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML. Autophagy 11 (7): 1114–1129.CrossRefPubMedPubMedCentral
78.
Zurück zum Zitat Tarique, A.A., et al. 2015. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. American Journal of Respiratory Cell and Molecular Biology 53: 1–45.CrossRef Tarique, A.A., et al. 2015. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. American Journal of Respiratory Cell and Molecular Biology 53: 1–45.CrossRef
79.
Zurück zum Zitat Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32 (5): 593–604.CrossRefPubMed Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32 (5): 593–604.CrossRefPubMed
80.
81.
Zurück zum Zitat Yang, M., J. Liu, J. Shao, Y. Qin, Q. Ji, X. Zhang, and J. du. 2014. Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization. Molecular Cancer 13: 43.CrossRefPubMedPubMedCentral Yang, M., J. Liu, J. Shao, Y. Qin, Q. Ji, X. Zhang, and J. du. 2014. Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization. Molecular Cancer 13: 43.CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Gauthier, A., and M. Ho. 2013. Role of sorafenib in the treatment of advanced hepatocellular carcinoma: an update. Hepatology Research 43 (2): 147–154.CrossRefPubMed Gauthier, A., and M. Ho. 2013. Role of sorafenib in the treatment of advanced hepatocellular carcinoma: an update. Hepatology Research 43 (2): 147–154.CrossRefPubMed
83.
Zurück zum Zitat Chang, C.P., Y.C. Su, P.H. Lee, and H.Y. Lei. 2013. Targeting NFKB by autophagy to polarize hepatoma-associated macrophage differentiation. Autophagy 9 (4): 619–621.CrossRefPubMedPubMedCentral Chang, C.P., Y.C. Su, P.H. Lee, and H.Y. Lei. 2013. Targeting NFKB by autophagy to polarize hepatoma-associated macrophage differentiation. Autophagy 9 (4): 619–621.CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Chang, C.P., Y.C. Su, C.W. Hu, and H.Y. Lei. 2013. TLR2-dependent selective autophagy regulates NF-kappaB lysosomal degradation in hepatoma-derived M2 macrophage differentiation. Cell Death and Differentiation 20 (3): 515–523.CrossRefPubMed Chang, C.P., Y.C. Su, C.W. Hu, and H.Y. Lei. 2013. TLR2-dependent selective autophagy regulates NF-kappaB lysosomal degradation in hepatoma-derived M2 macrophage differentiation. Cell Death and Differentiation 20 (3): 515–523.CrossRefPubMed
85.
Zurück zum Zitat Rocher, C., and D.K. Singla. 2013. SMAD-PI3K-Akt-mTOR pathway mediates BMP-7 polarization of monocytes into M2 macrophages. PLoS One 8 (12): e84009.CrossRefPubMedPubMedCentral Rocher, C., and D.K. Singla. 2013. SMAD-PI3K-Akt-mTOR pathway mediates BMP-7 polarization of monocytes into M2 macrophages. PLoS One 8 (12): e84009.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Chen, W., T. Ma, X.N. Shen, X.F. Xia, G.D. Xu, X.L. Bai, and T.B. Liang. 2012. Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway. Cancer Research 72 (6): 1363–1372.CrossRefPubMed Chen, W., T. Ma, X.N. Shen, X.F. Xia, G.D. Xu, X.L. Bai, and T.B. Liang. 2012. Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway. Cancer Research 72 (6): 1363–1372.CrossRefPubMed
87.
Zurück zum Zitat Vergadi, E., E. Ieronymaki, K. Lyroni, K. Vaporidi, and C. Tsatsanis. 2017. Akt signaling pathway in macrophage activation and M1/M2 polarization. Journal of Immunology 198 (3): 1006–1014.CrossRef Vergadi, E., E. Ieronymaki, K. Lyroni, K. Vaporidi, and C. Tsatsanis. 2017. Akt signaling pathway in macrophage activation and M1/M2 polarization. Journal of Immunology 198 (3): 1006–1014.CrossRef
88.
Zurück zum Zitat Hu, R., Z.F. Chen, J. Yan, Q.F. Li, Y. Huang, H. Xu, X. Zhang, and H. Jiang. 2014. Complement C5a exacerbates acute lung injury induced through autophagy-mediated alveolar macrophage apoptosis. Cell Death & Disease 5: e1330.CrossRef Hu, R., Z.F. Chen, J. Yan, Q.F. Li, Y. Huang, H. Xu, X. Zhang, and H. Jiang. 2014. Complement C5a exacerbates acute lung injury induced through autophagy-mediated alveolar macrophage apoptosis. Cell Death & Disease 5: e1330.CrossRef
89.
Zurück zum Zitat Descloux, C., V. Ginet, P.G.H. Clarke, J. Puyal, and A.C. Truttmann. 2015. Neuronal death after perinatal cerebral hypoxia-ischemia: focus on autophagy-mediated cell death. International Journal of Developmental Neuroscience 45: 75–85.CrossRefPubMed Descloux, C., V. Ginet, P.G.H. Clarke, J. Puyal, and A.C. Truttmann. 2015. Neuronal death after perinatal cerebral hypoxia-ischemia: focus on autophagy-mediated cell death. International Journal of Developmental Neuroscience 45: 75–85.CrossRefPubMed
90.
Zurück zum Zitat Li, S., L. Guo, P. Qian, Y. Zhao, A. Liu, F. Ji, L. Chen, X. Wu, and G. Qian. 2015. Lipopolysaccharide induces autophagic cell death through the PERK-dependent branch of the unfolded protein response in human alveolar epithelial A549 cells. Cellular Physiology and Biochemistry 36 (6): 2403–2417.CrossRefPubMed Li, S., L. Guo, P. Qian, Y. Zhao, A. Liu, F. Ji, L. Chen, X. Wu, and G. Qian. 2015. Lipopolysaccharide induces autophagic cell death through the PERK-dependent branch of the unfolded protein response in human alveolar epithelial A549 cells. Cellular Physiology and Biochemistry 36 (6): 2403–2417.CrossRefPubMed
91.
Zurück zum Zitat Zhang, Y., Y. Liu, and J. Zhang. 2015. Saturated hydrogen saline attenuates endotoxin-induced lung dysfunction. The Journal of Surgical Research 198 (1): 41–49.CrossRefPubMed Zhang, Y., Y. Liu, and J. Zhang. 2015. Saturated hydrogen saline attenuates endotoxin-induced lung dysfunction. The Journal of Surgical Research 198 (1): 41–49.CrossRefPubMed
92.
Zurück zum Zitat Zhang, L., et al. 2012. Interferon regulatory factor-1 regulates the autophagic response in LPS-stimulated macrophages through nitric oxide. Molecular Medicine 18: 201–208.CrossRefPubMed Zhang, L., et al. 2012. Interferon regulatory factor-1 regulates the autophagic response in LPS-stimulated macrophages through nitric oxide. Molecular Medicine 18: 201–208.CrossRefPubMed
93.
Zurück zum Zitat Pattingre, S., A. Tassa, X. Qu, R. Garuti, X.H. Liang, N. Mizushima, M. Packer, M.D. Schneider, and B. Levine. 2005. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927–939.CrossRefPubMed Pattingre, S., A. Tassa, X. Qu, R. Garuti, X.H. Liang, N. Mizushima, M. Packer, M.D. Schneider, and B. Levine. 2005. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927–939.CrossRefPubMed
94.
Zurück zum Zitat Mariño, G., M. Niso-Santano, E.H. Baehrecke, and G. Kroemer. 2014. Self-consumption: the interplay of autophagy and apoptosis. Nature Reviews Molecular Cell Biology 15 (2): 81–94.CrossRefPubMedPubMedCentral Mariño, G., M. Niso-Santano, E.H. Baehrecke, and G. Kroemer. 2014. Self-consumption: the interplay of autophagy and apoptosis. Nature Reviews Molecular Cell Biology 15 (2): 81–94.CrossRefPubMedPubMedCentral
95.
Zurück zum Zitat Yousefi, S., R. Perozzo, I. Schmid, A. Ziemiecki, T. Schaffner, L. Scapozza, T. Brunner, and H.U. Simon. 2006. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biology 8 (10): 1124–1132.CrossRefPubMed Yousefi, S., R. Perozzo, I. Schmid, A. Ziemiecki, T. Schaffner, L. Scapozza, T. Brunner, and H.U. Simon. 2006. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biology 8 (10): 1124–1132.CrossRefPubMed
96.
Zurück zum Zitat Rubinstein, Assaf D., Miriam Eisenstein, Yaara Ber, Shani Bialik, and Adi Kimchi. 2011. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Molecular Cell 44 (5): 698–709.CrossRefPubMed Rubinstein, Assaf D., Miriam Eisenstein, Yaara Ber, Shani Bialik, and Adi Kimchi. 2011. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Molecular Cell 44 (5): 698–709.CrossRefPubMed
97.
Zurück zum Zitat Byrne, B.G., et al. 2013. Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection. MBio 4 (1): e00620–e00612.CrossRefPubMedPubMedCentral Byrne, B.G., et al. 2013. Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection. MBio 4 (1): e00620–e00612.CrossRefPubMedPubMedCentral
98.
Zurück zum Zitat Fimia, G.M., et al. 2012. Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition. PLoS One 7 (7):e41831. Fimia, G.M., et al. 2012. Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition. PLoS One 7 (7):e41831.
99.
Zurück zum Zitat Periyasamy-Thandavan, S., M. Jiang, Q. Wei, R. Smith, X.M. Yin, and Z. Dong. 2008. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney International 74 (5): 631–640.CrossRefPubMed Periyasamy-Thandavan, S., M. Jiang, Q. Wei, R. Smith, X.M. Yin, and Z. Dong. 2008. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney International 74 (5): 631–640.CrossRefPubMed
100.
Zurück zum Zitat Yang, C., V. Kaushal, S.V. Shah, and G.P. Kaushal. 2008. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. American Journal of Physiology. Renal Physiology 294 (4): F777–F787.CrossRefPubMed Yang, C., V. Kaushal, S.V. Shah, and G.P. Kaushal. 2008. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. American Journal of Physiology. Renal Physiology 294 (4): F777–F787.CrossRefPubMed
101.
Zurück zum Zitat Kaushal, G.P., V. Kaushal, C. Herzog, and C. Yang. 2008. Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity. Autophagy 4: 710–712.CrossRefPubMed Kaushal, G.P., V. Kaushal, C. Herzog, and C. Yang. 2008. Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity. Autophagy 4: 710–712.CrossRefPubMed
102.
Zurück zum Zitat Herzog, C., C. Yang, A. Holmes, and G.P. Kaushal. 2012. zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. American Journal of Physiology. Renal Physiology 303 (8): F1239–F1250.CrossRefPubMedPubMedCentral Herzog, C., C. Yang, A. Holmes, and G.P. Kaushal. 2012. zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. American Journal of Physiology. Renal Physiology 303 (8): F1239–F1250.CrossRefPubMedPubMedCentral
103.
Zurück zum Zitat Stranks, A.J., A.L. Hansen, I. Panse, M. Mortensen, D.J.P. Ferguson, D.J. Puleston, K. Shenderov, A.S. Watson, M. Veldhoen, K. Phadwal, V. Cerundolo, and A.K. Simon. 2015. Autophagy controls acquisition of aging features in macrophages. Journal of Innate Immunity 7 (4): 375–391.CrossRefPubMedPubMedCentral Stranks, A.J., A.L. Hansen, I. Panse, M. Mortensen, D.J.P. Ferguson, D.J. Puleston, K. Shenderov, A.S. Watson, M. Veldhoen, K. Phadwal, V. Cerundolo, and A.K. Simon. 2015. Autophagy controls acquisition of aging features in macrophages. Journal of Innate Immunity 7 (4): 375–391.CrossRefPubMedPubMedCentral
104.
Zurück zum Zitat Matsuzawa, T., E. Fujiwara, and Y. Washi. 2014. Autophagy activation by interferon-gamma via the p38 mitogen-activated protein kinase signalling pathway is involved in macrophage bactericidal activity. Immunology 141 (1): 61–69.CrossRefPubMed Matsuzawa, T., E. Fujiwara, and Y. Washi. 2014. Autophagy activation by interferon-gamma via the p38 mitogen-activated protein kinase signalling pathway is involved in macrophage bactericidal activity. Immunology 141 (1): 61–69.CrossRefPubMed
105.
Zurück zum Zitat Li, W., S. Zhu, J. Li, A. Assa, A. Jundoria, J. Xu, S. Fan, N.T. Eissa, K.J. Tracey, A.E. Sama, and H. Wang. 2011. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochemical Pharmacology 81 (9): 1152–1163.CrossRefPubMedPubMedCentral Li, W., S. Zhu, J. Li, A. Assa, A. Jundoria, J. Xu, S. Fan, N.T. Eissa, K.J. Tracey, A.E. Sama, and H. Wang. 2011. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochemical Pharmacology 81 (9): 1152–1163.CrossRefPubMedPubMedCentral
106.
Zurück zum Zitat Xia, H., L. Chen, H. Liu, Z. Sun, W. Yang, Y. Yang, S. Cui, S. Li, Y. Wang, L. Song, A.F. Abdelgawad, Y. Shang, and S. Yao. 2017. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype. Scientific Reports 7 (1): 99.CrossRefPubMedPubMedCentral Xia, H., L. Chen, H. Liu, Z. Sun, W. Yang, Y. Yang, S. Cui, S. Li, Y. Wang, L. Song, A.F. Abdelgawad, Y. Shang, and S. Yao. 2017. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype. Scientific Reports 7 (1): 99.CrossRefPubMedPubMedCentral
107.
Zurück zum Zitat Williams-Bey, Y., C. Boularan, A. Vural, N.N. Huang, I.Y. Hwang, C. Shan-Shi, and J.H. Kehrl. 2014. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-kappaB activation and enhancing autophagy. PLoS One 9 (6): e97957.CrossRefPubMedPubMedCentral Williams-Bey, Y., C. Boularan, A. Vural, N.N. Huang, I.Y. Hwang, C. Shan-Shi, and J.H. Kehrl. 2014. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-kappaB activation and enhancing autophagy. PLoS One 9 (6): e97957.CrossRefPubMedPubMedCentral
108.
Zurück zum Zitat Abdulnour, R.E., et al. 2014. Maresin 1 biosynthesis during platelet-neutrophil interactions is organ-protective. Proceedings of the National Academy of Sciences of the United States of America 111 (46): 16526–16531.CrossRefPubMedPubMedCentral Abdulnour, R.E., et al. 2014. Maresin 1 biosynthesis during platelet-neutrophil interactions is organ-protective. Proceedings of the National Academy of Sciences of the United States of America 111 (46): 16526–16531.CrossRefPubMedPubMedCentral
109.
Zurück zum Zitat Lin, J., et al. 2017. Maresin-1 activates autophagy in macrophages via ALX/NF-κB pathway. Journal of Wenzhou Medical University 47: 474–479. Lin, J., et al. 2017. Maresin-1 activates autophagy in macrophages via ALX/NF-κB pathway. Journal of Wenzhou Medical University 47: 474–479.
110.
Zurück zum Zitat Li, X.J., et al. 2014. Effect of moxibustion on autophagy of macrophages in mice. Hubei Journal of TCM 36: 19–20.CrossRef Li, X.J., et al. 2014. Effect of moxibustion on autophagy of macrophages in mice. Hubei Journal of TCM 36: 19–20.CrossRef
111.
Zurück zum Zitat Yu, H.H., et al. 2016. Effects of Huang-Lian-Jie-Du-Decotion containing serum on expressions of autophagy related gene in macrophages. Chinese Journal of Immunology 32: 1150–1164. Yu, H.H., et al. 2016. Effects of Huang-Lian-Jie-Du-Decotion containing serum on expressions of autophagy related gene in macrophages. Chinese Journal of Immunology 32: 1150–1164.
Metadaten
Titel
Review: the Role and Mechanisms of Macrophage Autophagy in Sepsis
verfasst von
Peng Qiu
Yang Liu
Jin Zhang
Publikationsdatum
07.09.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0890-8

Weitere Artikel der Ausgabe 1/2019

Inflammation 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.