Skip to main content
Erschienen in: Inflammation 3/2019

19.01.2019 | REVIEW

Review: the Roles and Mechanisms of Glycoprotein 130 Cytokines in the Regulation of Adipocyte Biological Function

verfasst von: Dufang Ma, Yong Wang, Guofeng Zhou, Yongcheng Wang, Xiao Li

Erschienen in: Inflammation | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Chronic low-grade inflammation is now widely accepted as one of the most important contributors to metabolic disorders. Glycoprotein 130 (gp130) cytokines are involved in the regulation of metabolic activity. Studies have shown that several gp130 cytokines, such as interleukin-6 (IL-6), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), have divergent effects on adipogenesis, lipolysis, and insulin sensitivity as well as food intake. In this review, we will summarize the present knowledge about gp130 cytokines, including IL-6, LIF, CNTF, CT-1, and OSM, in adipocyte biology and metabolic activities in conditions such as obesity, cachexia, and type 2 diabetes. It is valuable to explore the diverse actions of these gp130 cytokines on the regulation of the biological functions of adipocytes, which will provide potential therapeutic targets for the treatment of obesity and cachexia.
Literatur
1.
Zurück zum Zitat White, U.A., and J.M. Stephens. 2011. The gp130 receptor cytokine family: Regulators of adipocyte development and function. Current Pharmaceutical Design 17 (4): 340–346.CrossRef White, U.A., and J.M. Stephens. 2011. The gp130 receptor cytokine family: Regulators of adipocyte development and function. Current Pharmaceutical Design 17 (4): 340–346.CrossRef
2.
Zurück zum Zitat Fujio, Y., M. Maeda, T. Mohri, M. Obana, T. Iwakura, A. Hayama, T. Yamashita, H. Nakayama, and J. Azuma. 2011. Glycoprotein 130 cytokine signal as a therapeutic target against cardiovascular diseases. Journal of Pharmacological Sciences 117 (4): 213–222.CrossRef Fujio, Y., M. Maeda, T. Mohri, M. Obana, T. Iwakura, A. Hayama, T. Yamashita, H. Nakayama, and J. Azuma. 2011. Glycoprotein 130 cytokine signal as a therapeutic target against cardiovascular diseases. Journal of Pharmacological Sciences 117 (4): 213–222.CrossRef
11.
Zurück zum Zitat Klover, P.J., T.A. Zimmers, L.G. Koniaris, and R.A. Mooney. 2003. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52 (11): 2784–2789.CrossRef Klover, P.J., T.A. Zimmers, L.G. Koniaris, and R.A. Mooney. 2003. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52 (11): 2784–2789.CrossRef
13.
Zurück zum Zitat Bastard, J.P., C. Jardel, E. Bruckert, P. Blondy, J. Capeau, M. Laville, H. Vidal, and B. Hainque. 2000. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. The Journal of Clinical Endocrinology and Metabolism 85 (9): 3338–3342. https://doi.org/10.1210/jcem.85.9.6839.CrossRefPubMed Bastard, J.P., C. Jardel, E. Bruckert, P. Blondy, J. Capeau, M. Laville, H. Vidal, and B. Hainque. 2000. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. The Journal of Clinical Endocrinology and Metabolism 85 (9): 3338–3342. https://​doi.​org/​10.​1210/​jcem.​85.​9.​6839.CrossRefPubMed
16.
Zurück zum Zitat Mauer, J., B. Chaurasia, J. Goldau, M.C. Vogt, J. Ruud, K.D. Nguyen, S. Theurich, A.C. Hausen, J. Schmitz, H.S. Brönneke, E. Estevez, T.L. Allen, A. Mesaros, L. Partridge, M.A. Febbraio, A. Chawla, F.T. Wunderlich, and J.C. Brüning. 2014. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nature Immunology 15 (5): 423–430. https://doi.org/10.1038/ni.2865. CrossRefPubMedPubMedCentral Mauer, J., B. Chaurasia, J. Goldau, M.C. Vogt, J. Ruud, K.D. Nguyen, S. Theurich, A.C. Hausen, J. Schmitz, H.S. Brönneke, E. Estevez, T.L. Allen, A. Mesaros, L. Partridge, M.A. Febbraio, A. Chawla, F.T. Wunderlich, and J.C. Brüning. 2014. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nature Immunology 15 (5): 423–430. https://​doi.​org/​10.​1038/​ni.​2865.​ CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Kraakman, M.J., T.L. Allen, M. Whitham, P. Iliades, H.L. Kammoun, E. Estevez, G.I. Lancaster, and M.A. Febbraio. 2013. Targeting gp130 to prevent inflammation and promote insulin action. Diabetes, Obesity & Metabolism 15 (Suppl 3): 170–175. https://doi.org/10.1111/dom.12170.CrossRef Kraakman, M.J., T.L. Allen, M. Whitham, P. Iliades, H.L. Kammoun, E. Estevez, G.I. Lancaster, and M.A. Febbraio. 2013. Targeting gp130 to prevent inflammation and promote insulin action. Diabetes, Obesity & Metabolism 15 (Suppl 3): 170–175. https://​doi.​org/​10.​1111/​dom.​12170.CrossRef
19.
Zurück zum Zitat Jostock, T., J. Mullberg, S. Ozbek, R. Atreya, G. Blinn, N. Voltz, M. Fischer, M.F. Neurath, and S. Rose-John. 2001. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. European Journal of Biochemistry 268 (1): 160–167.CrossRef Jostock, T., J. Mullberg, S. Ozbek, R. Atreya, G. Blinn, N. Voltz, M. Fischer, M.F. Neurath, and S. Rose-John. 2001. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. European Journal of Biochemistry 268 (1): 160–167.CrossRef
20.
Zurück zum Zitat Kraakman, M.J., H.L. Kammoun, T.L. Allen, V. Deswaerte, D.C. Henstridge, E. Estevez, V.B. Matthews, B. Neill, D.A. White, A.J. Murphy, L. Peijs, C. Yang, S. Risis, C.R. Bruce, X.J. du, A. Bobik, R.S. Lee-Young, B.A. Kingwell, A. Vasanthakumar, W. Shi, A. Kallies, G.I. Lancaster, S. Rose-John, and M.A. Febbraio. 2015. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metabolism 21 (3): 403–416. https://doi.org/10.1016/j.cmet.2015.02.006.CrossRefPubMed Kraakman, M.J., H.L. Kammoun, T.L. Allen, V. Deswaerte, D.C. Henstridge, E. Estevez, V.B. Matthews, B. Neill, D.A. White, A.J. Murphy, L. Peijs, C. Yang, S. Risis, C.R. Bruce, X.J. du, A. Bobik, R.S. Lee-Young, B.A. Kingwell, A. Vasanthakumar, W. Shi, A. Kallies, G.I. Lancaster, S. Rose-John, and M.A. Febbraio. 2015. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metabolism 21 (3): 403–416. https://​doi.​org/​10.​1016/​j.​cmet.​2015.​02.​006.CrossRefPubMed
27.
Zurück zum Zitat Petersen, E.W., A.L. Carey, M. Sacchetti, G.R. Steinberg, S.L. Macaulay, M.A. Febbraio, and B.K. Pedersen. 2005. Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. American Journal of Physiology. Endocrinology and Metabolism 288 (1): E155–E162. https://doi.org/10.1152/ajpendo.00257.2004.CrossRefPubMed Petersen, E.W., A.L. Carey, M. Sacchetti, G.R. Steinberg, S.L. Macaulay, M.A. Febbraio, and B.K. Pedersen. 2005. Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. American Journal of Physiology. Endocrinology and Metabolism 288 (1): E155–E162. https://​doi.​org/​10.​1152/​ajpendo.​00257.​2004.CrossRefPubMed
36.
Zurück zum Zitat Akiyama, Y., N. Kajimura, J. Matsuzaki, Y. Kikuchi, N. Imai, M. Tanigawa, and K. Yamaguchi. 1997. In vivo effect of recombinant human leukemia inhibitory factor in primates. Japanese Journal of Cancer Research 88 (6): 578–583.CrossRef Akiyama, Y., N. Kajimura, J. Matsuzaki, Y. Kikuchi, N. Imai, M. Tanigawa, and K. Yamaguchi. 1997. In vivo effect of recombinant human leukemia inhibitory factor in primates. Japanese Journal of Cancer Research 88 (6): 578–583.CrossRef
38.
Zurück zum Zitat Aubert, J., S. Dessolin, N. Belmonte, M. Li, F.R. McKenzie, L. Staccini, P. Villageois, B. Barhanin, A. Vernallis, A.G. Smith, G. Ailhaud, and C. Dani. 1999. Leukemia inhibitory factor and its receptor promote adipocyte differentiation via the mitogen-activated protein kinase cascade. The Journal of Biological Chemistry 274 (35): 24965–24972.CrossRef Aubert, J., S. Dessolin, N. Belmonte, M. Li, F.R. McKenzie, L. Staccini, P. Villageois, B. Barhanin, A. Vernallis, A.G. Smith, G. Ailhaud, and C. Dani. 1999. Leukemia inhibitory factor and its receptor promote adipocyte differentiation via the mitogen-activated protein kinase cascade. The Journal of Biological Chemistry 274 (35): 24965–24972.CrossRef
42.
Zurück zum Zitat Mori, M., K. Yamaguchi, and K. Abe. 1989. Purification of a lipoprotein lipase-inhibiting protein produced by a melanoma cell line associated with cancer cachexia. Biochemical and Biophysical Research Communications 160 (3): 1085–1092.CrossRef Mori, M., K. Yamaguchi, and K. Abe. 1989. Purification of a lipoprotein lipase-inhibiting protein produced by a melanoma cell line associated with cancer cachexia. Biochemical and Biophysical Research Communications 160 (3): 1085–1092.CrossRef
43.
Zurück zum Zitat Metcalf, D., N.A. Nicola, and D.P. Gearing. 1990. Effects of injected leukemia inhibitory factor on hematopoietic and other tissues in mice. Blood 76 (1): 50–56.CrossRef Metcalf, D., N.A. Nicola, and D.P. Gearing. 1990. Effects of injected leukemia inhibitory factor on hematopoietic and other tissues in mice. Blood 76 (1): 50–56.CrossRef
46.
Zurück zum Zitat Beretta, E., H. Dhillon, P.S. Kalra, and S.P. Kalra. 2002. Central LIF gene therapy suppresses food intake, body weight, serum leptin and insulin for extended periods. Peptides 23 (5): 975–984.CrossRef Beretta, E., H. Dhillon, P.S. Kalra, and S.P. Kalra. 2002. Central LIF gene therapy suppresses food intake, body weight, serum leptin and insulin for extended periods. Peptides 23 (5): 975–984.CrossRef
49.
Zurück zum Zitat Miller, R.G., J.H. Petajan, W.W. Bryan, C. Armon, R.J. Barohn, J.C. Goodpasture, R.J. Hoagland, G.J. Parry, M.A. Ross, and S.C. Stromatt. 1996. A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis rhCNTF ALS Study Group. Ann Neurol 39 (2): 256–260. https://doi.org/10.1002/ana.410390215.CrossRef Miller, R.G., J.H. Petajan, W.W. Bryan, C. Armon, R.J. Barohn, J.C. Goodpasture, R.J. Hoagland, G.J. Parry, M.A. Ross, and S.C. Stromatt. 1996. A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis rhCNTF ALS Study Group. Ann Neurol 39 (2): 256–260. https://​doi.​org/​10.​1002/​ana.​410390215.CrossRef
50.
Zurück zum Zitat A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF Treatment Study Group. 1996. Neurology 46 (5): 1244–1249.CrossRef A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF Treatment Study Group. 1996. Neurology 46 (5): 1244–1249.CrossRef
51.
Zurück zum Zitat Bluher, S., S. Moschos, J. Bullen Jr., E. Kokkotou, E. Maratos-Flier, S.J. Wiegand, M.W. Sleeman, and C.S. Mantzoros. 2004. Ciliary neurotrophic factorAx15 alters energy homeostasis, decreases body weight, and improves metabolic control in diet-induced obese and UCP1-DTA mice. Diabetes 53 (11): 2787–2796.CrossRef Bluher, S., S. Moschos, J. Bullen Jr., E. Kokkotou, E. Maratos-Flier, S.J. Wiegand, M.W. Sleeman, and C.S. Mantzoros. 2004. Ciliary neurotrophic factorAx15 alters energy homeostasis, decreases body weight, and improves metabolic control in diet-induced obese and UCP1-DTA mice. Diabetes 53 (11): 2787–2796.CrossRef
52.
Zurück zum Zitat Ott, V., M. Fasshauer, A. Dalski, H.H. Klein, and J. Klein. 2002. Direct effects of ciliary neurotrophic factor on brown adipocytes: evidence for a role in peripheral regulation of energy homeostasis. The Journal of Endocrinology 173 (2): R1–R8.CrossRef Ott, V., M. Fasshauer, A. Dalski, H.H. Klein, and J. Klein. 2002. Direct effects of ciliary neurotrophic factor on brown adipocytes: evidence for a role in peripheral regulation of energy homeostasis. The Journal of Endocrinology 173 (2): R1–R8.CrossRef
54.
Zurück zum Zitat Watt, M.J., A. Hevener, G.I. Lancaster, and M.A. Febbraio. 2006. Ciliary neurotrophic factor prevents acute lipid-induced insulin resistance by attenuating ceramide accumulation and phosphorylation of c-Jun N-terminal kinase in peripheral tissues. Endocrinology 147 (5): 2077–2085. https://doi.org/10.1210/en.2005-1074.CrossRefPubMed Watt, M.J., A. Hevener, G.I. Lancaster, and M.A. Febbraio. 2006. Ciliary neurotrophic factor prevents acute lipid-induced insulin resistance by attenuating ceramide accumulation and phosphorylation of c-Jun N-terminal kinase in peripheral tissues. Endocrinology 147 (5): 2077–2085. https://​doi.​org/​10.​1210/​en.​2005-1074.CrossRefPubMed
55.
Zurück zum Zitat Watt, M.J., N. Dzamko, W.G. Thomas, S. Rose-John, M. Ernst, D. Carling, B.E. Kemp, M.A. Febbraio, and G.R. Steinberg. 2006. CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nature Medicine 12 (5): 541–548. https://doi.org/10.1038/nm1383.CrossRefPubMed Watt, M.J., N. Dzamko, W.G. Thomas, S. Rose-John, M. Ernst, D. Carling, B.E. Kemp, M.A. Febbraio, and G.R. Steinberg. 2006. CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nature Medicine 12 (5): 541–548. https://​doi.​org/​10.​1038/​nm1383.CrossRefPubMed
62.
Zurück zum Zitat Lopez-Yoldi, M., B. Marcos-Gomez, M.A. Romero-Lozano, N. Sainz, J. Prieto, J.A. Martinez, M. Bustos, and M.J. Moreno-Aliaga. 2017. Cardiotrophin-1 Regulates Adipokine Production in 3T3-L1 Adipocytes and Adipose Tissue From Obese Mice. Journal of Cellular Physiology 232 (9): 2469–2477. https://doi.org/10.1002/jcp.25590.CrossRefPubMed Lopez-Yoldi, M., B. Marcos-Gomez, M.A. Romero-Lozano, N. Sainz, J. Prieto, J.A. Martinez, M. Bustos, and M.J. Moreno-Aliaga. 2017. Cardiotrophin-1 Regulates Adipokine Production in 3T3-L1 Adipocytes and Adipose Tissue From Obese Mice. Journal of Cellular Physiology 232 (9): 2469–2477. https://​doi.​org/​10.​1002/​jcp.​25590.CrossRefPubMed
63.
64.
Zurück zum Zitat Vespasiani-Gentilucci, U., A. De Vincentis, J. Argemi, G. Galati, E. Anso, G. Patti, and A. Picardi. 2013. Cardiotrophin-1 is not associated with carotid or coronary disease and is inversely associated with obesity in patients undergoing coronary angiography. Archives of Medical Science 9 (4): 635–639. https://doi.org/10.5114/aoms.2013.37272.CrossRefPubMed Vespasiani-Gentilucci, U., A. De Vincentis, J. Argemi, G. Galati, E. Anso, G. Patti, and A. Picardi. 2013. Cardiotrophin-1 is not associated with carotid or coronary disease and is inversely associated with obesity in patients undergoing coronary angiography. Archives of Medical Science 9 (4): 635–639. https://​doi.​org/​10.​5114/​aoms.​2013.​37272.CrossRefPubMed
68.
Zurück zum Zitat Rendo-Urteaga, T., S. Garcia-Calzon, E. Martinez-Anso, M. Chueca, M. Oyarzabal, M.C. Azcona-Sanjulian, M. Bustos, M.J. Moreno-Aliaga, J.A. Martinez, and A. Marti. 2013. Decreased cardiotrophin-1 levels are associated with a lower risk of developing the metabolic syndrome in overweight/obese children after a weight loss program. Metabolism 62 (10): 1429–1436. https://doi.org/10.1016/j.metabol.2013.05.011.CrossRefPubMed Rendo-Urteaga, T., S. Garcia-Calzon, E. Martinez-Anso, M. Chueca, M. Oyarzabal, M.C. Azcona-Sanjulian, M. Bustos, M.J. Moreno-Aliaga, J.A. Martinez, and A. Marti. 2013. Decreased cardiotrophin-1 levels are associated with a lower risk of developing the metabolic syndrome in overweight/obese children after a weight loss program. Metabolism 62 (10): 1429–1436. https://​doi.​org/​10.​1016/​j.​metabol.​2013.​05.​011.CrossRefPubMed
69.
Zurück zum Zitat Rose, T.M., and A.G. Bruce. 1991. Oncostatin M is a member of a cytokine family that includes leukemia-inhibitory factor, granulocyte colony-stimulating factor, and interleukin 6. Proceedings of the National Academy of Sciences of the United States of America 88 (19): 8641–8645.CrossRef Rose, T.M., and A.G. Bruce. 1991. Oncostatin M is a member of a cytokine family that includes leukemia-inhibitory factor, granulocyte colony-stimulating factor, and interleukin 6. Proceedings of the National Academy of Sciences of the United States of America 88 (19): 8641–8645.CrossRef
71.
Zurück zum Zitat Tanaka, M., T. Hara, N.G. Copeland, D.J. Gilbert, N.A. Jenkins, and A. Miyajima. 1999. Reconstitution of the functional mouse oncostatin M (OSM) receptor: molecular cloning of the mouse OSM receptor beta subunit. Blood 93 (3): 804–815.CrossRef Tanaka, M., T. Hara, N.G. Copeland, D.J. Gilbert, N.A. Jenkins, and A. Miyajima. 1999. Reconstitution of the functional mouse oncostatin M (OSM) receptor: molecular cloning of the mouse OSM receptor beta subunit. Blood 93 (3): 804–815.CrossRef
72.
Zurück zum Zitat Sanchez-Infantes, D., U.A. White, C.M. Elks, R.F. Morrison, J.M. Gimble, R.V. Considine, A.W. Ferrante, E. Ravussin, and J.M. Stephens. 2014. Oncostatin m is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism 99 (2): E217–E225. https://doi.org/10.1210/jc.2013-3555.CrossRefPubMed Sanchez-Infantes, D., U.A. White, C.M. Elks, R.F. Morrison, J.M. Gimble, R.V. Considine, A.W. Ferrante, E. Ravussin, and J.M. Stephens. 2014. Oncostatin m is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism 99 (2): E217–E225. https://​doi.​org/​10.​1210/​jc.​2013-3555.CrossRefPubMed
76.
Zurück zum Zitat Hattori, K., T. Sumi, T. Yasui, M. Morimura, H. Nobeyama, E. Okamoto, M. Noriyuki, K. Honda, H. Kiyama, and O. Ishiko. 2004. VEGF mRNA in adipocytes increase with rebound weight-gain after diet-restriction. International Journal of Molecular Medicine 13 (3): 395–399.PubMed Hattori, K., T. Sumi, T. Yasui, M. Morimura, H. Nobeyama, E. Okamoto, M. Noriyuki, K. Honda, H. Kiyama, and O. Ishiko. 2004. VEGF mRNA in adipocytes increase with rebound weight-gain after diet-restriction. International Journal of Molecular Medicine 13 (3): 395–399.PubMed
77.
Zurück zum Zitat Rega, G., C. Kaun, S. Demyanets, S. Pfaffenberger, K. Rychli, P.J. Hohensinner, S.P. Kastl, W.S. Speidl, T.W. Weiss, J.M. Breuss, A. Furnkranz, P. Uhrin, J. Zaujec, V. Zilberfarb, M. Frey, R. Roehle, G. Maurer, K. Huber, and J. Wojta. 2007. Vascular endothelial growth factor is induced by the inflammatory cytokines interleukin-6 and oncostatin m in human adipose tissue in vitro and in murine adipose tissue in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology 27 (7): 1587–1595. https://doi.org/10.1161/atvbaha.107.143081.CrossRef Rega, G., C. Kaun, S. Demyanets, S. Pfaffenberger, K. Rychli, P.J. Hohensinner, S.P. Kastl, W.S. Speidl, T.W. Weiss, J.M. Breuss, A. Furnkranz, P. Uhrin, J. Zaujec, V. Zilberfarb, M. Frey, R. Roehle, G. Maurer, K. Huber, and J. Wojta. 2007. Vascular endothelial growth factor is induced by the inflammatory cytokines interleukin-6 and oncostatin m in human adipose tissue in vitro and in murine adipose tissue in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology 27 (7): 1587–1595. https://​doi.​org/​10.​1161/​atvbaha.​107.​143081.CrossRef
Metadaten
Titel
Review: the Roles and Mechanisms of Glycoprotein 130 Cytokines in the Regulation of Adipocyte Biological Function
verfasst von
Dufang Ma
Yong Wang
Guofeng Zhou
Yongcheng Wang
Xiao Li
Publikationsdatum
19.01.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-00959-6

Weitere Artikel der Ausgabe 3/2019

Inflammation 3/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.