Skip to main content
Erschienen in:

01.04.2021 | Current Perspectives

Revisiting Brain Tuberous Sclerosis Complex in Rat and Human: Shared Molecular and Cellular Pathology Leads to Distinct Neurophysiological and Behavioral Phenotypes

verfasst von: Viera Kútna, Valerie B. O’Leary, Ehren Newman, Cyril Hoschl, Saak V. Ovsepian

Erschienen in: Neurotherapeutics | Ausgabe 2/2021

Einloggen, um Zugang zu erhalten

Abstract

Tuberous sclerosis complex (TSC) is a dominant autosomal genetic disorder caused by loss-of-function mutations in TSC1 and TSC2, which lead to constitutive activation of the mammalian target of rapamycin C1 (mTORC1) with its decoupling from regulatory inputs. Because mTORC1 integrates an array of molecular signals controlling protein synthesis and energy metabolism, its unrestrained activation inflates cell growth and division, resulting in the development of benign tumors in the brain and other organs. In humans, brain malformations typically manifest through a range of neuropsychiatric symptoms, among which mental retardation, intellectual disabilities with signs of autism, and refractory seizures, which are the most prominent. TSC in the rat brain presents the first-rate approximation of cellular and molecular pathology of the human brain, showing many instructive characteristics. Nevertheless, the developmental profile and distribution of lesions in the rat brain, with neurophysiological and behavioral manifestation, deviate considerably from humans, raising numerous research and translational questions. In this study, we revisit brain TSC in human and Eker rats to relate their histopathological, electrophysiological, and neurobehavioral characteristics. We discuss shared and distinct aspects of the pathology and consider factors contributing to phenotypic discrepancies. Given the shared genetic cause and molecular pathology, phenotypic deviations suggest an incomplete understanding of the disease. Narrowing the knowledge gap in the future should not only improve the characterization of the TSC rat model but also explain considerable variability in the clinical manifestation of the disease in humans.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
3.
Zurück zum Zitat Saxton, R.A. and D.M. Sabatini, mTOR Signaling in Growth, Metabolism, and Disease. Cell, 2017. 169(2): p. 361-371.PubMedCrossRef Saxton, R.A. and D.M. Sabatini, mTOR Signaling in Growth, Metabolism, and Disease. Cell, 2017. 169(2): p. 361-371.PubMedCrossRef
4.
Zurück zum Zitat Dentel, B., C.O. Escamilla, and P.T. Tsai, Therapeutic Targeting of mTORC2 in mTORopathies. Neuron, 2019. 104(6): p. 1032-1033.PubMedCrossRef Dentel, B., C.O. Escamilla, and P.T. Tsai, Therapeutic Targeting of mTORC2 in mTORopathies. Neuron, 2019. 104(6): p. 1032-1033.PubMedCrossRef
5.
Zurück zum Zitat Richardson, E.P., Jr., Pathology of tuberous sclerosis. Neuropathologic aspects. Ann N Y Acad Sci, 1991. 615: p. 128-139.PubMedCrossRef Richardson, E.P., Jr., Pathology of tuberous sclerosis. Neuropathologic aspects. Ann N Y Acad Sci, 1991. 615: p. 128-139.PubMedCrossRef
6.
Zurück zum Zitat Vinters, H.V., et al., Cortical dysplasia, genetic abnormalities and neurocutaneous syndromes. Dev Neurosci, 1999. 21(3-5): p. 248-259.PubMedCrossRef Vinters, H.V., et al., Cortical dysplasia, genetic abnormalities and neurocutaneous syndromes. Dev Neurosci, 1999. 21(3-5): p. 248-259.PubMedCrossRef
7.
Zurück zum Zitat Eker, R., Familial renal adenomas in Wistar rats; a preliminary report. Acta Pathol Microbiol Scand, 1954. 34(6): p. 554-562.PubMedCrossRef Eker, R., Familial renal adenomas in Wistar rats; a preliminary report. Acta Pathol Microbiol Scand, 1954. 34(6): p. 554-562.PubMedCrossRef
8.
Zurück zum Zitat Eker, R., et al., Hereditary renal adenomas and adenocarcinomas in rats. Diagn Histopathol, 1981. 4(1): p. 99-110.PubMed Eker, R., et al., Hereditary renal adenomas and adenocarcinomas in rats. Diagn Histopathol, 1981. 4(1): p. 99-110.PubMed
9.
Zurück zum Zitat Yeung, R.S., C.D. Katsetos, and A. Klein-Szanto, Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis. Am J Pathol, 1997. 151(5): p. 1477-1486.PubMedPubMedCentral Yeung, R.S., C.D. Katsetos, and A. Klein-Szanto, Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis. Am J Pathol, 1997. 151(5): p. 1477-1486.PubMedPubMedCentral
10.
Zurück zum Zitat Kutna, V., et al., Tuberous Sclerosis (tsc2+/-) Model Eker Rats Reveals Extensive Neuronal Loss with Microglial Invasion and Vascular Remodeling Related to Brain Neoplasia. Neurotherapeutics, 2020. 17(1): p. 329-339.PubMedCrossRef Kutna, V., et al., Tuberous Sclerosis (tsc2+/-) Model Eker Rats Reveals Extensive Neuronal Loss with Microglial Invasion and Vascular Remodeling Related to Brain Neoplasia. Neurotherapeutics, 2020. 17(1): p. 329-339.PubMedCrossRef
11.
Zurück zum Zitat Waltereit, R., et al., Enhanced episodic-like memory and kindling epilepsy in a rat model of tuberous sclerosis. J Neurochem, 2006. 96(2): p. 407-413.PubMedCrossRef Waltereit, R., et al., Enhanced episodic-like memory and kindling epilepsy in a rat model of tuberous sclerosis. J Neurochem, 2006. 96(2): p. 407-413.PubMedCrossRef
12.
Zurück zum Zitat Rennebeck, G., et al., Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryonic lethality characterized by disrupted neuroepithelial growth and development. Proc Natl Acad Sci U S A, 1998. 95(26): p. 15629-15634.PubMedPubMedCentralCrossRef Rennebeck, G., et al., Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryonic lethality characterized by disrupted neuroepithelial growth and development. Proc Natl Acad Sci U S A, 1998. 95(26): p. 15629-15634.PubMedPubMedCentralCrossRef
15.
16.
Zurück zum Zitat Blair, J.D. and H.S. Bateup, New frontiers in modeling tuberous sclerosis with human stem cell-derived neurons and brain organoids. Dev Dyn, 2020. 249(1): p. 46-55.PubMedCrossRef Blair, J.D. and H.S. Bateup, New frontiers in modeling tuberous sclerosis with human stem cell-derived neurons and brain organoids. Dev Dyn, 2020. 249(1): p. 46-55.PubMedCrossRef
18.
Zurück zum Zitat Parsa, A.T., et al., Limitations of the C6/Wistar rat intracerebral glioma model: implications for evaluating immunotherapy. Neurosurgery, 2000. 47(4): p. 993-999; discussion 999-1000.PubMedCrossRef Parsa, A.T., et al., Limitations of the C6/Wistar rat intracerebral glioma model: implications for evaluating immunotherapy. Neurosurgery, 2000. 47(4): p. 993-999; discussion 999-1000.PubMedCrossRef
20.
Zurück zum Zitat Simons, B.W. and C. Brayton, Challenges and Limitations of Mouse Xenograft Models of Cancer. Patient Derived Tumor Xenograft Models, ed. R. Uthamanthil and P. Tinkey. 2016, Johns Hopkins University School of Medicine, Baltimore, MD, United States: Academic Press. Simons, B.W. and C. Brayton, Challenges and Limitations of Mouse Xenograft Models of Cancer. Patient Derived Tumor Xenograft Models, ed. R. Uthamanthil and P. Tinkey. 2016, Johns Hopkins University School of Medicine, Baltimore, MD, United States: Academic Press.
21.
Zurück zum Zitat Kim, K.M., et al., Failure of a patient-derived xenograft for brain tumor model prepared by implantation of tissue fragments. Cancer Cell Int, 2016. 16: p. 43.PubMedPubMedCentralCrossRef Kim, K.M., et al., Failure of a patient-derived xenograft for brain tumor model prepared by implantation of tissue fragments. Cancer Cell Int, 2016. 16: p. 43.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Fryer, A.E., et al., Evidence that the gene for tuberous sclerosis is on chromosome 9. Lancet, 1987. 1(8534): p. 659-661.PubMedCrossRef Fryer, A.E., et al., Evidence that the gene for tuberous sclerosis is on chromosome 9. Lancet, 1987. 1(8534): p. 659-661.PubMedCrossRef
23.
Zurück zum Zitat van Slegtenhorst, M., et al., Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science, 1997. 277(5327): p. 805-808.PubMedCrossRef van Slegtenhorst, M., et al., Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science, 1997. 277(5327): p. 805-808.PubMedCrossRef
24.
Zurück zum Zitat Kandt, R.S., et al., Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease. Nat Genet, 1992. 2(1): p. 37-41.PubMedCrossRef Kandt, R.S., et al., Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease. Nat Genet, 1992. 2(1): p. 37-41.PubMedCrossRef
25.
26.
Zurück zum Zitat Lam, H.C., B.J. Siroky, and E.P. Henske, Renal disease in tuberous sclerosis complex: pathogenesis and therapy. Nat Rev Nephrol, 2018. 14(11): p. 704-716.PubMedCrossRef Lam, H.C., B.J. Siroky, and E.P. Henske, Renal disease in tuberous sclerosis complex: pathogenesis and therapy. Nat Rev Nephrol, 2018. 14(11): p. 704-716.PubMedCrossRef
27.
Zurück zum Zitat Bongaarts, A., et al., Subependymal giant cell astrocytomas in Tuberous Sclerosis Complex have consistent TSC1/TSC2 biallelic inactivation, and no BRAF mutations. Oncotarget, 2017. 8(56): p. 95516-95529.PubMedPubMedCentralCrossRef Bongaarts, A., et al., Subependymal giant cell astrocytomas in Tuberous Sclerosis Complex have consistent TSC1/TSC2 biallelic inactivation, and no BRAF mutations. Oncotarget, 2017. 8(56): p. 95516-95529.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Huang, J. and B.D. Manning, The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J, 2008. 412(2): p. 179-190.PubMedCrossRef Huang, J. and B.D. Manning, The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J, 2008. 412(2): p. 179-190.PubMedCrossRef
29.
Zurück zum Zitat Rosset, C., C.B.O. Netto, and P. Ashton-Prolla, TSC1 and TSC2 gene mutations and their implications for treatment in Tuberous Sclerosis Complex: a review. Genet Mol Biol, 2017. 40(1): p. 69-79.PubMedPubMedCentralCrossRef Rosset, C., C.B.O. Netto, and P. Ashton-Prolla, TSC1 and TSC2 gene mutations and their implications for treatment in Tuberous Sclerosis Complex: a review. Genet Mol Biol, 2017. 40(1): p. 69-79.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Lamb, R.F., et al., The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat Cell Biol, 2000. 2(5): p. 281-287.PubMedCrossRef Lamb, R.F., et al., The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat Cell Biol, 2000. 2(5): p. 281-287.PubMedCrossRef
31.
Zurück zum Zitat Haddad, L.A., et al., The TSC1 tumor suppressor hamartin interacts with neurofilament-L and possibly functions as a novel integrator of the neuronal cytoskeleton. J Biol Chem, 2002. 277(46): p. 44180-44186.PubMedCrossRef Haddad, L.A., et al., The TSC1 tumor suppressor hamartin interacts with neurofilament-L and possibly functions as a novel integrator of the neuronal cytoskeleton. J Biol Chem, 2002. 277(46): p. 44180-44186.PubMedCrossRef
32.
Zurück zum Zitat Schopel, M., et al., The small GTPases Ras and Rheb studied by multidimensional NMR spectroscopy: structure and function. Biol Chem, 2017. 398(5-6): p. 577-588.PubMedCrossRef Schopel, M., et al., The small GTPases Ras and Rheb studied by multidimensional NMR spectroscopy: structure and function. Biol Chem, 2017. 398(5-6): p. 577-588.PubMedCrossRef
33.
Zurück zum Zitat Fehon, R.G., A.I. McClatchey, and A. Bretscher, Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol, 2010. 11(4): p. 276-287.PubMedPubMedCentralCrossRef Fehon, R.G., A.I. McClatchey, and A. Bretscher, Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol, 2010. 11(4): p. 276-287.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Kleijer, K.T., et al., Neurobiology of autism gene products: towards pathogenesis and drug targets. Psychopharmacology, 2014. 231(6): p. 1037-1062.PubMedCrossRef Kleijer, K.T., et al., Neurobiology of autism gene products: towards pathogenesis and drug targets. Psychopharmacology, 2014. 231(6): p. 1037-1062.PubMedCrossRef
35.
Zurück zum Zitat Kobayashi, T., et al., Identification of a leader exon and a core promoter for the rat tuberous sclerosis 2 (Tsc2) gene and structural comparison with the human homolog. Mamm Genome, 1997. 8(8): p. 554-558.PubMedCrossRef Kobayashi, T., et al., Identification of a leader exon and a core promoter for the rat tuberous sclerosis 2 (Tsc2) gene and structural comparison with the human homolog. Mamm Genome, 1997. 8(8): p. 554-558.PubMedCrossRef
36.
Zurück zum Zitat Maheshwar, M.M., et al., The GAP-related domain of tuberin, the product of the TSC2 gene, is a target for missense mutations in tuberous sclerosis. Hum Mol Genet, 1997. 6(11): p. 1991-1996.PubMedCrossRef Maheshwar, M.M., et al., The GAP-related domain of tuberin, the product of the TSC2 gene, is a target for missense mutations in tuberous sclerosis. Hum Mol Genet, 1997. 6(11): p. 1991-1996.PubMedCrossRef
39.
Zurück zum Zitat Rubinfeld, B., et al., Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21rap1. Cell, 1991. 65(6): p. 1033-1042.PubMedCrossRef Rubinfeld, B., et al., Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21rap1. Cell, 1991. 65(6): p. 1033-1042.PubMedCrossRef
40.
Zurück zum Zitat Yeung, R.S., Lessons from the Eker rat model: from cage to bedside. Curr Mol Med, 2004. 4(8): p. 799-806.PubMedCrossRef Yeung, R.S., Lessons from the Eker rat model: from cage to bedside. Curr Mol Med, 2004. 4(8): p. 799-806.PubMedCrossRef
41.
Zurück zum Zitat Soucek, T., et al., Role of the tuberous sclerosis gene-2 product in cell cycle control. Loss of the tuberous sclerosis gene-2 induces quiescent cells to enter S phase. J Biol Chem, 1997. 272(46): p. 29301-29308.PubMedCrossRef Soucek, T., et al., Role of the tuberous sclerosis gene-2 product in cell cycle control. Loss of the tuberous sclerosis gene-2 induces quiescent cells to enter S phase. J Biol Chem, 1997. 272(46): p. 29301-29308.PubMedCrossRef
43.
Zurück zum Zitat Rosner, M. and M. Hengstschlager, Cytoplasmic/nuclear localization of tuberin in different cell lines. Amino Acids, 2007. 33(4): p. 575-579.PubMedCrossRef Rosner, M. and M. Hengstschlager, Cytoplasmic/nuclear localization of tuberin in different cell lines. Amino Acids, 2007. 33(4): p. 575-579.PubMedCrossRef
44.
Zurück zum Zitat Wienecke, R., et al., Co-localization of the TSC2 product tuberin with its target Rap1 in the Golgi apparatus. Oncogene, 1996. 13(5): p. 913-923.PubMed Wienecke, R., et al., Co-localization of the TSC2 product tuberin with its target Rap1 in the Golgi apparatus. Oncogene, 1996. 13(5): p. 913-923.PubMed
45.
Zurück zum Zitat Demetriades, C., N. Doumpas, and A.A. Teleman, Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell, 2014. 156(4): p. 786-799.PubMedPubMedCentralCrossRef Demetriades, C., N. Doumpas, and A.A. Teleman, Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell, 2014. 156(4): p. 786-799.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Demetriades, C., M. Plescher, and A.A. Teleman, Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun, 2016. 7: p. 10662.PubMedPubMedCentralCrossRef Demetriades, C., M. Plescher, and A.A. Teleman, Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun, 2016. 7: p. 10662.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Johnson, M.W., et al., Hamartin and tuberin expression in human tissues. Mod Pathol, 2001. 14(3): p. 202-210.PubMedCrossRef Johnson, M.W., et al., Hamartin and tuberin expression in human tissues. Mod Pathol, 2001. 14(3): p. 202-210.PubMedCrossRef
49.
Zurück zum Zitat Dan, H.C., et al., Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem, 2016. 291(43): p. 22848.PubMedPubMedCentralCrossRef Dan, H.C., et al., Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem, 2016. 291(43): p. 22848.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Inoki, K., et al., TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol, 2002. 4(9): p. 648-657.PubMedCrossRef Inoki, K., et al., TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol, 2002. 4(9): p. 648-657.PubMedCrossRef
51.
Zurück zum Zitat Potter, C.J., L.G. Pedraza, and T. Xu, Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol, 2002. 4(9): p. 658-665.PubMedCrossRef Potter, C.J., L.G. Pedraza, and T. Xu, Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol, 2002. 4(9): p. 658-665.PubMedCrossRef
52.
Zurück zum Zitat Tee, A.R., et al., Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A, 2002. 99(21): p. 13571-13576.PubMedPubMedCentralCrossRef Tee, A.R., et al., Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A, 2002. 99(21): p. 13571-13576.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Ma, L., et al., Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res, 2007. 67(15): p. 7106-7112.PubMedCrossRef Ma, L., et al., Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res, 2007. 67(15): p. 7106-7112.PubMedCrossRef
55.
Zurück zum Zitat Han, S., et al., Pam (Protein associated with Myc) functions as an E3 ubiquitin ligase and regulates TSC/mTOR signaling. Cell Signal, 2008. 20(6): p. 1084-1091.PubMedPubMedCentralCrossRef Han, S., et al., Pam (Protein associated with Myc) functions as an E3 ubiquitin ligase and regulates TSC/mTOR signaling. Cell Signal, 2008. 20(6): p. 1084-1091.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Inoki, K., T. Zhu, and K.L. Guan, TSC2 mediates cellular energy response to control cell growth and survival. Cell, 2003. 115(5): p. 577-590.PubMedCrossRef Inoki, K., T. Zhu, and K.L. Guan, TSC2 mediates cellular energy response to control cell growth and survival. Cell, 2003. 115(5): p. 577-590.PubMedCrossRef
57.
Zurück zum Zitat Hahn-Windgassen, A., et al., Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem, 2005. 280(37): p. 32081-32089.PubMedCrossRef Hahn-Windgassen, A., et al., Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem, 2005. 280(37): p. 32081-32089.PubMedCrossRef
58.
Zurück zum Zitat Lee, D.F., et al., IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell, 2007. 130(3): p. 440-455.PubMedCrossRef Lee, D.F., et al., IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell, 2007. 130(3): p. 440-455.PubMedCrossRef
59.
Zurück zum Zitat Kwiatkowski, D.J., Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol Ther, 2003. 2(5): p. 471-476.PubMedCrossRef Kwiatkowski, D.J., Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol Ther, 2003. 2(5): p. 471-476.PubMedCrossRef
60.
Zurück zum Zitat Meikle, L., et al., A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci, 2007. 27(21): p. 5546-5558.PubMedPubMedCentralCrossRef Meikle, L., et al., A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci, 2007. 27(21): p. 5546-5558.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Goncharova, E.A., et al., Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J Biol Chem, 2002. 277(34): p. 30958-30967.PubMedCrossRef Goncharova, E.A., et al., Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J Biol Chem, 2002. 277(34): p. 30958-30967.PubMedCrossRef
62.
Zurück zum Zitat Cheadle, J.P., et al., Molecular genetic advances in tuberous sclerosis. Hum Genet, 2000. 107(2): p. 97-114.PubMedCrossRef Cheadle, J.P., et al., Molecular genetic advances in tuberous sclerosis. Hum Genet, 2000. 107(2): p. 97-114.PubMedCrossRef
64.
Zurück zum Zitat Osborne, J.P., A. Fryer, and D. Webb, Epidemiology of tuberous sclerosis. Ann N Y Acad Sci, 1991. 615: p. 125-127.PubMedCrossRef Osborne, J.P., A. Fryer, and D. Webb, Epidemiology of tuberous sclerosis. Ann N Y Acad Sci, 1991. 615: p. 125-127.PubMedCrossRef
65.
Zurück zum Zitat Samueli, S., et al., Tuberous Sclerosis Complex: new criteria for diagnostic work-up and management. Wien Klin Wochenschr, 2015. 127(15-16): p. 619-630.PubMedCrossRef Samueli, S., et al., Tuberous Sclerosis Complex: new criteria for diagnostic work-up and management. Wien Klin Wochenschr, 2015. 127(15-16): p. 619-630.PubMedCrossRef
66.
Zurück zum Zitat Prather, P. and P.J. de Vries, Behavioral and cognitive aspects of tuberous sclerosis complex. J Child Neurol, 2004. 19(9): p. 666-674.PubMedCrossRef Prather, P. and P.J. de Vries, Behavioral and cognitive aspects of tuberous sclerosis complex. J Child Neurol, 2004. 19(9): p. 666-674.PubMedCrossRef
67.
Zurück zum Zitat de Vries, P.J., et al., A clinical update on tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). Am J Med Genet C: Semin Med Genet, 2018. 178(3): p. 309-320.CrossRef de Vries, P.J., et al., A clinical update on tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). Am J Med Genet C: Semin Med Genet, 2018. 178(3): p. 309-320.CrossRef
68.
69.
Zurück zum Zitat Hunt, A. and J. Dennis, Psychiatric disorder among children with tuberous sclerosis. . Dev Med Child Neurol , 1987. 29: p. 190–198.PubMedCrossRef Hunt, A. and J. Dennis, Psychiatric disorder among children with tuberous sclerosis. . Dev Med Child Neurol , 1987. 29: p. 190–198.PubMedCrossRef
70.
Zurück zum Zitat Holmes, G.L., C.E. Stafstrom, and G. Tuberous Sclerosis Study, Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia, 2007. 48(4): p. 617-630.PubMedCrossRef Holmes, G.L., C.E. Stafstrom, and G. Tuberous Sclerosis Study, Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia, 2007. 48(4): p. 617-630.PubMedCrossRef
71.
Zurück zum Zitat Nabbout, R., et al., Epilepsy in tuberous sclerosis complex: Findings from the TOSCA Study. Epilepsia Open, 2019. 4(1): p. 73-84.PubMedCrossRef Nabbout, R., et al., Epilepsy in tuberous sclerosis complex: Findings from the TOSCA Study. Epilepsia Open, 2019. 4(1): p. 73-84.PubMedCrossRef
72.
Zurück zum Zitat Braffman, B.H., et al., MR imaging of tuberous sclerosis: pathogenesis of this phakomatosis, use of gadopentetate dimeglumine, and literature review. Radiology, 1992. 183(1): p. 227-238.PubMedCrossRef Braffman, B.H., et al., MR imaging of tuberous sclerosis: pathogenesis of this phakomatosis, use of gadopentetate dimeglumine, and literature review. Radiology, 1992. 183(1): p. 227-238.PubMedCrossRef
73.
Zurück zum Zitat Ridler, K., et al., Standardized whole brain mapping of tubers and subependymal nodules in tuberous sclerosis complex. J Child Neurol, 2004. 19(9): p. 658-665.PubMedCrossRef Ridler, K., et al., Standardized whole brain mapping of tubers and subependymal nodules in tuberous sclerosis complex. J Child Neurol, 2004. 19(9): p. 658-665.PubMedCrossRef
74.
Zurück zum Zitat Peters, J.M., et al., Diffusion tensor imaging and related techniques in tuberous sclerosis complex: review and future directions. Future Neurol, 2013. 8(5): p. 583-597.PubMedPubMedCentralCrossRef Peters, J.M., et al., Diffusion tensor imaging and related techniques in tuberous sclerosis complex: review and future directions. Future Neurol, 2013. 8(5): p. 583-597.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Yamanouchi, H., et al., Giant cells in cortical tubers in tuberous sclerosis showing synaptophysin-immunoreactive halos. Brain and Development, 1997. 19(1): p. 21-24.PubMedCrossRef Yamanouchi, H., et al., Giant cells in cortical tubers in tuberous sclerosis showing synaptophysin-immunoreactive halos. Brain and Development, 1997. 19(1): p. 21-24.PubMedCrossRef
76.
Zurück zum Zitat Mizuguchi, M. and S. Takashima, Neuropathology of tuberous sclerosis. Brain and Development, 2001. 23(7): p. 508-515.PubMedCrossRef Mizuguchi, M. and S. Takashima, Neuropathology of tuberous sclerosis. Brain and Development, 2001. 23(7): p. 508-515.PubMedCrossRef
77.
Zurück zum Zitat Grajkowska, W., et al., Brain lesions in tuberous sclerosis complex. ReviewFolia Neuropathol, 2010. 48(3): p. 139-149.PubMed Grajkowska, W., et al., Brain lesions in tuberous sclerosis complex. ReviewFolia Neuropathol, 2010. 48(3): p. 139-149.PubMed
78.
Zurück zum Zitat Fohlen, M., et al., Refractory epilepsy in preschool children with tuberous sclerosis complex: Early surgical treatment and outcome. Seizure, 2018. 60: p. 71-79.PubMedCrossRef Fohlen, M., et al., Refractory epilepsy in preschool children with tuberous sclerosis complex: Early surgical treatment and outcome. Seizure, 2018. 60: p. 71-79.PubMedCrossRef
79.
Zurück zum Zitat Kalantari, B.N. and N. Salamon, Neuroimaging of tuberous sclerosis: spectrum of pathologic findings and frontiers in imaging. AJR Am J Roentgenol, 2008. 190(5): p. W304-W309.PubMedCrossRef Kalantari, B.N. and N. Salamon, Neuroimaging of tuberous sclerosis: spectrum of pathologic findings and frontiers in imaging. AJR Am J Roentgenol, 2008. 190(5): p. W304-W309.PubMedCrossRef
80.
Zurück zum Zitat Yamanouchi, H., et al., Evidence of abnormal differentiation in giant cells of tuberous sclerosis. Pediatr Neurol, 1997. 17(1): p. 49-53.PubMedCrossRef Yamanouchi, H., et al., Evidence of abnormal differentiation in giant cells of tuberous sclerosis. Pediatr Neurol, 1997. 17(1): p. 49-53.PubMedCrossRef
81.
Zurück zum Zitat Henske, E.P., et al., Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am J Pathol, 1997. 151(6): p. 1639-1647.PubMedPubMedCentral Henske, E.P., et al., Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am J Pathol, 1997. 151(6): p. 1639-1647.PubMedPubMedCentral
82.
Zurück zum Zitat DiMario, F.J., Jr., Brain abnormalities in tuberous sclerosis complex. J Child Neurol, 2004. 19(9): p. 650-657.PubMedCrossRef DiMario, F.J., Jr., Brain abnormalities in tuberous sclerosis complex. J Child Neurol, 2004. 19(9): p. 650-657.PubMedCrossRef
83.
Zurück zum Zitat Goh, S., W. Butler, and E.A. Thiele, Subependymal giant cell tumors in tuberous sclerosis complex. Neurology, 2004. 63(8): p. 1457-1461.PubMedCrossRef Goh, S., W. Butler, and E.A. Thiele, Subependymal giant cell tumors in tuberous sclerosis complex. Neurology, 2004. 63(8): p. 1457-1461.PubMedCrossRef
84.
Zurück zum Zitat Adriaensen, M.E., et al., Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur J Neurol, 2009. 16(6): p. 691-696.PubMedCrossRef Adriaensen, M.E., et al., Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur J Neurol, 2009. 16(6): p. 691-696.PubMedCrossRef
85.
Zurück zum Zitat Cuccia, V., et al., Subependymal giant cell astrocytoma in children with tuberous sclerosis. Childs Nerv Syst, 2003. 19(4): p. 232-243.PubMedCrossRef Cuccia, V., et al., Subependymal giant cell astrocytoma in children with tuberous sclerosis. Childs Nerv Syst, 2003. 19(4): p. 232-243.PubMedCrossRef
86.
Zurück zum Zitat Buccoliero, A.M., et al., Subependymal giant cell astrocytoma (SEGA): Is it an astrocytoma? Morphological, immunohistochemical and ultrastructural study. Neuropathology, 2009. 29(1): p. 25-30.PubMedCrossRef Buccoliero, A.M., et al., Subependymal giant cell astrocytoma (SEGA): Is it an astrocytoma? Morphological, immunohistochemical and ultrastructural study. Neuropathology, 2009. 29(1): p. 25-30.PubMedCrossRef
87.
Zurück zum Zitat Hirose, T., et al., Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron and microscopic study. Acta Neuropathol, 1995. 90(4): p. 387-399.PubMedCrossRef Hirose, T., et al., Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron and microscopic study. Acta Neuropathol, 1995. 90(4): p. 387-399.PubMedCrossRef
88.
Zurück zum Zitat Di Rocco, C., A. Iannelli, and E. Marchese, On the treatment of subependymal giant cell astrocytomas and associated hydrocephalus in tuberous sclerosis. Pediatr Neurosurg, 1995. 23(3): p. 115-121.PubMedCrossRef Di Rocco, C., A. Iannelli, and E. Marchese, On the treatment of subependymal giant cell astrocytomas and associated hydrocephalus in tuberous sclerosis. Pediatr Neurosurg, 1995. 23(3): p. 115-121.PubMedCrossRef
89.
Zurück zum Zitat Crino, P.B., K.L. Nathanson, and E.P. Henske, The tuberous sclerosis complex. N Engl J Med, 2006. 355(13): p. 1345-1356.PubMedCrossRef Crino, P.B., K.L. Nathanson, and E.P. Henske, The tuberous sclerosis complex. N Engl J Med, 2006. 355(13): p. 1345-1356.PubMedCrossRef
90.
Zurück zum Zitat Kim, J.Y., et al., Subependymal Giant Cell Astrocytoma Presenting with Tumoral Bleeding: A Case Report. Brain Tumor Res Treat, 2017. 5(1): p. 37-41.PubMedPubMedCentralCrossRef Kim, J.Y., et al., Subependymal Giant Cell Astrocytoma Presenting with Tumoral Bleeding: A Case Report. Brain Tumor Res Treat, 2017. 5(1): p. 37-41.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Ess, K.C., et al., Developmental origin of subependymal giant cell astrocytoma in tuberous sclerosis complex. Neurology, 2005. 64(8): p. 1446-1449.PubMedCrossRef Ess, K.C., et al., Developmental origin of subependymal giant cell astrocytoma in tuberous sclerosis complex. Neurology, 2005. 64(8): p. 1446-1449.PubMedCrossRef
92.
Zurück zum Zitat Ess, K.C., et al., Expression profiling in tuberous sclerosis complex (TSC) knockout mouse astrocytes to characterize human TSC brain pathology. Glia, 2004. 46(1): p. 28-40.PubMedCrossRef Ess, K.C., et al., Expression profiling in tuberous sclerosis complex (TSC) knockout mouse astrocytes to characterize human TSC brain pathology. Glia, 2004. 46(1): p. 28-40.PubMedCrossRef
93.
Zurück zum Zitat Feng, L., M.E. Hatten, and N. Heintz, Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron, 1994. 12(4): p. 895-908.PubMedCrossRef Feng, L., M.E. Hatten, and N. Heintz, Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron, 1994. 12(4): p. 895-908.PubMedCrossRef
94.
Zurück zum Zitat Jozwiak, S., et al., Tuberin and hamartin expression is reduced in the majority of subependymal giant cell astrocytomas in tuberous sclerosis complex consistent with a two-hit model of pathogenesis. J Child Neurol, 2004. 19(2): p. 102-106.PubMedCrossRef Jozwiak, S., et al., Tuberin and hamartin expression is reduced in the majority of subependymal giant cell astrocytomas in tuberous sclerosis complex consistent with a two-hit model of pathogenesis. J Child Neurol, 2004. 19(2): p. 102-106.PubMedCrossRef
95.
Zurück zum Zitat Mizuguchi, M., et al., Novel cerebral lesions in the Eker rat model of tuberous sclerosis: cortical tuber and anaplastic ganglioglioma. J Neuropathol Exp Neurol, 2000. 59(3): p. 188-196.PubMedCrossRef Mizuguchi, M., et al., Novel cerebral lesions in the Eker rat model of tuberous sclerosis: cortical tuber and anaplastic ganglioglioma. J Neuropathol Exp Neurol, 2000. 59(3): p. 188-196.PubMedCrossRef
96.
Zurück zum Zitat Takahashi, D.K., et al., Abnormal cortical cells and astrocytomas in the Eker rat model of tuberous sclerosis complex. Epilepsia, 2004. 45(12): p. 1525-1530.PubMedCrossRef Takahashi, D.K., et al., Abnormal cortical cells and astrocytomas in the Eker rat model of tuberous sclerosis complex. Epilepsia, 2004. 45(12): p. 1525-1530.PubMedCrossRef
97.
Zurück zum Zitat Wenzel, H.J., et al., Morphology of cerebral lesions in the Eker rat model of tuberous sclerosis. Acta Neuropathol, 2004. 108(2): p. 97-108.PubMedCrossRef Wenzel, H.J., et al., Morphology of cerebral lesions in the Eker rat model of tuberous sclerosis. Acta Neuropathol, 2004. 108(2): p. 97-108.PubMedCrossRef
98.
Zurück zum Zitat Wippold, F.J., 2nd, A. Perry, and J. Lennerz, Neuropathology for the neuroradiologist: Rosenthal fibers. AJNR Am J Neuroradiol, 2006. 27(5): p. 958-961.PubMedPubMedCentral Wippold, F.J., 2nd, A. Perry, and J. Lennerz, Neuropathology for the neuroradiologist: Rosenthal fibers. AJNR Am J Neuroradiol, 2006. 27(5): p. 958-961.PubMedPubMedCentral
99.
Zurück zum Zitat Curatolo, P., et al., Neuropsychiatric aspects of tuberous sclerosis. Ann N Y Acad Sci, 1991. 615: p. 8-16.PubMedCrossRef Curatolo, P., et al., Neuropsychiatric aspects of tuberous sclerosis. Ann N Y Acad Sci, 1991. 615: p. 8-16.PubMedCrossRef
100.
Zurück zum Zitat Almobarak, S., et al., Tuberous Sclerosis Complex: Clinical Spectrum and Epilepsy: A Retrospective Chart Review Study. Transl Neurosci, 2018. 9: p. 154-160.PubMedPubMedCentralCrossRef Almobarak, S., et al., Tuberous Sclerosis Complex: Clinical Spectrum and Epilepsy: A Retrospective Chart Review Study. Transl Neurosci, 2018. 9: p. 154-160.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Tschuluun, N., H.J. Wenzel, and P.A. Schwartzkroin, Irradiation exacerbates cortical cytopathology in the Eker rat model of tuberous sclerosis complex, but does not induce hyperexcitability. Epilepsy Res, 2007. 73(1): p. 53-64.PubMedCrossRef Tschuluun, N., H.J. Wenzel, and P.A. Schwartzkroin, Irradiation exacerbates cortical cytopathology in the Eker rat model of tuberous sclerosis complex, but does not induce hyperexcitability. Epilepsy Res, 2007. 73(1): p. 53-64.PubMedCrossRef
102.
Zurück zum Zitat Cooper, A.J., The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis. Neurochem Res, 2012. 37(11): p. 2439-2355.PubMedPubMedCentralCrossRef Cooper, A.J., The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis. Neurochem Res, 2012. 37(11): p. 2439-2355.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Ito, D., et al., Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke, 2001. 32(5): p. 1208-1215.PubMedCrossRef Ito, D., et al., Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke, 2001. 32(5): p. 1208-1215.PubMedCrossRef
104.
105.
Zurück zum Zitat Lee, B.H., T. Smith, and A.R. Paciorkowski, Autism spectrum disorder and epilepsy: Disorders with a shared biology. Epilepsy Behav, 2015. 47: p. 191-201.PubMedPubMedCentralCrossRef Lee, B.H., T. Smith, and A.R. Paciorkowski, Autism spectrum disorder and epilepsy: Disorders with a shared biology. Epilepsy Behav, 2015. 47: p. 191-201.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Switon, K., et al., Tuberous sclerosis complex: From molecular biology to novel therapeutic approaches. IUBMB Life, 2016. 68(12): p. 955-962.PubMedCrossRef Switon, K., et al., Tuberous sclerosis complex: From molecular biology to novel therapeutic approaches. IUBMB Life, 2016. 68(12): p. 955-962.PubMedCrossRef
107.
108.
Zurück zum Zitat Goorden, S.M., et al., Cognitive deficits in Tsc1+/- mice in the absence of cerebral lesions and seizures. Ann Neurol, 2007. 62(6): p. 648-655.PubMedCrossRef Goorden, S.M., et al., Cognitive deficits in Tsc1+/- mice in the absence of cerebral lesions and seizures. Ann Neurol, 2007. 62(6): p. 648-655.PubMedCrossRef
109.
Zurück zum Zitat Ovsepian, S.V., et al., Ambient Glutamate Promotes Paroxysmal Hyperactivity in Cortical Pyramidal Neurons at Amyloid Plaques via Presynaptic mGluR1 Receptors. Cereb Cortex, 2017. 27(10): p. 4733-4749.PubMed Ovsepian, S.V., et al., Ambient Glutamate Promotes Paroxysmal Hyperactivity in Cortical Pyramidal Neurons at Amyloid Plaques via Presynaptic mGluR1 Receptors. Cereb Cortex, 2017. 27(10): p. 4733-4749.PubMed
110.
Zurück zum Zitat Ovsepian, S.V. and V.B. O'Leary, Neuronal activity and amyloid plaque pathology: an update. J Alzheimers Dis, 2016. 49(1): p. 13-19.PubMedCrossRef Ovsepian, S.V. and V.B. O'Leary, Neuronal activity and amyloid plaque pathology: an update. J Alzheimers Dis, 2016. 49(1): p. 13-19.PubMedCrossRef
111.
Zurück zum Zitat Ovsepian, S.V., et al., Amyloid Plaques of Alzheimer's Disease as Hotspots of Glutamatergic Activity. Neuroscientist, 2019. 25(4): p. 288-297.PubMedCrossRef Ovsepian, S.V., et al., Amyloid Plaques of Alzheimer's Disease as Hotspots of Glutamatergic Activity. Neuroscientist, 2019. 25(4): p. 288-297.PubMedCrossRef
112.
Zurück zum Zitat von der Brelie, C., et al., Impaired synaptic plasticity in a rat model of tuberous sclerosis. Eur J Neurosci, 2006. 23(3): p. 686-692.PubMedCrossRef von der Brelie, C., et al., Impaired synaptic plasticity in a rat model of tuberous sclerosis. Eur J Neurosci, 2006. 23(3): p. 686-692.PubMedCrossRef
113.
Zurück zum Zitat Chu-Shore, C., et al., The natural history of epilepsy in tuberous sclerosis complex. , ed. Epilepsia. 2010, John Wiley & Sons, Ltd; 2010;51(7):1236–1241. Chu-Shore, C., et al., The natural history of epilepsy in tuberous sclerosis complex. , ed. Epilepsia. 2010, John Wiley & Sons, Ltd; 2010;51(7):1236–1241.
114.
Zurück zum Zitat Vignoli, A., et al., Epilepsy in TSC: Certain etiology does not mean certain prognosis. Epilepsia. . 2013: John Wiley & Sons, Ltd. Vignoli, A., et al., Epilepsy in TSC: Certain etiology does not mean certain prognosis. Epilepsia. . 2013: John Wiley & Sons, Ltd.
115.
Zurück zum Zitat Kobayashi, T., et al., A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci U S A, 2001. 98(15): p. 8762-8767.PubMedPubMedCentralCrossRef Kobayashi, T., et al., A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci U S A, 2001. 98(15): p. 8762-8767.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Uhlmann, E.J., et al., Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol, 2002. 52(3): p. 285-296.PubMedCrossRef Uhlmann, E.J., et al., Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol, 2002. 52(3): p. 285-296.PubMedCrossRef
117.
Zurück zum Zitat Zeng, L.H., et al., Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum Mol Genet, 2011. 20(3): p. 445-454.PubMedCrossRef Zeng, L.H., et al., Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum Mol Genet, 2011. 20(3): p. 445-454.PubMedCrossRef
118.
Zurück zum Zitat Onda, H., et al., Tsc2(+/-) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J Clin Invest, 1999. 104(6): p. 687-695.PubMedPubMedCentralCrossRef Onda, H., et al., Tsc2(+/-) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J Clin Invest, 1999. 104(6): p. 687-695.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Way, S.W., et al., Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. Hum Mol Genet, 2009. 18(7): p. 1252-1265.PubMedPubMedCentralCrossRef Way, S.W., et al., Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. Hum Mol Genet, 2009. 18(7): p. 1252-1265.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Steele, R.J. and R.G. Morris, Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus, 1999. 9(2): p. 118-136.PubMedCrossRef Steele, R.J. and R.G. Morris, Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus, 1999. 9(2): p. 118-136.PubMedCrossRef
122.
Zurück zum Zitat Waltereit, R., et al., Epilepsy and Tsc2 haploinsufficiency lead to autistic-like social deficit behaviors in rats. Behav Genet, 2011. 41(3): p. 364-372.PubMedCrossRef Waltereit, R., et al., Epilepsy and Tsc2 haploinsufficiency lead to autistic-like social deficit behaviors in rats. Behav Genet, 2011. 41(3): p. 364-372.PubMedCrossRef
Metadaten
Titel
Revisiting Brain Tuberous Sclerosis Complex in Rat and Human: Shared Molecular and Cellular Pathology Leads to Distinct Neurophysiological and Behavioral Phenotypes
verfasst von
Viera Kútna
Valerie B. O’Leary
Ehren Newman
Cyril Hoschl
Saak V. Ovsepian
Publikationsdatum
01.04.2021
Verlag
Springer International Publishing
Erschienen in
Neurotherapeutics / Ausgabe 2/2021
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-020-01000-7

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Ehe schützt nicht vor Demenz

  • 25.04.2025
  • Demenz
  • Nachrichten

Eigentlich leben Verheiratete länger und gesünder. Eine aktuelle Untersuchung kommt jedoch zu dem überraschenden Schluss, dass sie eher an Demenz erkranken als nie Verheiratete, Geschiedene oder Verwitwete.

Lohnt sich die Karotis-Revaskularisation?

Die medikamentöse Therapie für Menschen mit Karotisstenosen hat sich in den vergangenen Dekaden verbessert. Braucht es also noch einen invasiven Eingriff zur Revaskularisation der Halsschlagader bei geringem bis moderatem Risiko für einen ipsilateralen Schlaganfall?

Neuartige Antikörpertherapie bremst MS über zwei Jahre hinweg

Eine Therapie mit dem C40-Ligand-Blocker Frexalimab kann MS-Schübe und neue MRT-Läsionen über zwei Jahre hinweg verhindern. Dafür spricht die Auswertung einer offen fortgeführten Phase-2-Studie.

Therapiestopp bei älteren MS-Kranken kann sich lohnen

Eine Analyse aus Kanada bestätigt: Setzen ältere MS-Kranke die Behandlung mit Basistherapeutika ab, müssen sie kaum mit neuen Schüben und MRT-Auffälligkeiten rechnen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.