Skip to main content
Erschienen in:

Open Access 08.08.2023 | Neurophthalmology

Revisiting Javal’s rule: a fresh and improved power vector approach according to age

verfasst von: Raquel Salvador-Roger, César Albarrán-Diego, Nuria Garzón, María García-Montero, Gonzalo Muñoz, Vicente Micó, José J. Esteve-Taboada

Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology | Ausgabe 1/2024

Abstract

Purpose

The scientific community has established Javal’s rule as a model linking refractive (RA) and keratometric (KA) astigmatism since its appearance more than 100 years ago. The aim was to improve the accuracy of this relationship according to subject’s age by applying the power vector analysis. Posterior corneal curvature has also been studied.

Methods

The IOLMaster 700 optical biometer was used to measure the corneal thickness and the radius of curvature of the anterior and posterior corneal surfaces. Refractive error was determined by a non-cycloplegic subjective refraction process with trial lenses. Linear regression analyses were applied using J0 and J45 power vector components. An evaluation was carried out according to the subject’s age resulting into eight regression relationships for each astigmatic vector component for each relationship.

Results

A total of 2254 right eyes from 2254 healthy subjects were evaluated. A trend towards against-the-rule astigmatism (ATR) was found with aging, both for refractive astigmatism (RA) and keratometric astigmatism (KA), with 95.2% of subjects under 20 years old having with-the-rule (WTR) KA, and only 22.8% above 79 years old. The following regression equations were found between RA and KA: \({J}_0^{\textrm{RA}}\) = 0.73 × \({J}_0^{\textrm{KA}}\) − 0.18 (R = 0.78) and \({J}_{45}^{\textrm{RA}}\) = 0.70 × \({J}_{45}^{\textrm{KA}}\) + 0.04 (R = 0.69) and between RA and total corneal astigmatism (TCA): \({J}_0^{\textrm{RA}}\) = 0.73 × \({J}_0^{\textrm{TCA}}\) + 0.13 (R=0.78) and \({J}_{45}^{\textrm{RA}}\) = 0.70 × \({J}_{45}^{\textrm{TCA}}\) − 0.06 (R = 0.68) for the whole sample, but with sensible differences among age groups, both in the slope and in the intercept.

Conclusion

Ignoring the age of the subject when using Javal’s rule could lead to an error in the final cylinder calculation that would increase in high astigmatisms. Applying this new power vector approach based on subject’s age could improve the accuracy of the astigmatism prediction.
Hinweise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

A proper determination of astigmatism is essential for many ophthalmological and optometric procedures, especially when they are irreversible, such as refractive corneal surgery or toric intraocular lens (IOL) implantation. Traditionally, the most of refractive astigmatism was assumed to be provided by the anterior surface of the cornea, omitting other refractive surfaces of the eye [1, 2]. Since the development of the first keratometers [35] the anterior astigmatism of the cornea has been extensively studied, resulting in the development of a linear relationship between refractive astigmatism (RA) and keratometric astigmatism (KA), known as Javal’s rule [4]. It should be noted that Javal, in 1890, proposed this relationship as an empirical estimation of the refractive astigmatism based on the anterior corneal surface, giving the anterior corneal power a weight of 1.25 and the internal astigmatism a cylinder of −0.50 D × 90° (RA = 1.25 × KA − 0.50 × 90°).
Although Javal’s rule is widely accepted, clinicians do have a simpler alternative which was suggested by Grosvenor et al. at the end of the 1980s [6]. They proposed a simplification of Javal’s rule concluding that, in with-the-rule (WTR) and against-the-rule (ATR) astigmatisms, anterior corneal weight in total astigmatism calculation was reduced to 1, resulting in the Javal’s rule simplification RA = KA − 0.50 × 90°. Recently, other authors [79] developed their own linear relationships using power vectors so as to avoid the limitations of Javal’s rule and Grosvenor’s approximation when corneal astigmatism is not exactly oriented at 0° or 90° or astigmatism higher than 2.00 D. All these studies resolved Grosvenor’s weaknesses, resulting in two formulas, one for each astigmatic power vector component. However, all those studies only incorporate data from the anterior corneal surface while posterior corneal astigmatism was completely neglected.
Historically, posterior corneal astigmatism was believed to be irrelevant, even, for example, in those cases where calculations for toric IOL surgery were made [10] Nevertheless, some studies have shown an astigmatic miscorrection after crystalline lens replacement by toric IOLs, even when calculation formulas were properly used [1114] Early attempts to define the magnitude of posterior corneal astigmatism were more primitive and relied on fewer and pre-defined points of the cornea [1517] Subsequent studies have used more sophisticated systems such as rotating Scheimpflug imaging [1822] and optical coherence tomography (OCT) [23, 24]. By measuring the astigmatism of both corneal surfaces and considering the corneal thickness, these studies have been able to calculate the total corneal astigmatism and compare it to the keratometric astigmatism, uncovering a source of error in previous calculations.
When discussing astigmatism, a crucial factor must be taken into account: the age of the subject. Previous studies [18, 25, 26] have reported changes in the axis orientation of refractive and corneal astigmatism produced over the years.
The purpose of the current study was to develop a new linear regression model between corneal and refractive astigmatisms by dependent on the age of the subject.

Materials and methods

Subjects

A total of 2254 right eyes from 2254 Caucasian healthy subjects were included in this transversal and retrospective study. To avoid bias, only data from the right eye were selected [27].
Data were collected from subjects who had undergone ophthalmological examinations in an ophthalmological center in Spain between 2017 and 2020. Written informed consent was obtained in each case and the tenets of the Declaration of Helsinki were followed. Subjects over 7 years old were included unless they presented any of the following exclusion criteria: bad quality measurement, any type of ocular disease, previous ocular surgery, contact lens wearers within 1 week before the data acquisition, or no data from the right eye. The subjects were divided into eight age groups i.e. under 20, over 79, and every decade between 20 and 79 years old.

Data collection

Demographic and ocular data were collected including age, gender, and refractive and corneal astigmatism. Refractive astigmatism was based on non-cycloplegic subjective refraction obtained by using trial frame and trial lenses. The distance vertex was set to 12 mm and distometry was applied to convert the refractive power at the trial frame’s plane to the corrected power at the cornea’s plane, thus enabling the direct comparison of refractive and corneal results.
Radii from principal meridians of both corneal surfaces and corneal thickness were obtained using an OCT-based device with a telecentric keratometer system (IOLMaster 700, Carl Zeiss Meditec, Germany). The IOLMaster 700 is an optical biometer based on swept-source OCT that provides high-resolution and high-speed scans of the cornea. It has been shown that IOLMaster 700 has a good repeatability of the anterior and posterior corneal powers [24, 28, 29].
Measurements provided by the IOLMaster 700 were directly achieved as the corneal radius expressed in millimeters and were used to compute corneal astigmatism in the form of:
Keratometric astigmatism (KA): Expressed as astigmatism provided by the anterior surface of the cornea when corneal power is calculated for 1.3375 keratometric refractive index value:
$$\textrm{KA}=\frac{1.3375-1}{r_{\textrm{s}}^{\textrm{AC}}}-\frac{1.3375-1}{r_{\textrm{f}}^{\textrm{AC}}}$$
(1)
where \({r}_{\textrm{s}}^{\textrm{AC}}\) refers to the steepest anterior cornea meridian and \({r}_{\textrm{f}}^{\textrm{AC}}\) refers to the flattest one.
Anterior corneal astigmatism (ACA): expressed as astigmatism provided by the anterior surface of the cornea when corneal power is calculated for 1.376 stroma refractive index value:
$$\textrm{ACA}=\frac{1.376-1}{r_{\textrm{s}}^{\textrm{AC}}}-\frac{1.376-1}{r_{\textrm{f}}^{\textrm{AC}}}$$
(2)
Posterior corneal astigmatism (PCA): expressed as astigmatism provided by the posterior surface of the cornea, considering corneal stroma (1.376) and aqueous humor (1.336) refractive indexes:
$$\textrm{PCA}=\frac{1.336-1.376}{r_{\textrm{s}}^{\textrm{PC}}}-\frac{1.336-1.376}{r_{\textrm{f}}^{\textrm{PC}}}$$
(3)
where \({r}_{\textrm{s}}^{\textrm{PC}}\) refers to the steepest posterior cornea meridian and \({r}_{\textrm{f}}^{\textrm{PC}}\) refers to the flattest one.
Total corneal astigmatism (TCA): Expressed as astigmatism provided by the anterior and the posterior surface of the cornea considering the corneal thickness (t) when principal meridians of both surfaces coincide:
$$\textrm{TCA}=\textrm{ACA}+\textrm{PCA}-\frac{t}{1.376}\times \textrm{ACA}\times \textrm{PCA}$$
(4)
when axis astigmatism are not the same, calculations are made in vectorial form as it is described further on.
The RA, KA, and ACA were classified into three groups: eyes with with-the-rule (WTR) astigmatism, where the steepest meridian is vertical or within 30° of the 90° meridian, eyes with against-the-rule (ATR) astigmatism, where the steepest meridian was between 0° ± 30°, and oblique in the remaining cases [30]. In order to avoid confusion and misunderstanding, the classical terms WTR and ATR are not used when discussing PCA due to the negative power values obtained from the refractive index, and because those “rules” have been classically described for the anterior corneal astigmatism classification, but not for the posterior.

Data analysis

The following equations were used to convert main power meridians into power vector notation as described by Thibos et al. [31] to conduct the appropriate calculations and comparisons between refractive and corneal astigmatisms.
$${J}_0=-\frac{P_{\textrm{s}}-{P}_{\textrm{f}}}{2}\cos 2\upbeta$$
(5)
$${J}_{45}=-\frac{P_{\textrm{s}}-{P}_{\textrm{f}}}{2}\sin 2\upbeta$$
(6)
where Ps was the power of the steepest meridian, Pf was the power of the flattest meridian and β was the orientation of the steepest meridian. Equations 5 and 6 were applied for RA, KA, ACA, PCA, and TCA.
Statistical analysis was performed using the SPSS software v.24.0 for Windows (IBM Corporation, USA). The linear regression adjustment was employed to study the relationship between the TCA vs ACA, PCA vs ACA, RA vs TCA, and RA vs KA, and Pearson correlation coefficient (R) is calculated for each case.

Results

The statistics for refractive values and keratometric, anterior corneal, posterior corneal and total corneal astigmatism by age groups are summarized in Table 1. The distribution of eyes by age groups for refractive, anterior cornea, and posterior cornea astigmatism in function the steepest meridian is showed in Fig. 1. There was a strong change in the steepest meridian in ACA decreasing from 95.2% of the cases with vertical steepest meridian in subjects under 20 years to only the 22.8% in subjects over 79 years.
Table 1
Sample statistics for refractive values and keratometric, anterior corneal, posterior corneal and total corneal astigmatism by age groups
Age group
N
Age (years)
mean ± SD
(min, max)
Female
Gender
n; (%)
SEC (D)
mean ± SD
(min[-], max[+])
CylC (D)
mean ± SD
(min, max)
KA (D)
mean ± SD
(min, max)
ACA (D)
mean ± SD
(min, max)
PCA (D)
mean ± SD
(min, max)
TCA (D)
mean ± SD
(min, max)
Total sample
2254
64 ± 18
(7, 96)
1356; 60%
−1.02 ± 3.85
(−20.53, + 8.85)
−0.81 ± 0.80
(0, −6.04)
−0.94 ± 0.70
(0, −5.50)
−1.04 ± 0.78
(0, −6.13)
+0.21 ± 0.13
(+0.92, 0.00)
−0.94 ± 0.69
(−0.05, −5.64)
< 20
83
13 ± 3
(7, 18)
49; 59%
−1.88 ± 2.16
(−7.60, + 3.65)
−0.36 ± 0.58
(0, −3.04)
−0.97 ± 0.51
(−0.20, −2.91)
−1.08 ± 0.57
(−0.23, −3.25)
+0.22 ± 0.09
(+0.44, +0.06)
−0.89 ± 0.50
(−0.08, −2.82)
20–29
108
26 ± 2
(20, 29)
59; 55%
−5.18 ± 3.09
(−15.00, +4.91)
−0.72 ± 0.66
(0, −3.69)
−1.04 ± 0.58
(0, −2.41)
−1.16 ± 0.64
(0, −2.69)
+0.22 ± 0.10
(+0.50, 0.00)
−0.97 ± 0.54
(−0.13, −2.27)
30–39
87
34 ± 3
(30, 39)
52; 60%
−5.21 ± 3.30
(−16.50, + 7.21)
−0.80 ± 0.87
(0, −4.95)
−0.99 ± 0.75
(0, −4.24)
−1.11 ± 0.84
(0, −4.72)
+0.21 ± 0.13
(+0.72, 0.00)
−0.93 ± 0.71
(−0.12, −4.14)
40–49
90
45 ± 3
(40, 49)
47; 52%
−4.08 ± 5.30
(−20.53, +7.20)
−0.76 ± 0.85
(0, −3.67)
−1.08 ± 0.82
(−0.13, −5.50)
−1.20 ± 0.92
(−0.15, −6.13)
+0.26 ± 0.15
(+0.92, 0.00)
−0.98 ± 0.81
(−0.07, −5.64)
50–59
223
55 ± 3
(50, 59)
128; 57%
−1.55 ± 5.02
(−19.80, +8.70)
−0.77 ± 0.83
(0, −4.36)
−1.02 ± 0.65
(−0.12, −3.59)
−1.13 ± 0.72
(−0.13, −4.00)
+0.25 ± 0.13
(+0.68, 0.00)
−0.95 ± 0.62
(−0.08, −3.47)
60–69
618
65 ± 3
(60, 69)
386; 63%
−0.74 ± 3.94
(−19.80, +8.85)
−0.78 ± 0.78
(0, −6.04)
−0.90 ± 0.72
(0, −5.09)
−1.00 ± 0.8
(0, −5.67)
+0.22 ± 0.12
(+0.74, 0.00)
−0.89 ± 0.70
(−0.05, −4.95)
70–79
810
74 ± 3
(70, 79)
496; 61%
−0.03 ± 2.87
(−18.00, +7.64)
−0.86 ± 0.78
(0, −5.80)
−0.88 ± 0.69
(0, −5.32)
−0.98 ± 0.76
(0, −5.92)
+0.20 ± 0.13
(+0.90, 0.00)
−0.91 ± 0.67
(−0.05, −5.02)
> 79
235
84 ± 4
(80, 96)
139; 59%
+0.26 ± 2.26
(−9.68, +5.89)
−0.96 ± 0.86
(0, −5.93)
−1.04 ± 0.75
(0, −4.80)
−1.16 ± 0.83
(0, −5.34)
+0.18 ± 0.12
(+0.75, 0.00)
−1.12 ± 0.77
(−0.06, −4.60)
SD standard deviation, SEC spherical equivalent in corneal plane, CylC cylinder in corneal plane, KA keratometric astigmatism, ACA anterior corneal astigmatism, PCA posterior corneal astigmatism, TCA total corneal astigmatism
Mean values of RA, KA, ACA, PCA, and TCA are summarized in Table 2 in terms of power vectors with the standard deviation and the maximum and the minimum values, both for the whole sample, and for each age group. The RA, KA, and ACA show a clear trend in J0 power vector component from positive values under 60 years old to negative values above 60 years old, this being related with the trend in corneal astigmatism from WTR to ATR as we age. The behavior of the PCA power vector J0 component is constant, maintaining negative values in all age groups.
Table 2
Mean values of refractive and corneal astigmatism.
 
J0
J45
Age group
RA
mean ± SD
(min, max)
KA
mean ± SD
(min, max)
ACA
mean ± SD
(min, max)
PCA
mean ± SD
(min, max)
TCA
mean ± SD
(min, max)
RA
mean ± SD
(min, max)
KA
mean ± SD
(min, max)
ACA
mean ± SD
(min, max)
PCA
mean ± SD
(min, max)
TCA
mean ± SD
(min, max)
Total sample
-0.10 ± 0.47
(-2.31, +3.00)
+0.11 ± 0.49
(-1.88, +2.63)
+0.12 ± 0.55
(-2.10, +2.93)
-0.08 ± 0.07
(-0.43, +0.32)
+0.04 ± 0.50
(-1.89, +2.60)
+0.02 ± 0.30
(-1.87, +2.51)
-0.02 ± 0.29
(-1.63, +1.77)
-0.02 ± 0.33
(-1.81, +1.97)
-0.03 ± 0.05
(-0.45, +0.22)
-0.05 ± 0.29
(-1.62, +1.52)
<20
+0.09 ± 0.27
(-0.46, +1.43)
+0.45 ± 0.26
(-0.06, +1.44)
+0.50 ± 0.29
(-0.07, +1.61)
-0.10 ± 0.05
(-0.22, +0.03)
+0.40 ± 0.26
(-0.15, +1.39)
-0.03 ± 0.19
(-0.90, +0.71)
+0.00 ± 0.18
(-0.69, +0.52)
+0.00 ± 0.21
(-0.76, +0.58)
-0.03 ± 0.04
(-0.14, +0.07)
-0.02 ± 0.18
(-0.73, +0.44)
20-29
+0.11 ± 0.38
(-1.41, +1.01)
+0.37 ± 0.38
(-0.86, +1.20)
+0.41 ± 0.42
(-0.95, +1.33)
-0.09 ± 0.06
(-0.25, +0.11)
+0.32 ± 0.37
(-0.88, +1.12)
+0.04 ± 0.28
(-0.78, +1.19)
+0.03 ± 0.27
(-0.87, +0.88)
+0.04 ± 0.30
(-0.97, +0.98)
-0.03 ± 0.05
(-0.19, +0.08)
+0.01 ± 0.27
(-0.93, +0.79)
30-39
+0.13 ± 0.51
(-1.59, +2.44)
+0.35 ± 0.46
(-0.93, +2.11)
+0.39 ± 0.51
(-1.04, +2.36)
-0.09 ± 0.07
(-0.36, +0.09)
+0.30 ± 0.45
(-0.95, +2.06)
+0.03 ± 0.26
(-1.02, +0.69)
+0.02 ± 0.24
(-0.74, +0.60)
+0.02 ± 0.26
(-0.82, +0.67)
-0.03 ± 0.04
(-0.12, +0.08)
-0.01 ± 0.24
(-0.74, +0.57)
40-49
+0.14 ± 0.40
(-0.97, +1.40)
+0.34 ± 0.47
(-1.36, +2.63)
+0.37 ± 0.51
(-1.51, +2.93)
-0.10 ± 0.07
(-0.34, +0.17)
+0.27 ± 0.45
(-1.34, +2.60)
+0.14 ± 0.36
(-0.54, +1.48)
+0.11 ± 0.35
(-0.49, +1.77)
+0.12 ± 0.39
(-0.55, +1.97)
-0.04 ± 0.07
(-0.45, +0.21)
+0.08 ± 0.34
(-0.54, +1.52)
50-59
+0.04 ± 0.46
(-1.92, +2.15)
+0.29 ± 0.44
(-1.12, +1.80)
+0.32 ± 0.49
(-1.25, +2.00)
-0.10 ± 0.07
(-0.34, +0.15)
+0.21 ± 0.43
(-1.20, +1.74)
+0.04 ± 0.33
(-1.15, +1.90)
+0.01 ± 0.30
(-1.06, +1.32)
+0.02 ± 0.34
(-1.18, +1.48)
-0.04 ± 0.05
(-0.26, +0.14)
-0.02 ± 0.30
(-1.09, +1.26)
60-69
-0.06 ± 0.46
(-1.53, +3.00)
+0.16 ± 0.48
(-1.59, +2.49)
+0.18 ± 0.53
(-1.77, +2.78)
-0.09 ± 0.07
(-0.37, +0.32)
+0.10 ± 0.48
(-1.62, +2.41)
+0.02 ± 0.29
(-1.13, +2.04)
-0.01 ± 0.29
(-1.40, +1.45)
-0.01 ± 0.32
(-1.56, +1.62)
-0.03 ± 0.05
(-0.26, +0.12)
-0.04 ± 0.29
(-1.44, +1.36)
70-79
-0.19 ± 0.46
(-2.31, +2.59)
-0.01 ± 0.47
(-1.88, +2.60)
-0.01 ± 0.52
(-2.10, +2.90)
-0.07 ± 0.07
(-0.43, +0.20)
-0.08 ± 0.47
(-1.89, +2.46)
+0.16 ± 0.30
(-1.87, +2.51)
-0.06 ± 0.29
(-1.63, +1.40)
-0.06 ± 0.33
(-1.81, +1.56)
-0.03 ± 0.05
(-0.24, +0.22)
-0.09 ± 0.29
(-1.62, +1.33)
>79
-0.31 ± 0.45
(-1.62, +1.91)
-0.21 ± 0.51
(-1.70, +2.32)
-0.23 ± 0.56
(-1.89, +2.58)
-0.05 ± 0.07
(-0.36, +0.11)
-0.28 ± 0.51
(-1.88, +2.22)
+0.03 ± 0.34
(-1.55, +2.27)
-0.05 ± 0.33
(-1.54, +1.50)
-0.06 ± 0.37
(-1.72, +1.67)
-0.03 ± 0.05
(-0.26, +0.20)
-0.09 ± 0.33
(-1.52, +1.41)
SD: standard deviation; RA: refractive astigmatism; KA: keratometric astigmatism; ACA: anterior corneal astigmatism; PCA: posterior corneal astigmatism; TCA: total corneal astigmatism. J0>0 WTR astigmatism; J0<0 ATR astigmatism (In PCA values not applied rule)
Regression equations and Pearson correlation coefficients (R) by age group for TCA vs ACA, PCA vs ACA, RA vs TCA, and RA vs KA are summarized in Table 3A, B, C and D, respectively. Fig. 2 shows the scatter diagrams of the J0 and J45 component of refractive and keratometric astigmatism for each age group, that is, the Javal’s rule in power vector components for age groups.
Table 3
Regression equations and Pearson correlation coefficients (R) by age group of total cornea vs anterior corneal astigmatism (A), posterior cornea vs anterior cornea astigmatism (B), refractive vs total cornea astigmatism (C), and refractive vs keratometric astigmatism (D)
A
TCA vs ACA
J0
J45
R
Equation
R
Equation
Total sample
0.99
\({J}_0^{\textrm{TCA}}\) = 0.90 × \({J}_0^{\textrm{ACA}}\) − 0.07
0.99
\({J}_{45}^{\textrm{TCA}}\) = 0.89 × \({J}_{45}^{\textrm{ACA}}\) − 0.03
< 20
0.99
\({J}_0^{\textrm{TCA}}\) = 0.89 × \({J}_0^{\textrm{ACA}}\) − 0.05
0.99
\({J}_{45}^{\textrm{TCA}}\) = 0.87 × \({J}_{45}^{\textrm{ACA}}\) − 0.03
20–29
0.99
\({J}_0^{\textrm{TCA}}\) = 0.88 × \({J}_0^{\textrm{ACA}}\) − 0.04
0.99
\({J}_{45}^{\textrm{TCA}}\) = 0.88 × \({J}_{45}^{\textrm{ACA}}\) − 0.02
30–39
0.99
\({J}_0^{\textrm{TCA}}\) = 0.87 × \({J}_0^{\textrm{ACA}}\) − 0.04
0.99
\({J}_{45}^{\textrm{TCA}}\) = 0.89 × \({J}_{45}^{\textrm{ACA}}\) − 0.03
40–49
0.99
\({J}_0^{\textrm{TCA}}\)= 0.88 × \({J}_0^{\textrm{ACA}}\) − 0.06
0.99
\({J}_{45}^{\textrm{TCA}}\) = 0.86 × \({J}_{45}^{\textrm{ACA}}\) − 0.02
50–59
0.99
\({J}_0^{\textrm{TCA}}\) = 0.88 × \({J}_0^{\textrm{ACA}}\) − 0.06
0.99
\({J}_{45}^{\textrm{TCA}}\) = 0.88 × \({J}_{45}^{\textrm{ACA}}\) − 0.03
60–69
0.99
\({J}_0^{\textrm{TCA}}\) = 0.90 × \({J}_0^{\textrm{ACA}}\) − 0.07
0.99
\({J}_{45}^{\textrm{TCA}}\) = 0.90 × \({J}_{45}^{\textrm{ACA}}\) − 0.03
70–79
0.99
\({J}_0^{\textrm{TCA}}\) = 0.89 × \({J}_0^{\textrm{ACA}}\) − 0.08
0.99
\({J}_{45}^{\textrm{TCA}}\) = 0.89 × \({J}_{45}^{\textrm{ACA}}\) − 0.04
> 79
0.99
\({J}_0^{\textrm{TCA}}\) = 0.91 × \({J}_0^{\textrm{ACA}}\) − 0.07
0.99
\({J}_{45}^{\textrm{TCA}}\) = 0.90 × \({J}_{45}^{\textrm{ACA}}\) − 0.04
B
PCA vs ACA
J0
J45
R
Equation
R
Equation
Total sample
0.77
\({J}_0^{\textrm{PCA}}\) = − 0.10 × \({J}_0^{\textrm{ACA}}\) − 0.07
0.71
\({J}_{45}^{\textrm{PCA}}\) = − 0.11 × \({J}_{45}^{\textrm{ACA}}\) − 0.03
< 20
0.73
\({J}_0^{\textrm{PCA}}\) = − 0.11 × \({J}_0^{\textrm{ACA}}\) − 0.05
0.76
\({J}_{45}^{\textrm{PCA}}\) = − 0.13 × \({J}_{45}^{\textrm{ACA}}\) − 0.03
20–29
0.84
\({J}_0^{\textrm{PCA}}\) = − 0.12 × \({J}_0^{\textrm{ACA}}\) − 0.04
0.81
\({J}_{45}^{\textrm{PCA}}\) = − 0.12 × \({J}_{45}^{\textrm{ACA}}\) − 0.02
30–39
0.89
\({J}_0^{\textrm{PCA}}\) = − 0.13 × \({J}_0^{\textrm{ACA}}\) − 0.04
0.74
\({J}_{45}^{\textrm{PCA}}\) = − 0.11 × \({J}_{45}^{\textrm{ACA}}\) − 0.03
40–49
0.85
\({J}_0^{\textrm{PCA}}\) = − 0.12 × \({J}_0^{\textrm{ACA}}\) − 0.06
0.76
\({J}_{45}^{\textrm{PCA}}\) = − 0.14 × \({J}_{45}^{\textrm{ACA}}\) − 0.02
50–59
0.79
\({J}_0^{\textrm{PCA}}\) = − 0.12 × \({J}_0^{\textrm{ACA}}\) − 0.06
0.79
\({J}_{45}^{\textrm{PCA}}\) = − 0.12 × \({J}_{45}^{\textrm{ACA}}\) − 0.03
60–69
0.75
\({J}_0^{\textrm{PCA}}\) = − 0.10 × \({J}_0^{\textrm{ACA}}\) − 0.07
0.69
\({J}_{45}^{\textrm{PCA}}\) = − 0.10 × \({J}_{45}^{\textrm{ACA}}\) − 0.03
70–79
0.76
\({J}_0^{\textrm{PCA}}\) = − 0.11 × \({J}_0^{\textrm{ACA}}\) − 0.08
0.71
\({J}_{45}^{\textrm{PCA}}\) = − 0.11 × \({J}_{45}^{\textrm{ACA}}\) − 0.04
> 79
0.74
\({J}_0^{\textrm{PCA}}\) = − 0.10 × \({J}_0^{\textrm{ACA}}\) − 0.07
0.69
\({J}_{45}^{\textrm{PCA}}\) = − 0.10 × \({J}_{45}^{\textrm{ACA}}\) − 0.04
C
RA vs TCA
J0
J45
R
Equation
R
Equation
Total sample
0.78
\({J}_0^{\textrm{RA}}\) = 0.73 × \({J}_0^{\textrm{TCA}}\)+ 0.13
0.68
\({J}_{45}^{\textrm{RA}}\) = 0.70 × \({J}_{45}^{\textrm{TCA}}\) − 0.06
< 20
0.78
\({J}_0^{\textrm{RA}}\) = 0.79 × \({J}_0^{\textrm{TCA}}\) − 0.22
0.69
\({J}_{45}^{\textrm{RA}}\) = 0.73 × \({J}_{45}^{\textrm{TCA}}\) − 0.01
20–29
0.83
\({J}_0^{\textrm{RA}}\) = 0.86 × \({J}_0^{\textrm{TCA}}\) − 0.16
0.84
\({J}_{45}^{\textrm{RA}}\) = 0.87 × \({J}_{45}^{\textrm{TCA}}\) + 0.03
30–39
0.91
\({J}_0^{\textrm{RA}}\) = 1.00 × \({J}_0^{\textrm{TCA}}\) − 0.18
0.74
\({J}_{45}^{\textrm{RA}}\) = 0.83 × \({J}_{45}^{\textrm{TCA}}\) + 0.03
40–49
0.72
\({J}_0^{\textrm{RA}}\) = 0.63 × \({J}_0^{\textrm{TCA}}\) - 0.04
0.84
\({J}_{45}^{\textrm{RA}}\) = 0.88 × \({J}_{45}^{\textrm{TCA}}\) + 0.08
50–59
0.76
\({J}_0^{\textrm{RA}}\) = 0.81 × \({J}_0^{\textrm{TCA}}\) - 0.13
0.78
\({J}_{45}^{\textrm{RA}}\) = 0.84 × \({J}_{45}^{\textrm{TCA}}\) + 0.05
60–69
0.79
\({J}_0^{\textrm{RA}}\) = 0.77 × \({J}_0^{\textrm{TCA}}\) + 0.13
0.64
\({J}_{45}^{\textrm{RA}}\) = 0.66 × \({J}_{45}^{\textrm{TCA}}\) + 0.05
70–79
0.76
\({J}_0^{\textrm{RA}}\) = 0.74 × \({J}_0^{\textrm{TCA}}\) − 0.13
0.64
\({J}_{45}^{\textrm{RA}}\) = 0.66 \(\times {J}_{45}^{\textrm{TCA}}\) + 0.08
> 79
0.58
\({J}_0^{\textrm{RA}}\) = 0.51 × \({J}_0^{\textrm{TCA}}\) − 0.16
0.63
\({J}_{45}^{\textrm{RA}}\) = 0.65 × \({J}_{45}^{\textrm{TCA}}\) + 0.06
D
RA vs KA
J0
J45
R
Equation
R
Equation
Total sample
0.78
\({J}_0^{\textrm{RA}}\) = 0.73 × \({\textrm{J}}_0^{\textrm{KA}}\) − 0.18
0.69
\({J}_{45}^{\textrm{RA}}\) = 0.70 × \({J}_{45}^{\textrm{KA}}\) + 0.04
< 20
0.78
\({J}_0^{\textrm{RA}}\) = 0.79 × \({\textrm{J}}_0^{\textrm{KA}}\) − 0.26
0.70
\({J}_{45}^{\textrm{RA}}\) = 0.72 × \({J}_{45}^{\textrm{KA}}\) −0.03
20–29
0.82
\({J}_0^{\textrm{RA}}\) = 0.84 × \({\textrm{J}}_0^{\textrm{KA}}\) − 0.20
0.84
\({J}_{45}^{\textrm{RA}}\) = 0.86 × \({J}_{45}^{\textrm{KA}}\) + 0.01
30–39
0.91
\({J}_0^{\textrm{RA}}\) = 1.00 × \({\textrm{J}}_0^{\textrm{KA}}\) − 0.23
0.75
\({J}_{45}^{\textrm{RA}}\) = 0.84 × \({J}_{45}^{\textrm{KA}}\) + 0.01
40–49
0.72
\({J}_0^{\textrm{RA}}\) = 0.62 × \({J}_0^{\textrm{KA}}\) − 0.07
0.83
\({J}_{45}^{\textrm{RA}}\) = 0.84 × \({J}_{45}^{\textrm{KA}}\) + 0.06
50–59
076
\({J}_0^{\textrm{RA}}\) = 0.79 × \({J}_0^{\textrm{KA}}\) − 0.18
0.77
\({J}_{45}^{\textrm{RA}}\) = 0.82 × \({J}_{45}^{\textrm{KA}}\) + 0.02
60–69
0.79
\({J}_0^{\textrm{RA}}\) = 0.77 × \({J}_0^{\textrm{KA}}\) − 0.19
0.65
\({J}_{45}^{\textrm{RA}}\) = 0.67 × \({J}_{45}^{\textrm{KA}}\) + 0.02
70–79
0.76
\({J}_0^{\textrm{RA}}\) = 0.74 × \({J}_0^{\textrm{KA}}\) − 0.19
0.65
\({J}_{45}^{\textrm{RA}}\) = 0.66 × \({J}_{45}^{\textrm{KA}}\) + 0.05
> 79
0.58
\({J}_0^{\textrm{RA}}\) = 0.52 × \({J}_0^{\textrm{KA}}\) − 0.20
0.65
\({J}_{45}^{\textrm{RA}}\) = 0.67 × \({J}_{45}^{\textrm{KA}}\) + 0.04
R Pearson correlation coefficient, RA refractive astigmatism, KA keratometric astigmatism, ACA anterior corneal astigmatism, PCA posterior corneal astigmatism, TCA total corneal astigmatism
According to the correlation coefficient, TCA and ACA are highly correlated in all age groups studied and for both astigmatism components, J0 and J45 (R = 0.99 in all cases summarized in table 3A).
The slope (multiplicand) in the linear regression equations defines the weight of one regressor (x) as a predictor of the dependent variable (y), and in the case of the relation between PCA vs ACA ( \({J}_0^{\textrm{PCA}}\) = − 0.10 × \({J}_0^{\textrm{ACA}}\) − 0.07) , this is the lowest with values of −0.10, against the highest values in equations found for RA vs TCA (\({J}_0^{\textrm{RA}}\) = 1.00 × \({J}_0^{\textrm{TCA}}\) − 0.18) and RA vs KA (\({J}_0^{\textrm{RA}}\) = 1.00 × \({\textrm{J}}_0^{\textrm{KA}}\) − 0.23).
General equations have been obtained considering the whole sample and for each group of age resulting in a suitable Javal’s rule depending on subject’s age.

Discussion

The present study had been designed to develop new linear relationships between corneal and refractive astigmatism according to the age of the subject. At the same time, authors assessed the peculiarities of corneal astigmatism, allowing for the analysis between astigmatism from both surfaces of the cornea, as well as total corneal astigmatism. The large sample size has enabled an improved characterization of the demographic aspects of astigmatism prevalence and its axis orientation.
Previous investigations have shown that astigmatism orientation does not remain stable over the years [26, 32]. Both the ACA and PCA in the current study showed a trend of steepest meridian location towards a more horizontal orientation with increasing age, more evident for ACA than PCA (see Fig. 1).
Regarding ACA, current results have shown an increase in the cases of eyes with ATR from the age of 50 (see Fig. 1), which coincides with the increment demonstrated by previous studies [1922, 26, 32], keeping the cases of oblique orientation changing without a well-defined pattern, even though it seemed that there is a small rise of the percentage in senior subjects [1921, 23, 32]. In contrast, for PCA, the vast majority of the studied sample showed a steepest vertical meridian, with a slight increase in the percentage of eyes with steepest horizontal meridian after the 7th decade (see Fig. 1). However, J0 power-vector component values remained negative over the age groups (see Table 2). This result is in agreement with other authors [1923, 32, 33]
The TCA had a similar behavior to the ACA, producing a change from WTR to ATR from the age of 70. Nasser et al. observed this change in older subjects, at the age of 80 [26].
We have found an increase in the percentage of eyes with ATR-RA (J0 < 0) over WTR-RA (J0 > 0) above the 5th/6th decades (see Fig. 1) accompanied by a change from positive to negative J0 values in both ACA and KA from the age of 70 (see Table 1), those findings agreeing with other studies [1922, 26, 32].
Regarding the relation between TCA and ACA, there is a strong correlation between both parameters with a Pearson correlation coefficient almost equal to 1 for all age groups, thus suggesting that the changes in anterior corneal surface would highly affect TCA. The slope values in those linear regression equations, below 1.00 but with an almost constant value all over the age groups (between 0.87 and 0.91 for J0 and between 0.87 and 0.90 for J0) point to an almost constant contribution of PCA to TCA. In this line, table 2 shows PCA J0 and PCA J45 values of −0.08 ± 0.07 D and −0.03 ± 0.05 D respectively for the whole sample, implying that around 0.15 D of cylinder is not considered when only the first surface of the cornea is measured. This estimation error of RA based only on KA instead of TCA can change related to the subject’s age, as can be seen in Table 2 (with J0 PCA values changing from −0.10 D for the < 20 years old group to −0.05 D for the > 79 years old group). Previous studies concluded that around a 0.25 D of astigmatism is underestimated when KA is employed instead of TCA [19, 20, 22, 24], but those studies did not consider the age.
Current results demonstrate a linear relationship between PCA and ACA, where PCA tended to be “−0.1 × ACA” for J0 as well as J45 and remained quite stable over the years showing a high correlation, even though the better correlation coefficients are obtained between the 2nd and 5th decades (see Table 3B).
To the best of our knowledge, this is the first study attempting to examine the relationship between refractive and keratometric astigmatisms dividing the sample into eight different age groups. This allows us to obtain a more detailed relationship based on age. As can be seen, the slope values for J0 range from 0.52 to 1.00, depending on the age group, while the constant value changes between −0.07 D and −0.23 D. This should be critical, since not tailoring the regression lines to the age of the subject could result in clinically significant misestimations of RA. For example, if the J0 power-vector component for KA is = 1.5 D, the prediction of J0 power-vector component RA could vary up to 0.5 D depending on the regression line used, resulting in a difference in cylinder power of 1 D. Therefore, disregarding these modifications by using a generic expression independent of age could result in a systematic error, as it has been observed in this study that the relationship between the refractive astigmatism, corneal astigmatism, and internal astigmatism varies with age. When making irreversible decisions, such as the implantation of a toric intraocular lens in refractive surgery, these age-related changes should be considered, especially when surgeries are performed in patients in their 50s or 60s. In relation to these results, and following the notation traditionally used in clinical practice, we could obtain the linear relationships between the KA and RA in terms of cylinder and axis. For the result obtained by considering the whole sample, the approximate linear relationship, obtained by averaging the slopes of the vector components, would be RA = 0.715 KA − 0.37 × 84°. It is important to note that vector notation is advantageous over conventional notation since it is the only one that allows operations and predictions to be made when corneal and internal astigmatisms do not have the same orientation. In order to allow comparisons between the present study and the other previously published, similar conditions were replicated in terms of distometry and age of the participants. Table 4 contains the regression equations provided by other authors and current simulated regressions equation for concretely each comparison in the same notation and under the same conditions. Tong et al. [7] evaluated astigmatism using the Retinomax K-Plus (Nikon Inc., Melville, NY) in children between 7 and 13 years, obtaining a good correlation for J0 and a moderate correlation for J45. In our study, similar results were found, with values of the slope and the constant being similar in both studies, particularly for J0. On the other hand, Remón et al. [8] conducted their study on adults under the age of 59, using the Nidek ARK 2000 Auto Ref/Keratometer resulting in a high correlation for J0 and J45, while the slope for J0 regression tended to 1 whereas slope for J45 was 1.46. The current study demonstrates lower slope values in both cases and a constant value for J0 inferior in 0.1 D. These slight differences cannot be attributed to the subjects’ racial backgrounds since both studies were conducted in Spain. Rather, they can be linked to the sample size; the present study includes 827 right eyes, while Remón et al. only had 105 right eyes, thus the larger sample size may produce more precise results. In addition, Remón’s study used an objective method to measure refraction, without taking into account whether it coincided with the subjective refraction.
Table 4
Regression equations between refractive and keratometric astigmatism obtained in previous studies and in the current study
   
J0
J45
N
Age (years)
Study
R
Equation
R
Equation
993
7 − 13
(7.7 ± 0.8)
Tong et al.
0.83
\({J}_0^{\textrm{RA}}\) = 0.93 × \({J}_0^{\textrm{KA}}\) − 0.28
0.70
\({J}_{45}^{\textrm{RA}}\) = 0.64 × \({J}_{45}^{\textrm{KA}}\) − 0.01
48
7 − 13
(10.9 ± 1.7)
Current study
0.81
\({J}_0^{\textrm{RA}}\) = 0.91 × \({J}_0^{\textrm{KA}}\) − 0.30
0.62
\({J}_{45}^{\textrm{RA}}\) = 0.77 × \({J}_{45}^{\textrm{KA}}\) − 0.04
105
18 − 59
(35 ± 9)
Remón et al.
0.89
\({J}_0^{\textrm{RA}}\) = 1.07 × \({J}_0^{\textrm{KA}}\) − 0.28
0.91
\({J}_{45}^{\textrm{RA}}\) = 1.46 × \({J}_{45}^{\textrm{KA}}\) − 0.03
827
18 − 59
(44 ± 12)
Current study
0.77
\({J}_0^{\textrm{RA}}\) = 0.86 × \({J}_0^{\textrm{KA}}\) − 0.18
0.73
\({J}_{45}^{\textrm{RA}}\) = 0.87 × \({J}_{45}^{\textrm{KA}}\) − 0.03
RA refractive astigmatism, KA keratometric astigmatism
Although there have been other studies which have proposed their own approach of Javal’s rule, some of their characteristics do not allow us to carry out a proper comparison. Javal’s results [4] are the first example. As they themselves explained, their results were derived from an empirical approximation, so we could not compare. Grosvenor et al. [6] accomplished their study using three different samples, either one or both eyes, and they did not consider oblique astigmatism. The disparities between the measurement conditions of their own samples, the divergence in criteria when choosing one or both eyes, and the elimination of certain types of astigmatism lead us to not be able to accurately simulate their conditions. Shankar et al. [9] conducted their study with preschool children under 5 years and divided it into two groups: astigmatism under or over 1.00 D. Low correlation coefficients were found for the group with low astigmatism and slope values, mostly for J45, significantly differed from the values usually reported in literature [4, 68]. Therefore, it was impossible to replicate it with our sample because of the age of the participants (our study does not include people under 7 years old). Likewise, Nagra et al. [14] assessed corneal astigmatism in a UK university population with Aladdin biometer. Nevertheless, the Aladdin biometer provides corneal values but does not have the capability to differentiate individual contributions from the anterior and posterior corneal interfaces. As a result, it was impractical to achieve an appropriate comparison.
Some authors have evaluated the mean value of PCA based on the age of the subjects [19, 20, 22, 26]. The results obtained by these authors have been converted to a power vector notation for a more suitable comparison with the results from our study (Fig. 3). Koch et al. [19] and Tonn et al. [20] used both eyes in their samples, so both eyes in our sample are also included just at this point for comparison purposes with the above mentioned studies. As can be observed, differences for J0 component between results of the current study using both eyes and results from Koch et al. and Tonn et al. fluctuate between a minimum of 0.03 D in subjects within the age 70–79 years and a maximum of 0.07 D in the range of 20–29 years. These results imply a high level of agreement between our study and the previous ones. For the J45 component, the largest difference was observed for the 20–29 age, resulting in 0.02 D. Regarding the results obtained by Shao et al. [22] and Næser et al. [26] where only right eyes were evaluated, larger differences were observed in subjects under 39 years of age, with a maximum value of 0.08 D for J0 and a −0.02 D for J45. These discrepancies became smaller while the age of the subjects increases.
It is worthy to note that astigmatism should be analyzed only by using one eye due to, among others [34, 35] the possible presence of mirror symmetry between eyes in a same subject [24, 34]. This is the main reason why this study only considers both eyes to perform a similar comparison with preliminary studies but eliminate left eye measurements before any other calculation.
In summary, this study has developed new modifications of Javal’s rule in power vector formalism and introducing an additional, previously unexplored factor: the age of the subject. Furthermore, an evaluation of ACA and PCA has been conducted, finding a high correlation between both parameters which remains stable over the years. More complete Javal’s rules relating not only the KA but also the TCA with RA have been developed according to the subject’s age, overcoming the problems with oblique astigmatism. Developing a specific Javal’s rule depending on the age will help ophthalmologists and optometrists to obtain more accurate predictions of RA than employing previous models. Moreover, this study has conducted a detailed comparison to previous studies about Javal’s rule and PCA under the same conditions.
Fundings
This study was funded by The Spanish Ministerio de Universidades (grant number FPU20/05624).

Declarations

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the University of Valencia and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by The Committee of Ethical Research on Humans of the University of Valencia (CEIHUV) (n 1543635). Informed consent was obtained from all individual participants included in the study.

Competing Interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Gräfes Archiv

Online-Abonnement

Literatur
2.
Zurück zum Zitat Qian YS, Huang J, Liu R, Chu RY, Xu Y, Zhou XT et al (2011) Influence of internal optical astigmatism on the correction of myopic astigmatism by LASIK. J Refract Surg 27(12):863–868CrossRefPubMed Qian YS, Huang J, Liu R, Chu RY, Xu Y, Zhou XT et al (2011) Influence of internal optical astigmatism on the correction of myopic astigmatism by LASIK. J Refract Surg 27(12):863–868CrossRefPubMed
3.
Zurück zum Zitat Hv H, Gullstrand A, Jv K, Nagel W, Gullstrand A, Jv K et al (1909) Handbuch der physiologischen optik, 3. Aufl. / edn. Leopold Voss, Hamburg Hv H, Gullstrand A, Jv K, Nagel W, Gullstrand A, Jv K et al (1909) Handbuch der physiologischen optik, 3. Aufl. / edn. Leopold Voss, Hamburg
4.
Zurück zum Zitat Em J (1890) Mémoires d'ophthalmométrie annotees et précédées d'une introduction. Masson, Paris Em J (1890) Mémoires d'ophthalmométrie annotees et précédées d'une introduction. Masson, Paris
5.
Zurück zum Zitat Godefrooij DA, Galvis V, Tello A (2018) Von Helmholtz’s ophthalmometer: historical review and experience with one of the last surviving original devices. Acta Ophthalmol 96(3):314–320CrossRefPubMed Godefrooij DA, Galvis V, Tello A (2018) Von Helmholtzs ophthalmometer: historical review and experience with one of the last surviving original devices. Acta Ophthalmol 96(3):314–320CrossRefPubMed
6.
Zurück zum Zitat Grosvenor T, Quintero S, Perrigin DM (1988) Predicting refractive astigmatism: a suggested simplification of Javal’s rule. Am J Optom Physiol Opt 65(4):292–297CrossRefPubMed Grosvenor T, Quintero S, Perrigin DM (1988) Predicting refractive astigmatism: a suggested simplification of Javals rule. Am J Optom Physiol Opt 65(4):292–297CrossRefPubMed
7.
Zurück zum Zitat Tong L, Carkeet A, Saw SM, Tan DT (2001) Corneal and refractive error astigmatism in Singaporean schoolchildren: a vector-based Javal’s rule. Optom Vis Sci 78(12):881–887CrossRefPubMed Tong L, Carkeet A, Saw SM, Tan DT (2001) Corneal and refractive error astigmatism in Singaporean schoolchildren: a vector-based Javals rule. Optom Vis Sci 78(12):881–887CrossRefPubMed
8.
Zurück zum Zitat Remón L, Benlloch J, Furlan WD (2009) Corneal and refractive astigmatism in adults: a power vectors analysis. Optom Vis Sci 86(10):1182–1186CrossRefPubMed Remón L, Benlloch J, Furlan WD (2009) Corneal and refractive astigmatism in adults: a power vectors analysis. Optom Vis Sci 86(10):1182–1186CrossRefPubMed
9.
Zurück zum Zitat Shankar S, Bobier WR (2004) Corneal and lenticular components of total astigmatism in a preschool sample. Optom Vis Sci 81(7):536–542CrossRefPubMed Shankar S, Bobier WR (2004) Corneal and lenticular components of total astigmatism in a preschool sample. Optom Vis Sci 81(7):536–542CrossRefPubMed
10.
Zurück zum Zitat Cheng LS, Tsai CY, Tsai RJ, Liou SW, Ho JD (2011) Estimation accuracy of surgically induced astigmatism on the cornea when neglecting the posterior corneal surface measurement. Acta Ophthalmol 89(5):417–422CrossRefPubMed Cheng LS, Tsai CY, Tsai RJ, Liou SW, Ho JD (2011) Estimation accuracy of surgically induced astigmatism on the cornea when neglecting the posterior corneal surface measurement. Acta Ophthalmol 89(5):417–422CrossRefPubMed
11.
Zurück zum Zitat Goggin M, Moore S, Esterman A (2011) Toric intraocular lens outcome using the manufacturer’s prediction of corneal plane equivalent intraocular lens cylinder power. Arch Ophthalmol 129(8):1004–1008CrossRefPubMed Goggin M, Moore S, Esterman A (2011) Toric intraocular lens outcome using the manufacturers prediction of corneal plane equivalent intraocular lens cylinder power. Arch Ophthalmol 129(8):1004–1008CrossRefPubMed
12.
Zurück zum Zitat Alió JL, Piñero DP, Tomás J, Alesón A (2011) Vector analysis of astigmatic changes after cataract surgery with toric intraocular lens implantation. J Cataract Refract Surg 37(6):1038–1049CrossRefPubMed Alió JL, Piñero DP, Tomás J, Alesón A (2011) Vector analysis of astigmatic changes after cataract surgery with toric intraocular lens implantation. J Cataract Refract Surg 37(6):1038–1049CrossRefPubMed
13.
Zurück zum Zitat Visser N, Bauer NJ, Nuijts RM (2012) Residual astigmatism following toric intraocular lens implantation related to pupil size. J Refract Sur 28(10):729–732CrossRef Visser N, Bauer NJ, Nuijts RM (2012) Residual astigmatism following toric intraocular lens implantation related to pupil size. J Refract Sur 28(10):729–732CrossRef
14.
Zurück zum Zitat Nagra M, Dashrathi R, Senthan E, Jahan T, Campbell P (2020) Characterisation of internal, refractive, and corneal astigmatism in a UK university student population. Cont Lens Anterior Eye 43(4):333–337CrossRefPubMed Nagra M, Dashrathi R, Senthan E, Jahan T, Campbell P (2020) Characterisation of internal, refractive, and corneal astigmatism in a UK university student population. Cont Lens Anterior Eye 43(4):333–337CrossRefPubMed
15.
Zurück zum Zitat Royston JM, Dunne MC, Barnes DA (1990) Measurement of posterior corneal surface toricity. Optom Vis Sci 67(10):757–763CrossRefPubMed Royston JM, Dunne MC, Barnes DA (1990) Measurement of posterior corneal surface toricity. Optom Vis Sci 67(10):757–763CrossRefPubMed
16.
Zurück zum Zitat Módis L Jr, Langenbucher A, Seitz B (2004) Evaluation of normal corneas using the scanning-slit topography/pachymetry system. Cornea 23(7):689–694CrossRefPubMed Módis L Jr, Langenbucher A, Seitz B (2004) Evaluation of normal corneas using the scanning-slit topography/pachymetry system. Cornea 23(7):689–694CrossRefPubMed
17.
Zurück zum Zitat Dubbelman M, Sicam VA, Van der Heijde GL (2006) The shape of the anterior and posterior surface of the aging human cornea. Vision Res 46(6-7):993–1001CrossRefPubMed Dubbelman M, Sicam VA, Van der Heijde GL (2006) The shape of the anterior and posterior surface of the aging human cornea. Vision Res 46(6-7):993–1001CrossRefPubMed
18.
Zurück zum Zitat Ho JD, Tsai CY, Liou SW (2009) Accuracy of corneal astigmatism estimation by neglecting the posterior corneal surface measurement. Am J Ophthalmol 147(5):788–795CrossRefPubMed Ho JD, Tsai CY, Liou SW (2009) Accuracy of corneal astigmatism estimation by neglecting the posterior corneal surface measurement. Am J Ophthalmol 147(5):788–795CrossRefPubMed
19.
Zurück zum Zitat Koch DD, Ali SF, Weikert MP, Shirayama M, Jenkins R, Wang L (2012) Contribution of posterior corneal astigmatism to total corneal astigmatism. J Cataract Refract Surg 38(12):2080–2087CrossRefPubMed Koch DD, Ali SF, Weikert MP, Shirayama M, Jenkins R, Wang L (2012) Contribution of posterior corneal astigmatism to total corneal astigmatism. J Cataract Refract Surg 38(12):2080–2087CrossRefPubMed
20.
Zurück zum Zitat Tonn B, Klaproth OK, Kohnen T (2014) Anterior surface-based keratometry compared with Scheimpflug tomography-based total corneal astigmatism. Invest Ophthalmol Vis Sci 56(1):291–298CrossRefPubMed Tonn B, Klaproth OK, Kohnen T (2014) Anterior surface-based keratometry compared with Scheimpflug tomography-based total corneal astigmatism. Invest Ophthalmol Vis Sci 56(1):291–298CrossRefPubMed
21.
Zurück zum Zitat Miyake T, Shimizu K, Kamiya K (2015) Distribution of posterior corneal astigmatism according to axis orientation of anterior corneal astigmatism. PLoS One 10(1):e0117194CrossRefPubMedPubMedCentral Miyake T, Shimizu K, Kamiya K (2015) Distribution of posterior corneal astigmatism according to axis orientation of anterior corneal astigmatism. PLoS One 10(1):e0117194CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Shao X, Zhou KJ, Pan AP, Cheng XY, Cai HX, Huang JH et al (2017) Age-related changes in corneal astigmatism. J Refract Surg 33(10):696–703CrossRefPubMed Shao X, Zhou KJ, Pan AP, Cheng XY, Cai HX, Huang JH et al (2017) Age-related changes in corneal astigmatism. J Refract Surg 33(10):696–703CrossRefPubMed
23.
Zurück zum Zitat Ueno Y, Hiraoka T, Beheregaray S, Miyazaki M, Ito M, Oshika T (2014) Age-related changes in anterior, posterior, and total corneal astigmatism. J Refract Surg 30(3):192–197CrossRefPubMed Ueno Y, Hiraoka T, Beheregaray S, Miyazaki M, Ito M, Oshika T (2014) Age-related changes in anterior, posterior, and total corneal astigmatism. J Refract Surg 30(3):192–197CrossRefPubMed
24.
Zurück zum Zitat LaHood BR, Goggin M (2018) Measurement of posterior corneal astigmatism by the IOLMaster 700. J Refract Surg 34(5):331–336CrossRefPubMed LaHood BR, Goggin M (2018) Measurement of posterior corneal astigmatism by the IOLMaster 700. J Refract Surg 34(5):331–336CrossRefPubMed
25.
Zurück zum Zitat Anstice J (1971) Astigmatism--its components and their changes with age. Am J Optom Arch Am Acad Optom 48(12):1001-1006. Anstice J (1971) Astigmatism--its components and their changes with age. Am J Optom Arch Am Acad Optom 48(12):1001-1006.
26.
Zurück zum Zitat Næser K, Savini G, Bregnhøj JF (2018) Age-related changes in with-the-rule and oblique corneal astigmatism. Acta Ophthalmol 96(6):600–606CrossRefPubMed Næser K, Savini G, Bregnhøj JF (2018) Age-related changes in with-the-rule and oblique corneal astigmatism. Acta Ophthalmol 96(6):600–606CrossRefPubMed
27.
Zurück zum Zitat Armstrong RA (2013) Statistical guidelines for the analysis of data obtained from one or both eyes. Ophthalmic Physiol Opt 33(1):7–14CrossRefPubMed Armstrong RA (2013) Statistical guidelines for the analysis of data obtained from one or both eyes. Ophthalmic Physiol Opt 33(1):7–14CrossRefPubMed
28.
Zurück zum Zitat Jhanji V, Yang B, Yu M, Ye C, Leung CK (2013) Corneal thickness and elevation measurements using swept-source optical coherence tomography and slit scanning topography in normal and keratoconic eyes. Clin Exp Ophthalmol 41(8):735–745CrossRefPubMed Jhanji V, Yang B, Yu M, Ye C, Leung CK (2013) Corneal thickness and elevation measurements using swept-source optical coherence tomography and slit scanning topography in normal and keratoconic eyes. Clin Exp Ophthalmol 41(8):735–745CrossRefPubMed
29.
Zurück zum Zitat Akman A, Asena L, Güngör SG (2016) Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500. BJO 100(9):1201CrossRef Akman A, Asena L, Güngör SG (2016) Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500. BJO 100(9):1201CrossRef
30.
Zurück zum Zitat Benjamin WJ, Borish IM, Benjamin WJ, Borish IM (2005) Borish’s Clinical refraction, 2nd edn. Butterworth Heinemann, St. Louis, Missouri Benjamin WJ, Borish IM, Benjamin WJ, Borish IM (2005) Borishs Clinical refraction, 2nd edn. Butterworth Heinemann, St. Louis, Missouri
31.
Zurück zum Zitat Thibos LN, Wheeler W, Horner D (1997) Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error. Optom Vis Sci 74(6):367–375CrossRefPubMed Thibos LN, Wheeler W, Horner D (1997) Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error. Optom Vis Sci 74(6):367–375CrossRefPubMed
32.
Zurück zum Zitat Ho JD, Liou SW, Tsai RJ, Tsai CY (2010) Effects of aging on anterior and posterior corneal astigmatism. Cornea 29(6):632–637CrossRefPubMed Ho JD, Liou SW, Tsai RJ, Tsai CY (2010) Effects of aging on anterior and posterior corneal astigmatism. Cornea 29(6):632–637CrossRefPubMed
33.
Zurück zum Zitat Motamed-Gorji N, Jafari A, Mohammadi SF, Ashrafi E, Aliyari R, Emamian MH et al (2022) Associated factors and distribution of posterior corneal astigmatism in a middle-aged population. Clin Exp Optom 105(8):806–812CrossRefPubMed Motamed-Gorji N, Jafari A, Mohammadi SF, Ashrafi E, Aliyari R, Emamian MH et al (2022) Associated factors and distribution of posterior corneal astigmatism in a middle-aged population. Clin Exp Optom 105(8):806–812CrossRefPubMed
34.
Zurück zum Zitat Hugger P, Kohnen T, La Rosa FA, Holladay JT, Koch DD (2000) Comparison of changes in manifest refraction and corneal power after photorefractive keratectomy. Am J Ophthalmol 129(1):68–75CrossRefPubMed Hugger P, Kohnen T, La Rosa FA, Holladay JT, Koch DD (2000) Comparison of changes in manifest refraction and corneal power after photorefractive keratectomy. Am J Ophthalmol 129(1):68–75CrossRefPubMed
35.
Zurück zum Zitat Asharlous A, Khabazkhoob M, Yekta A, Hashemi H (2017) Comprehensive profile of bilateral astigmatism: rule similarity and symmetry patterns of the axes in the fellow eyes. Ophthalmic Physiol Opt 37(1):33–41CrossRefPubMed Asharlous A, Khabazkhoob M, Yekta A, Hashemi H (2017) Comprehensive profile of bilateral astigmatism: rule similarity and symmetry patterns of the axes in the fellow eyes. Ophthalmic Physiol Opt 37(1):33–41CrossRefPubMed
Metadaten
Titel
Revisiting Javal’s rule: a fresh and improved power vector approach according to age
verfasst von
Raquel Salvador-Roger
César Albarrán-Diego
Nuria Garzón
María García-Montero
Gonzalo Muñoz
Vicente Micó
José J. Esteve-Taboada
Publikationsdatum
08.08.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Graefe's Archive for Clinical and Experimental Ophthalmology / Ausgabe 1/2024
Print ISSN: 0721-832X
Elektronische ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-023-06195-x

Neu im Fachgebiet Augenheilkunde

Zirkulierende Tumorzellen bei uvealem Melanom

Die Erstbeschreibung von Tumorzellen in der Blutbahn erfolgte 1869 durch Thomas Ashworth. Dieser beschrieb in der Blutprobe eines metastasierten Krebskranken „cells identical with those of the cancer itself“ und postulierte, dass diese „may tend …

Elektrophysiologie in der Augenheilkunde

Mit elektrophysiologischen Untersuchungen kann man in der Augenheilkunde die Funktionalität der Neurone der Sehbahn untersuchen. Weil elektrophysiologische Ableitungen von der subjektiven Wahrnehmung und Antwort des Patienten unabhängig sind …

„Liquid biopsy“ bei Retinoblastom

Die „liquid biopsy“ spielt eine zunehmend wichtige Rolle bei der Diagnose und Behandlung des Retinoblastoms. Die Möglichkeit der sicheren und unkomplizierten Entnahme und Untersuchung von Kammerwasser aus der Vorderkammer trägt wesentlich zur …

Die „onkologische Spur“: zirkulierende Tumor-DNA beim Aderhautmelanom

In Körperflüssigkeiten wurde zirkulierende Desoxyribonukleinsäure (DNA) bereits vor mehr als 75 Jahren beschrieben [ 19 ]. Aber erst durch die eindrucksvolle technische Weiterentwicklung im Bereich der Nukleinsäureanalyse in den letzten Jahren ist …

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.