Skip to main content
Erschienen in:

06.09.2024 | Research

Rhein Alleviates Doxorubicin-Induced Myocardial Injury by Inhibiting the p38 MAPK/HSP90/c-Jun/c-Fos Pathway-Mediated Apoptosis

verfasst von: Yong Chen, Yadan Tu, Jin Cao, Yigang Wang, Yi Ren

Erschienen in: Cardiovascular Toxicology | Ausgabe 11/2024

Einloggen, um Zugang zu erhalten

Abstract

Doxorubicin (Dox) has been limited in clinical application due to its cardiac toxicity that varies with the dose. This study aimed to explore how Rhein modulates Dox-induced myocardial toxicity. The general condition and echocardiographic changes of mice were observed to evaluate cardiac function and structure, with myocardial cell injury and apoptosis checked by TUNEL and HE staining. The ELISA assessed markers of myocardial damage and inflammation. The TCMSP and SwissTargetPrediction databases were used to retrieve Rhein's targets while GeneCards was used to find genes related to Dox-induced myocardial injury. Intersection genes were analyzed by Protein–Protein Interaction Networks. The core network genes underwent GO and KEGG enrichment analysis using R software. Western blot was used to detect protein expression. Compared to the Dox group, there was no remarkable difference in heart mass /body mass ratio in the Rhein+Dox group. However, heart mass/tibia length increased. Mice in the Rhein+Dox group had significantly increased LVEF, LVPWs, and LVFS compared to those in the Dox group. Myocardial cell damage, inflammation, and apoptosis significantly reduced in the Rhein+Dox group compared to the model group. Eleven core network genes were selected. Further, Rhein+Dox group showed significantly downregulated expression of p38/p-p38, HSP90AA1, c-Jun/p-c-Jun, c-Fos/p-c-Fos, Bax, and cleaved-caspase-3/caspase-3 while Bcl-2 expression significantly upregulated compared to the Dox group. The study suggests that Rhein mediates cardioprotection against Dox-induced myocardial injury, at least partly, by influencing multiple core genes in the MAPK signaling pathway to inhibit myocardial cell apoptosis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sangweni, N. F., Gabuza, K., Huisamen, B., Mabasa, L., van Vuuren, D., & Johnson, R. (2022). Molecular insights into the pathophysiology of doxorubicin-induced cardiotoxicity: A graphical representation. Archives of Toxicology, 96, 1541–1550.PubMedPubMedCentralCrossRef Sangweni, N. F., Gabuza, K., Huisamen, B., Mabasa, L., van Vuuren, D., & Johnson, R. (2022). Molecular insights into the pathophysiology of doxorubicin-induced cardiotoxicity: A graphical representation. Archives of Toxicology, 96, 1541–1550.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Rivankar, S. (2014). An overview of doxorubicin formulations in cancer therapy. Journal of Cancer Research and Therapeutics, 10, 853–858.PubMedCrossRef Rivankar, S. (2014). An overview of doxorubicin formulations in cancer therapy. Journal of Cancer Research and Therapeutics, 10, 853–858.PubMedCrossRef
3.
Zurück zum Zitat Sun, Z., Zhou, D., Yang, J., & Zhang, D. (2022). Doxorubicin promotes breast cancer cell migration and invasion via DCAF13. FEBS Open Bio, 12, 221–230.PubMedCrossRef Sun, Z., Zhou, D., Yang, J., & Zhang, D. (2022). Doxorubicin promotes breast cancer cell migration and invasion via DCAF13. FEBS Open Bio, 12, 221–230.PubMedCrossRef
4.
Zurück zum Zitat Christidi, E., & Brunham, L. R. (2021). Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death & Disease, 12, 339.CrossRef Christidi, E., & Brunham, L. R. (2021). Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death & Disease, 12, 339.CrossRef
5.
Zurück zum Zitat Kong, C. Y., Guo, Z., Song, P., Zhang, X., Yuan, Y. P., Teng, T., Yan, L., & Tang, Q. Z. (2022). Underlying the mechanisms of doxorubicin-induced acute cardiotoxicity: Oxidative stress and cell death. International Journal of Biological Sciences, 18, 760–770.PubMedPubMedCentralCrossRef Kong, C. Y., Guo, Z., Song, P., Zhang, X., Yuan, Y. P., Teng, T., Yan, L., & Tang, Q. Z. (2022). Underlying the mechanisms of doxorubicin-induced acute cardiotoxicity: Oxidative stress and cell death. International Journal of Biological Sciences, 18, 760–770.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Songbo, M., Lang, H., Xinyong, C., Bin, X., Ping, Z., & Liang, S. (2019). Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicology Letters, 307, 41–48.PubMedCrossRef Songbo, M., Lang, H., Xinyong, C., Bin, X., Ping, Z., & Liang, S. (2019). Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicology Letters, 307, 41–48.PubMedCrossRef
7.
8.
Zurück zum Zitat Wang, A. J., Zhang, J., Xiao, M., Wang, S., Wang, B. J., Guo, Y., Tang, Y., & Gu, J. (2021). Molecular mechanisms of doxorubicin-induced cardiotoxicity: Novel roles of sirtuin 1-mediated signaling pathways. Cellular and Molecular Life Sciences, 78, 3105–3125.PubMedPubMedCentralCrossRef Wang, A. J., Zhang, J., Xiao, M., Wang, S., Wang, B. J., Guo, Y., Tang, Y., & Gu, J. (2021). Molecular mechanisms of doxorubicin-induced cardiotoxicity: Novel roles of sirtuin 1-mediated signaling pathways. Cellular and Molecular Life Sciences, 78, 3105–3125.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., Gu, S., Gao, F., Zhu, N., Yin, X., Cheng, Q., Zhang, P., Dai, W., Chen, J., Yang, F., Yang, H. T., Linkermann, A., Gu, W., Min, J., & Wang, F. (2019). Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences U S A, 116, 2672–2680.CrossRef Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., Gu, S., Gao, F., Zhu, N., Yin, X., Cheng, Q., Zhang, P., Dai, W., Chen, J., Yang, F., Yang, H. T., Linkermann, A., Gu, W., Min, J., & Wang, F. (2019). Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences U S A, 116, 2672–2680.CrossRef
10.
Zurück zum Zitat Xie, M., Tao, W., Wu, F., Wu, K., Huang, X., Ling, G., Zhao, C., Lv, Q., Wang, Q., Zhou, X., Chen, Y., Yuan, Q., & Chen, Y. (2021). Anti-hypertensive and cardioprotective activities of traditional Chinese medicine-derived polysaccharides: A review. International Journal of Biological Macromolecules, 185, 917–934.PubMedCrossRef Xie, M., Tao, W., Wu, F., Wu, K., Huang, X., Ling, G., Zhao, C., Lv, Q., Wang, Q., Zhou, X., Chen, Y., Yuan, Q., & Chen, Y. (2021). Anti-hypertensive and cardioprotective activities of traditional Chinese medicine-derived polysaccharides: A review. International Journal of Biological Macromolecules, 185, 917–934.PubMedCrossRef
11.
Zurück zum Zitat Varghese, R., George Priya Doss, C., Kumar, R. S., Almansour, A. I., Arumugam, N., Efferth, T., & Ramamoorthy, S. (2022). Cardioprotective effects of phytopigments via multiple signaling pathways. Phytomedicine, 95, 153859.PubMedCrossRef Varghese, R., George Priya Doss, C., Kumar, R. S., Almansour, A. I., Arumugam, N., Efferth, T., & Ramamoorthy, S. (2022). Cardioprotective effects of phytopigments via multiple signaling pathways. Phytomedicine, 95, 153859.PubMedCrossRef
12.
Zurück zum Zitat Kushwah, A. S., Mittal, R., Kumar, M., Kaur, G., Goel, P., Sharma, R. K., Kabra, A., & Nainwal, L. M. (2022). Cardioprotective Activity of Cassia fistula L Bark Extract in Isoproterenol-Induced Myocardial Infarction Rat Model. Evid Based Complement Alternat Med, 2022, 6874281.PubMedPubMedCentralCrossRef Kushwah, A. S., Mittal, R., Kumar, M., Kaur, G., Goel, P., Sharma, R. K., Kabra, A., & Nainwal, L. M. (2022). Cardioprotective Activity of Cassia fistula L Bark Extract in Isoproterenol-Induced Myocardial Infarction Rat Model. Evid Based Complement Alternat Med, 2022, 6874281.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Lu, J., Li, J., Hu, Y., Guo, Z., Sun, D., Wang, P., Guo, K., Duan, D. D., Gao, S., Jiang, J., Wang, J., & Liu, P. (2019). Chrysophanol protects against doxorubicin-induced cardiotoxicity by suppressing cellular PARylation. Acta Pharmaceutica Sinica B, 9, 782–793.PubMedCrossRef Lu, J., Li, J., Hu, Y., Guo, Z., Sun, D., Wang, P., Guo, K., Duan, D. D., Gao, S., Jiang, J., Wang, J., & Liu, P. (2019). Chrysophanol protects against doxorubicin-induced cardiotoxicity by suppressing cellular PARylation. Acta Pharmaceutica Sinica B, 9, 782–793.PubMedCrossRef
14.
Zurück zum Zitat Birari, L., Wagh, S., Patil, K. R., Mahajan, U. B., Unger, B., Belemkar, S., Goyal, S. N., & Ojha, S. (2020). Patil CR Aloin alleviates doxorubicin-induced cardiotoxicity in rats by abrogating oxidative stress and pro-inflammatory cytokines. Cancer Chemotherapy and Pharmacology, 86, 419–426.PubMedCrossRef Birari, L., Wagh, S., Patil, K. R., Mahajan, U. B., Unger, B., Belemkar, S., Goyal, S. N., & Ojha, S. (2020). Patil CR Aloin alleviates doxorubicin-induced cardiotoxicity in rats by abrogating oxidative stress and pro-inflammatory cytokines. Cancer Chemotherapy and Pharmacology, 86, 419–426.PubMedCrossRef
15.
Zurück zum Zitat Wu, J., Wei, Z., Cheng, P., Qian, C., Xu, F., Yang, Y., Wang, A., Chen, W., Sun, Z., & Lu, Y. (2020). Rhein modulates host purine metabolism in intestine through gut microbiota and ameliorates experimental colitis. Theranostics, 10, 10665–10679.PubMedPubMedCentralCrossRef Wu, J., Wei, Z., Cheng, P., Qian, C., Xu, F., Yang, Y., Wang, A., Chen, W., Sun, Z., & Lu, Y. (2020). Rhein modulates host purine metabolism in intestine through gut microbiota and ameliorates experimental colitis. Theranostics, 10, 10665–10679.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Zhou, Y., Gao, C., Vong, C. T., Tao, H., Li, H., Wang, S., & Wang, Y. (2022). Rhein regulates redox-mediated activation of NLRP3 inflammasomes in intestinal inflammation through macrophage-activated crosstalk. British Journal of Pharmacology, 179, 1978–1997.PubMedCrossRef Zhou, Y., Gao, C., Vong, C. T., Tao, H., Li, H., Wang, S., & Wang, Y. (2022). Rhein regulates redox-mediated activation of NLRP3 inflammasomes in intestinal inflammation through macrophage-activated crosstalk. British Journal of Pharmacology, 179, 1978–1997.PubMedCrossRef
17.
Zurück zum Zitat Xu, X., Lv, H., Xia, Z., Fan, R., Zhang, C., Wang, Y., & Wang, D. (2017). Rhein exhibits antioxidative effects similar to Rhubarb in a rat model of traumatic brain injury. BMC Complementary and Alternative Medicine, 17, 140.PubMedPubMedCentralCrossRef Xu, X., Lv, H., Xia, Z., Fan, R., Zhang, C., Wang, Y., & Wang, D. (2017). Rhein exhibits antioxidative effects similar to Rhubarb in a rat model of traumatic brain injury. BMC Complementary and Alternative Medicine, 17, 140.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Ren, B., Guo, W., Tang, Y., Zhang, J., Xiao, N., Zhang, L., & Li, W. (2019). Rhein inhibits the migration of ovarian cancer cells through down-regulation of matrix metalloproteinases. Biological and Pharmaceutical Bulletin, 42, 568–572.PubMedCrossRef Ren, B., Guo, W., Tang, Y., Zhang, J., Xiao, N., Zhang, L., & Li, W. (2019). Rhein inhibits the migration of ovarian cancer cells through down-regulation of matrix metalloproteinases. Biological and Pharmaceutical Bulletin, 42, 568–572.PubMedCrossRef
19.
Zurück zum Zitat Lu, W., Zhu, H., Wu, J., Liao, S., Cheng, G., & Li, X. (2022). Rhein attenuates angiotensin II-induced cardiac remodeling by modulating AMPK-FGF23 signaling. Journal of Translational Medicine, 20, 305.PubMedPubMedCentralCrossRef Lu, W., Zhu, H., Wu, J., Liao, S., Cheng, G., & Li, X. (2022). Rhein attenuates angiotensin II-induced cardiac remodeling by modulating AMPK-FGF23 signaling. Journal of Translational Medicine, 20, 305.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Liu, J., Chen, Z., Zhang, Y., Zhang, M., Zhu, X., Fan, Y., Shi, S., Zen, K., & Liu, Z. (2013). Rhein protects pancreatic β-cells from dynamin-related protein-1-mediated mitochondrial fission and cell apoptosis under hyperglycemia. Diabetes, 62, 3927–3935.PubMedPubMedCentralCrossRef Liu, J., Chen, Z., Zhang, Y., Zhang, M., Zhu, X., Fan, Y., Shi, S., Zen, K., & Liu, Z. (2013). Rhein protects pancreatic β-cells from dynamin-related protein-1-mediated mitochondrial fission and cell apoptosis under hyperglycemia. Diabetes, 62, 3927–3935.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Zhang, G. L., Dai, D. Z., Xi, T., Cong, X. D., Zhang, Y., & Dai, Y. (2011). Isoproterenol-induced FKBP12.6/12 downregulation is modulated by ETA and ETB receptors and reversed by Argirhein, a derivative of Rhein. Acta Pharmacologica Sinica, 32, 223–229.PubMedPubMedCentralCrossRef Zhang, G. L., Dai, D. Z., Xi, T., Cong, X. D., Zhang, Y., & Dai, Y. (2011). Isoproterenol-induced FKBP12.6/12 downregulation is modulated by ETA and ETB receptors and reversed by Argirhein, a derivative of Rhein. Acta Pharmacologica Sinica, 32, 223–229.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Liu, J., Li, Y., Tang, Y., Cheng, J., Wang, J., Li, J., Ma, X., Zhuang, W., Gong, J., & Liu, Z. (2018). Rhein protects the myocardiac cells against hypoxia/reoxygention-induced injury by suppressing GSK3β activity. Phytomedicine, 51, 1–6.PubMedCrossRef Liu, J., Li, Y., Tang, Y., Cheng, J., Wang, J., Li, J., Ma, X., Zhuang, W., Gong, J., & Liu, Z. (2018). Rhein protects the myocardiac cells against hypoxia/reoxygention-induced injury by suppressing GSK3β activity. Phytomedicine, 51, 1–6.PubMedCrossRef
23.
Zurück zum Zitat Nogales, C., Mamdouh, Z. M., List, M., Kiel, C., Casas, A. I., & Schmidt, H. (2022). Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends in Pharmacological Sciences, 43, 136–150.PubMedCrossRef Nogales, C., Mamdouh, Z. M., List, M., Kiel, C., Casas, A. I., & Schmidt, H. (2022). Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends in Pharmacological Sciences, 43, 136–150.PubMedCrossRef
24.
Zurück zum Zitat He, S., Wang, T., Shi, C., Wang, Z., & Fu, X. (2022). Network pharmacology-based approach to understand the effect and mechanism of Danshen against anemia. Journal of Ethnopharmacology, 282, 114615.PubMedCrossRef He, S., Wang, T., Shi, C., Wang, Z., & Fu, X. (2022). Network pharmacology-based approach to understand the effect and mechanism of Danshen against anemia. Journal of Ethnopharmacology, 282, 114615.PubMedCrossRef
25.
Zurück zum Zitat Wang, Y., Yuan, Y., Wang, W., He, Y., Zhong, H., Zhou, X., Chen, Y., Cai, X. J., & Liu, L. Q. (2022). Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking. Computers in Biology and Medicine, 145, 105454.PubMedCrossRef Wang, Y., Yuan, Y., Wang, W., He, Y., Zhong, H., Zhou, X., Chen, Y., Cai, X. J., & Liu, L. Q. (2022). Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking. Computers in Biology and Medicine, 145, 105454.PubMedCrossRef
26.
Zurück zum Zitat Desai, V. G., Herman, E. H., Moland, C. L., Branham, W. S., Lewis, S. M., Davis, K. J., George, N. I., Lee, T., Kerr, S., & Fuscoe, J. C. (2013). Development of doxorubicin-induced chronic cardiotoxicity in the B6C3F1 mouse model. Toxicology and Applied Pharmacology, 266, 109–121.PubMedCrossRef Desai, V. G., Herman, E. H., Moland, C. L., Branham, W. S., Lewis, S. M., Davis, K. J., George, N. I., Lee, T., Kerr, S., & Fuscoe, J. C. (2013). Development of doxorubicin-induced chronic cardiotoxicity in the B6C3F1 mouse model. Toxicology and Applied Pharmacology, 266, 109–121.PubMedCrossRef
27.
Zurück zum Zitat Upadhyay, S., Gupta, K. B., Mantha, A. K., & Dhiman, M. (2021). A short review: Doxorubicin and its effect on cardiac proteins. Journal of Cellular Biochemistry, 122, 153–165.PubMedCrossRef Upadhyay, S., Gupta, K. B., Mantha, A. K., & Dhiman, M. (2021). A short review: Doxorubicin and its effect on cardiac proteins. Journal of Cellular Biochemistry, 122, 153–165.PubMedCrossRef
28.
Zurück zum Zitat Doroshow, J. H. (1991). Doxorubicin-induced cardiac toxicity. New England Journal of Medicine, 324, 843–845.PubMedCrossRef Doroshow, J. H. (1991). Doxorubicin-induced cardiac toxicity. New England Journal of Medicine, 324, 843–845.PubMedCrossRef
29.
Zurück zum Zitat Ma, Y., Yang, L., Ma, J., Lu, L., Wang, X., Ren, J., & Yang, J. (2017). Rutin attenuates doxorubicin-induced cardiotoxicity via regulating autophagy and apoptosis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863, 1904–1911.PubMedCrossRef Ma, Y., Yang, L., Ma, J., Lu, L., Wang, X., Ren, J., & Yang, J. (2017). Rutin attenuates doxorubicin-induced cardiotoxicity via regulating autophagy and apoptosis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863, 1904–1911.PubMedCrossRef
30.
Zurück zum Zitat Poelmann, R. E., Molin, D., Wisse, L. J., & Gittenberger-de Groot, A. C. (2000). Apoptosis in cardiac development. Cell and Tissue Research, 301, 43–52.PubMedCrossRef Poelmann, R. E., Molin, D., Wisse, L. J., & Gittenberger-de Groot, A. C. (2000). Apoptosis in cardiac development. Cell and Tissue Research, 301, 43–52.PubMedCrossRef
32.
Zurück zum Zitat Qi, J. Y., Yang, Y. K., Jiang, C., Zhao, Y., Wu, Y. C., Han, X., Jing, X., Wu, Z. L., & Chu, L. (2022). Exploring the mechanism of Danshensu in the treatment of doxorubicin-induced cardiotoxicity based on network pharmacology and experimental evaluation. Frontiers in Cardiovascular Medicine, 9, 827975.PubMedPubMedCentralCrossRef Qi, J. Y., Yang, Y. K., Jiang, C., Zhao, Y., Wu, Y. C., Han, X., Jing, X., Wu, Z. L., & Chu, L. (2022). Exploring the mechanism of Danshensu in the treatment of doxorubicin-induced cardiotoxicity based on network pharmacology and experimental evaluation. Frontiers in Cardiovascular Medicine, 9, 827975.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Li, W., Qu, X., Kang, X., Zhang, H., Zhang, X., Hu, H., Yao, L., Zhang, L., Zheng, J., Zheng, Y., Zhang, J., & Xu, Y. (2022). Silibinin eliminates mitochondrial ROS and restores autophagy through IL6ST/JAK2/STAT3 signaling pathway to protect cardiomyocytes from doxorubicin-induced injury. European Journal of Pharmacology, 929, 175153.PubMedCrossRef Li, W., Qu, X., Kang, X., Zhang, H., Zhang, X., Hu, H., Yao, L., Zhang, L., Zheng, J., Zheng, Y., Zhang, J., & Xu, Y. (2022). Silibinin eliminates mitochondrial ROS and restores autophagy through IL6ST/JAK2/STAT3 signaling pathway to protect cardiomyocytes from doxorubicin-induced injury. European Journal of Pharmacology, 929, 175153.PubMedCrossRef
34.
Zurück zum Zitat Dong, L., Du, H., Zhang, M., Xu, H., Pu, X., Chen, Q., Luo, R., Hu, Y., Wang, Y., Tu, H., Zhang, J., & Gao, F. (2022). Anti-inflammatory effect of Rhein on ulcerative colitis via inhibiting PI3K/Akt/mTOR signaling pathway and regulating gut microbiota. Phytotherapy Research, 36, 2081–2094.PubMedCrossRef Dong, L., Du, H., Zhang, M., Xu, H., Pu, X., Chen, Q., Luo, R., Hu, Y., Wang, Y., Tu, H., Zhang, J., & Gao, F. (2022). Anti-inflammatory effect of Rhein on ulcerative colitis via inhibiting PI3K/Akt/mTOR signaling pathway and regulating gut microbiota. Phytotherapy Research, 36, 2081–2094.PubMedCrossRef
35.
Zurück zum Zitat Henamayee, S., Banik, K., Sailo, B. L., Shabnam, B., Harsha, C., Srilakshmi, S., Vgm, N., Baek, S. H., Ahn, K. S., & Kunnumakkara, A. B. (2020). Therapeutic emergence of Rhein as a potential anticancer drug: A review of its molecular targets and anticancer properties. Molecules, 25, 2278.PubMedPubMedCentralCrossRef Henamayee, S., Banik, K., Sailo, B. L., Shabnam, B., Harsha, C., Srilakshmi, S., Vgm, N., Baek, S. H., Ahn, K. S., & Kunnumakkara, A. B. (2020). Therapeutic emergence of Rhein as a potential anticancer drug: A review of its molecular targets and anticancer properties. Molecules, 25, 2278.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Wang, W., Meng, X., Wang, J., & Li, Y. (2018). Improved heart failure by Rhein lysinate is associated with p38MAPK pathway. Experimental and Therapeutic Medicine, 16, 2046–2051.PubMedPubMedCentral Wang, W., Meng, X., Wang, J., & Li, Y. (2018). Improved heart failure by Rhein lysinate is associated with p38MAPK pathway. Experimental and Therapeutic Medicine, 16, 2046–2051.PubMedPubMedCentral
37.
Zurück zum Zitat Liao, X., Song, X., Li, J., Li, L., Fan, X., Qin, Q., Zhong, C., Yang, P., Zhan, J., & Cai, Y. (2022). An injectable co-assembled hydrogel blocks reactive oxygen species and inflammation cycle resisting myocardial ischemia-reperfusion injury. Acta Biomaterials, 149, 82–95.CrossRef Liao, X., Song, X., Li, J., Li, L., Fan, X., Qin, Q., Zhong, C., Yang, P., Zhan, J., & Cai, Y. (2022). An injectable co-assembled hydrogel blocks reactive oxygen species and inflammation cycle resisting myocardial ischemia-reperfusion injury. Acta Biomaterials, 149, 82–95.CrossRef
38.
Zurück zum Zitat Zhang, Y. J., Wu, S. S., Chen, X. M., Pi, J. K., Cheng, Y. F., Zhang, Y., Wang, X. J., Luo, D., Zhou, J. H., Xu, J. Y., Li, X., Wu, Z., Jiang, W., Saikosaponin, D., & Wang, X. X. (2022). Alleviates DOX-induced cardiac injury in vivo and in vitro. Journal of Cardiovascular Pharmacology, 79, 558–567.PubMedCrossRef Zhang, Y. J., Wu, S. S., Chen, X. M., Pi, J. K., Cheng, Y. F., Zhang, Y., Wang, X. J., Luo, D., Zhou, J. H., Xu, J. Y., Li, X., Wu, Z., Jiang, W., Saikosaponin, D., & Wang, X. X. (2022). Alleviates DOX-induced cardiac injury in vivo and in vitro. Journal of Cardiovascular Pharmacology, 79, 558–567.PubMedCrossRef
39.
Zurück zum Zitat Guo, R., Lin, J., Xu, W., Shen, N., Mo, L., Zhang, C., & Feng, J. (2013). Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibition of the p38 MAPK pathway in H9c2 cells. International Journal of Molecular Medicine, 31, 644–650.PubMedCrossRef Guo, R., Lin, J., Xu, W., Shen, N., Mo, L., Zhang, C., & Feng, J. (2013). Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibition of the p38 MAPK pathway in H9c2 cells. International Journal of Molecular Medicine, 31, 644–650.PubMedCrossRef
40.
Zurück zum Zitat Blüthgen, N., & Legewie, S. (2008). Systems analysis of MAPK signal transduction. Essays in Biochemistry, 45, 95–107.PubMedCrossRef Blüthgen, N., & Legewie, S. (2008). Systems analysis of MAPK signal transduction. Essays in Biochemistry, 45, 95–107.PubMedCrossRef
41.
Zurück zum Zitat Kiel, C., & Serrano, L. (2012). Challenges ahead in signal transduction: MAPK as an example. Current Opinion in Biotechnology, 23, 305–314.PubMedCrossRef Kiel, C., & Serrano, L. (2012). Challenges ahead in signal transduction: MAPK as an example. Current Opinion in Biotechnology, 23, 305–314.PubMedCrossRef
42.
Zurück zum Zitat Lin, K. H., Kuo, W. W., Jiang, A. Z., Pai, P., Lin, J. Y., Chen, W. K., Day, C. H., Shen, C. Y., Padma, V. V., & Huang, C. Y. (2015). Tetramethylpyrazine ameliorated hypoxia-induced myocardial cell apoptosis via HIF-1α/JNK/p38 and IGFBP3/BNIP3 inhibition to upregulate PI3K/Akt survival signaling. Cellular Physiology and Biochemistry, 36, 334–344.PubMedCrossRef Lin, K. H., Kuo, W. W., Jiang, A. Z., Pai, P., Lin, J. Y., Chen, W. K., Day, C. H., Shen, C. Y., Padma, V. V., & Huang, C. Y. (2015). Tetramethylpyrazine ameliorated hypoxia-induced myocardial cell apoptosis via HIF-1α/JNK/p38 and IGFBP3/BNIP3 inhibition to upregulate PI3K/Akt survival signaling. Cellular Physiology and Biochemistry, 36, 334–344.PubMedCrossRef
43.
Zurück zum Zitat Xu, L., He, D., Wu, Y., Shen, L., Wang, Y., & Xu, Y. (2022). Tanshinone IIA inhibits cardiomyocyte apoptosis and rescues cardiac function during doxorubicin-induced cardiotoxicity by activating the DAXX/MEK/ERK1/2 pathway. Phytomedicine, 107, 154471.PubMedCrossRef Xu, L., He, D., Wu, Y., Shen, L., Wang, Y., & Xu, Y. (2022). Tanshinone IIA inhibits cardiomyocyte apoptosis and rescues cardiac function during doxorubicin-induced cardiotoxicity by activating the DAXX/MEK/ERK1/2 pathway. Phytomedicine, 107, 154471.PubMedCrossRef
45.
Zurück zum Zitat Sun, P., Wang, Y., Gao, T., Li, K., Zheng, D., Liu, A., & Ni, Y. (2021). Hsp90 modulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways. Reproductive Biology and Endocrinology, 19, 39.PubMedPubMedCentralCrossRef Sun, P., Wang, Y., Gao, T., Li, K., Zheng, D., Liu, A., & Ni, Y. (2021). Hsp90 modulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways. Reproductive Biology and Endocrinology, 19, 39.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Xiao, X., Wang, W., Li, Y., Yang, D., Li, X., Shen, C., Liu, Y., Ke, X., Guo, S., & Guo, Z. (2018). HSP90AA1-mediated autophagy promotes drug resistance in osteosarcoma. Journal of Experimental & Clinical Cancer Research, 37, 201.CrossRef Xiao, X., Wang, W., Li, Y., Yang, D., Li, X., Shen, C., Liu, Y., Ke, X., Guo, S., & Guo, Z. (2018). HSP90AA1-mediated autophagy promotes drug resistance in osteosarcoma. Journal of Experimental & Clinical Cancer Research, 37, 201.CrossRef
47.
Zurück zum Zitat Kim, E., Ahuja, A., Kim, M. Y., & Cho, J. Y. (2021). DNA or protein methylation-dependent regulation of activator protein-1 function. Cells, 10, 461.PubMedPubMedCentralCrossRef Kim, E., Ahuja, A., Kim, M. Y., & Cho, J. Y. (2021). DNA or protein methylation-dependent regulation of activator protein-1 function. Cells, 10, 461.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Singh, M., Yadav, S., Kumar, M., Saxena, S., Saraswat, D., Bansal, A., & Singh, S. B. (2018). The MAPK-activator protein-1 signaling regulates changes in lung tissue of rat exposed to hypobaric hypoxia. Journal of Cellular Physiology, 233, 6851–6865.PubMedCrossRef Singh, M., Yadav, S., Kumar, M., Saxena, S., Saraswat, D., Bansal, A., & Singh, S. B. (2018). The MAPK-activator protein-1 signaling regulates changes in lung tissue of rat exposed to hypobaric hypoxia. Journal of Cellular Physiology, 233, 6851–6865.PubMedCrossRef
49.
Zurück zum Zitat Wu, Y. Z., Tsai, Y. Y., Chang, L. S., & Chen, Y. J. (2021). Evaluation of gallic acid-coated gold nanoparticles as an anti-aging ingredient. Pharmaceuticals (Basel), 14, 1071.PubMedCrossRef Wu, Y. Z., Tsai, Y. Y., Chang, L. S., & Chen, Y. J. (2021). Evaluation of gallic acid-coated gold nanoparticles as an anti-aging ingredient. Pharmaceuticals (Basel), 14, 1071.PubMedCrossRef
50.
Zurück zum Zitat Tago, K., Tsukahara, F., Naruse, M., Yoshioka, T., & Takano, K. (2004). Hsp90 inhibitors attenuate effect of dexamethasone on activated NF-kappaB and AP-1. Life Sciences, 74, 1981–1992.PubMedCrossRef Tago, K., Tsukahara, F., Naruse, M., Yoshioka, T., & Takano, K. (2004). Hsp90 inhibitors attenuate effect of dexamethasone on activated NF-kappaB and AP-1. Life Sciences, 74, 1981–1992.PubMedCrossRef
51.
Zurück zum Zitat Lalier, L., Vallette, F., & Manon, S. (2022). Bcl-2 family members and the mitochondrial import machineries: The roads to death. Biomolecules, 12, 162.PubMedPubMedCentralCrossRef Lalier, L., Vallette, F., & Manon, S. (2022). Bcl-2 family members and the mitochondrial import machineries: The roads to death. Biomolecules, 12, 162.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Chang, W. T., Lin, Y. W., Ho, C. H., Chen, Z. C., Liu, P. Y., & Shih, J. Y. (2021). Dapagliflozin suppresses ER stress and protects doxorubicin-induced cardiotoxicity in breast cancer patients. Archives of Toxicology, 95, 659–671.PubMedCrossRef Chang, W. T., Lin, Y. W., Ho, C. H., Chen, Z. C., Liu, P. Y., & Shih, J. Y. (2021). Dapagliflozin suppresses ER stress and protects doxorubicin-induced cardiotoxicity in breast cancer patients. Archives of Toxicology, 95, 659–671.PubMedCrossRef
53.
Zurück zum Zitat Zhang, H., Ma, L., Kim, E., Yi, J., Huang, H., Kim, H., Raza, M. A., Park, S., Jang, S., Kim, K., Kim, S. H., Lee, Y., Kim, E., Ryoo, Z. Y., & Kim, M. O. (2023). Rhein induces oral cancer cell apoptosis and ROS via suppresse AKT/mTOR signaling pathway in vitro and in vivo. International Journal of Molecular Sciences, 24, 8507.PubMedPubMedCentralCrossRef Zhang, H., Ma, L., Kim, E., Yi, J., Huang, H., Kim, H., Raza, M. A., Park, S., Jang, S., Kim, K., Kim, S. H., Lee, Y., Kim, E., Ryoo, Z. Y., & Kim, M. O. (2023). Rhein induces oral cancer cell apoptosis and ROS via suppresse AKT/mTOR signaling pathway in vitro and in vivo. International Journal of Molecular Sciences, 24, 8507.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Wang, J., Liu, S., Yin, Y., Li, M., Wang, B., Yang, L., & Jiang, Y. (2015). FOXO3-mediated up-regulation of Bim contributes to Rhein-induced cancer cell apoptosis. Apoptosis: A International Journal on Programmed Cell Death, 20, 399–409.CrossRef Wang, J., Liu, S., Yin, Y., Li, M., Wang, B., Yang, L., & Jiang, Y. (2015). FOXO3-mediated up-regulation of Bim contributes to Rhein-induced cancer cell apoptosis. Apoptosis: A International Journal on Programmed Cell Death, 20, 399–409.CrossRef
55.
Zurück zum Zitat Liu, C., Cao, Q., Chen, Y., Chen, X., Zhu, Y., Zhang, Z., & Wei, W. (2023). Rhein protects retinal Müller cells from high glucose-induced injury via activating the AMPK/Sirt1/PGC-1α pathway. Journal of Receptor and Signal Transduction Research, 43, 62–71.PubMedCrossRef Liu, C., Cao, Q., Chen, Y., Chen, X., Zhu, Y., Zhang, Z., & Wei, W. (2023). Rhein protects retinal Müller cells from high glucose-induced injury via activating the AMPK/Sirt1/PGC-1α pathway. Journal of Receptor and Signal Transduction Research, 43, 62–71.PubMedCrossRef
56.
Zurück zum Zitat Li, H., Jia, Y., Yao, D., Gao, M., Wang, L., & Liu, J. (2024). Rhein alleviates myocardial ischemic injury by inhibiting mitochondrial division, activating mitochondrial autophagy and suppressing myocardial cell apoptosis through the Drp1/Pink1/Parkin pathway. Molecular Biology Reports, 51, 266.PubMedCrossRef Li, H., Jia, Y., Yao, D., Gao, M., Wang, L., & Liu, J. (2024). Rhein alleviates myocardial ischemic injury by inhibiting mitochondrial division, activating mitochondrial autophagy and suppressing myocardial cell apoptosis through the Drp1/Pink1/Parkin pathway. Molecular Biology Reports, 51, 266.PubMedCrossRef
Metadaten
Titel
Rhein Alleviates Doxorubicin-Induced Myocardial Injury by Inhibiting the p38 MAPK/HSP90/c-Jun/c-Fos Pathway-Mediated Apoptosis
verfasst von
Yong Chen
Yadan Tu
Jin Cao
Yigang Wang
Yi Ren
Publikationsdatum
06.09.2024
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 11/2024
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-024-09917-7