Skip to main content
Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy 1/2018

06.10.2017 | Shoulder

Risk of fracture of the acromion depends on size and orientation of acromial bone tunnels when performing acromioclavicular reconstruction

verfasst von: Felix Dyrna, Celso Cruz Timm de Oliveira, Michael Nowak, Andreas Voss, Elifho Obopilwe, Sepp Braun, Leo Pauzenberger, Andreas B. Imhoff, Augustus D. Mazzocca, Knut Beitzel

Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Current techniques for anatomic repair of the dislocated acromioclavicular (AC) joint aim on reconstruction of the AC ligaments and utilize tunnels drilled through the acromion . This improves the stability of the reconstruction but might also increase the risk of fractures at the acromion. The purpose of this study was to evaluate the fracture risk for the acromion after transacromial tunnel placement for anatomic AC joint stabilization procedure. It was hypothesized that the risk of fracture of the acromion is correlated to size and orientation of bone tunnels commonly used for anatomic AC joint reconstruction.

Methods

A finite element analysis was used to simulate multiple bone tunnels and incoming force vectors (lateral vs. superior). Different tunnels were analysed, horizontal meaning an anterior–posterior orientation versus a vertical inferior–superior orientation through the acromion. Two tunnel diameters were simulated (2.4 vs. 4.5 mm). Furthermore, the tunnel length and distance between tunnels were altered. Forty-five cadaveric specimens (median age: 64 years, range 33–71 years) were utilized for data acquisition. Out of these, 30 specimens were used to evaluate basic tunnel orientations and drill diameters using a MTS 858 servohydraulic test system.

Results

With regard to the tunnel orientation and drill hole size, the loads to failure were limited. The acromion is at higher fracture risk, with a superior to inferior directed incoming force. Position, size and direction of bone tunnels influenced the loads to failure. Horizontal tunnels with a higher diameter (4.5 mm) had the most impact on load to failure reduction. A long horizontal tunnel with a diameter of 4.5 mm reduced the load to failure with medial direction of force to 25% of the native acromion. The identical tunnel with a diameter of 2.4 mm reduced the load to failure to 61%. Both 2.4-mm horizontal tunnels with a medium and short length did not reduce the load to failure.

Conclusion

Tunnels placed at the acromion did not result in an increased risk of fracture. However, descriptive data showed a tendency for an increased fracture risk if tunnels are placed at the acromion, especially in horizontal direction with diameters of 4.5 mm. In addition, the pattern of fracture was dependent on the orientation of the bone tunnels and the size. However, the results indicate a “safe zone” for the placement of bone tunnels within the anterior half of the acromion, which does not affect the loads to failure at the acromion. Therefore, current techniques for anatomic AC joint reconstruction which utilize fixation of grafts or sutures at the acromion are safe within current ranges of tunnel placement and sizes.
Literatur
1.
Zurück zum Zitat Aldebeyan W, Liddell A, Steffen T, Beckman L, Martineau PA (2017) Proximal tibial fracture following anterior cruciate ligament reconstruction surgery: a biomechanical analysis of the tibial tunnel as a stress riser. Knee Surg Sports Traumatol Arthrosc 25:2397–2404CrossRefPubMed Aldebeyan W, Liddell A, Steffen T, Beckman L, Martineau PA (2017) Proximal tibial fracture following anterior cruciate ligament reconstruction surgery: a biomechanical analysis of the tibial tunnel as a stress riser. Knee Surg Sports Traumatol Arthrosc 25:2397–2404CrossRefPubMed
2.
Zurück zum Zitat Beitzel K, Cote MP, Apostolakos J, Solovyova O, Judson CH, Ziegler CG, Edgar CM, Imhoff AB, Arciero RA, Mazzocca AD (2013) Current concepts in the treatment of acromioclavicular joint dislocations. Arthroscopy 29:387–397CrossRefPubMed Beitzel K, Cote MP, Apostolakos J, Solovyova O, Judson CH, Ziegler CG, Edgar CM, Imhoff AB, Arciero RA, Mazzocca AD (2013) Current concepts in the treatment of acromioclavicular joint dislocations. Arthroscopy 29:387–397CrossRefPubMed
3.
Zurück zum Zitat Beitzel K, Obopilwe E, Apostolakos J, Cote MP, Russell RP, Charette R, Singh H, Arciero RA, Imhoff AB, Mazzocca AD (2014) Rotational and translational stability of different methods for direct acromioclavicular ligament repair in anatomic acromioclavicular joint reconstruction. Am J Sports Med 42:2141–2148CrossRefPubMed Beitzel K, Obopilwe E, Apostolakos J, Cote MP, Russell RP, Charette R, Singh H, Arciero RA, Imhoff AB, Mazzocca AD (2014) Rotational and translational stability of different methods for direct acromioclavicular ligament repair in anatomic acromioclavicular joint reconstruction. Am J Sports Med 42:2141–2148CrossRefPubMed
4.
Zurück zum Zitat Braun S, Beitzel K, Buchmann S, Imhoff AB (2015) Arthroscopically assisted treatment of acute dislocations of the acromioclavicular joint. Arthrosc Tech 4:e681–e685CrossRefPubMedPubMedCentral Braun S, Beitzel K, Buchmann S, Imhoff AB (2015) Arthroscopically assisted treatment of acute dislocations of the acromioclavicular joint. Arthrosc Tech 4:e681–e685CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Duprey S, Bruyere K, Verriest JP (2010) Clavicle fracture prediction: simulation of shoulder lateral impacts with geometrically personalized finite elements models. J Trauma 68:177–182CrossRefPubMed Duprey S, Bruyere K, Verriest JP (2010) Clavicle fracture prediction: simulation of shoulder lateral impacts with geometrically personalized finite elements models. J Trauma 68:177–182CrossRefPubMed
6.
Zurück zum Zitat Edelson JG, Taitz C (1992) Anatomy of the coraco-acromial arch. Relation to degeneration of the acromion. J Bone Joint Surg Br 74:589–594PubMed Edelson JG, Taitz C (1992) Anatomy of the coraco-acromial arch. Relation to degeneration of the acromion. J Bone Joint Surg Br 74:589–594PubMed
7.
Zurück zum Zitat Favre P, Kloen P, Helfet DL, Werner CM (2011) Superior versus anteroinferior plating of the clavicle: a finite element study. J Orthop Trauma 25:661–665CrossRefPubMed Favre P, Kloen P, Helfet DL, Werner CM (2011) Superior versus anteroinferior plating of the clavicle: a finite element study. J Orthop Trauma 25:661–665CrossRefPubMed
8.
Zurück zum Zitat Ferreira JV, Chowaniec D, Obopilwe E, Nowak MD, Arciero RA, Mazzocca AD (2012) Biomechanical evaluation of effect of coracoid tunnel placement on load to failure of fixation during repair of acromioclavicular joint dislocations. Arthroscopy 28:1230–1236CrossRefPubMed Ferreira JV, Chowaniec D, Obopilwe E, Nowak MD, Arciero RA, Mazzocca AD (2012) Biomechanical evaluation of effect of coracoid tunnel placement on load to failure of fixation during repair of acromioclavicular joint dislocations. Arthroscopy 28:1230–1236CrossRefPubMed
9.
Zurück zum Zitat Imhoff AB, Braun S, Beitzel K (2015) Comments on complications after arthroscopic coracoclavicular reconstruction using a single adjustable loop length suspensory fixation device. Arthroscopy 31:1031–1033CrossRefPubMed Imhoff AB, Braun S, Beitzel K (2015) Comments on complications after arthroscopic coracoclavicular reconstruction using a single adjustable loop length suspensory fixation device. Arthroscopy 31:1031–1033CrossRefPubMed
10.
Zurück zum Zitat Izadpanah K, Jaeger M, Ogon P, Sudkamp NP, Maier D (2015) Arthroscopically assisted reconstruction of acute acromioclavicular joint dislocations: anatomic AC ligament reconstruction with protective internal bracing-the “AC-RecoBridge” technique. Arthrosc Tech 4:e153–e161CrossRefPubMedPubMedCentral Izadpanah K, Jaeger M, Ogon P, Sudkamp NP, Maier D (2015) Arthroscopically assisted reconstruction of acute acromioclavicular joint dislocations: anatomic AC ligament reconstruction with protective internal bracing-the “AC-RecoBridge” technique. Arthrosc Tech 4:e153–e161CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Martetschlager F, Horan MP, Warth RJ, Millett PJ (2013) Complications after anatomic fixation and reconstruction of the coracoclavicular ligaments. Am J Sports Med 41:2896–2903CrossRefPubMed Martetschlager F, Horan MP, Warth RJ, Millett PJ (2013) Complications after anatomic fixation and reconstruction of the coracoclavicular ligaments. Am J Sports Med 41:2896–2903CrossRefPubMed
12.
Zurück zum Zitat Martetschlager F, Saier T, Weigert A, Herbst E, Winkler M, Henschel J, Augat P, Imhoff AB, Braun S (2016) Effect of coracoid drilling for acromioclavicular joint reconstruction techniques on coracoid fracture risk: a biomechanical study. Arthroscopy 32:982–987CrossRefPubMed Martetschlager F, Saier T, Weigert A, Herbst E, Winkler M, Henschel J, Augat P, Imhoff AB, Braun S (2016) Effect of coracoid drilling for acromioclavicular joint reconstruction techniques on coracoid fracture risk: a biomechanical study. Arthroscopy 32:982–987CrossRefPubMed
13.
Zurück zum Zitat Martetschlager F, Tauber M, Habermeyer P, Hawi N (2016) Arthroscopically assisted acromioclavicular and coracoclavicular ligament reconstruction for chronic acromioclavicular joint instability. Arthrosc Tech 5:e1239–e1246CrossRefPubMedPubMedCentral Martetschlager F, Tauber M, Habermeyer P, Hawi N (2016) Arthroscopically assisted acromioclavicular and coracoclavicular ligament reconstruction for chronic acromioclavicular joint instability. Arthrosc Tech 5:e1239–e1246CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Mazzocca AD, Santangelo SA, Johnson ST, Rios CG, Dumonski ML, Arciero RA (2006) A biomechanical evaluation of an anatomical coracoclavicular ligament reconstruction. Am J Sports Med 34:236–246CrossRefPubMed Mazzocca AD, Santangelo SA, Johnson ST, Rios CG, Dumonski ML, Arciero RA (2006) A biomechanical evaluation of an anatomical coracoclavicular ligament reconstruction. Am J Sports Med 34:236–246CrossRefPubMed
15.
Zurück zum Zitat Milewski MD, Tompkins M, Giugale JM, Carson EW, Miller MD, Diduch DR (2012) Complications related to anatomic reconstruction of the coracoclavicular ligaments. Am J Sports Med 40:1628–1634CrossRefPubMed Milewski MD, Tompkins M, Giugale JM, Carson EW, Miller MD, Diduch DR (2012) Complications related to anatomic reconstruction of the coracoclavicular ligaments. Am J Sports Med 40:1628–1634CrossRefPubMed
16.
Zurück zum Zitat Shin SJ, Kim NK (2015) Complications after arthroscopic coracoclavicular reconstruction using a single adjustable-loop-length suspensory fixation device in acute acromioclavicular joint dislocation. Arthroscopy 31:816–824CrossRefPubMed Shin SJ, Kim NK (2015) Complications after arthroscopic coracoclavicular reconstruction using a single adjustable-loop-length suspensory fixation device in acute acromioclavicular joint dislocation. Arthroscopy 31:816–824CrossRefPubMed
17.
Zurück zum Zitat Spiegl UJ, Smith SD, Euler SA, Dornan GJ, Millett PJ, Wijdicks CA (2014) Biomechanical consequences of coracoclavicular reconstruction techniques on clavicle strength. Am J Sports Med 42:1724–1730CrossRefPubMed Spiegl UJ, Smith SD, Euler SA, Dornan GJ, Millett PJ, Wijdicks CA (2014) Biomechanical consequences of coracoclavicular reconstruction techniques on clavicle strength. Am J Sports Med 42:1724–1730CrossRefPubMed
18.
Zurück zum Zitat Tauber M (2013) Management of acute acromioclavicular joint dislocations: current concepts. Arch Orthop Trauma Surg 133:985–995CrossRefPubMed Tauber M (2013) Management of acute acromioclavicular joint dislocations: current concepts. Arch Orthop Trauma Surg 133:985–995CrossRefPubMed
19.
Zurück zum Zitat Tauber M, Valler D, Lichtenberg S, Magosch P, Moroder P, Habermeyer P (2016) Arthroscopic stabilization of chronic acromioclavicular joint dislocations: triple- versus single-bundle reconstruction. Am J Sports Med 44:482–489CrossRefPubMed Tauber M, Valler D, Lichtenberg S, Magosch P, Moroder P, Habermeyer P (2016) Arthroscopic stabilization of chronic acromioclavicular joint dislocations: triple- versus single-bundle reconstruction. Am J Sports Med 44:482–489CrossRefPubMed
20.
Zurück zum Zitat von Schroeder HP, Kuiper SD, Botte MJ (2001) Osseous anatomy of the scapula. Clin Orthop Relat Res 383:131–139CrossRef von Schroeder HP, Kuiper SD, Botte MJ (2001) Osseous anatomy of the scapula. Clin Orthop Relat Res 383:131–139CrossRef
21.
Zurück zum Zitat Voss A, Dyrna F, Achtnich A, Hoberman A, Obopilwe E, Imhoff AB, Mazzocca AD, Beitzel K (2017) Acromion morphology and bone mineral density distribution suggest favorable fixation points for anatomic acromioclavicular reconstruction. Knee Surg Sports Traumatol Arthrosc 25:2004–2012CrossRefPubMed Voss A, Dyrna F, Achtnich A, Hoberman A, Obopilwe E, Imhoff AB, Mazzocca AD, Beitzel K (2017) Acromion morphology and bone mineral density distribution suggest favorable fixation points for anatomic acromioclavicular reconstruction. Knee Surg Sports Traumatol Arthrosc 25:2004–2012CrossRefPubMed
Metadaten
Titel
Risk of fracture of the acromion depends on size and orientation of acromial bone tunnels when performing acromioclavicular reconstruction
verfasst von
Felix Dyrna
Celso Cruz Timm de Oliveira
Michael Nowak
Andreas Voss
Elifho Obopilwe
Sepp Braun
Leo Pauzenberger
Andreas B. Imhoff
Augustus D. Mazzocca
Knut Beitzel
Publikationsdatum
06.10.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Knee Surgery, Sports Traumatology, Arthroscopy / Ausgabe 1/2018
Print ISSN: 0942-2056
Elektronische ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-017-4728-y

Weitere Artikel der Ausgabe 1/2018

Knee Surgery, Sports Traumatology, Arthroscopy 1/2018 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.