Skip to main content
Erschienen in:

03.04.2020 | Original Article

RLP, a bacteriophage of the family Podoviridae, rescues mice from bacteremia caused by multi-drug-resistant Pseudomonas aeruginosa

verfasst von: Iqbal Ahmad Alvi, Muhammad Asif, Rabia Tabassum, Rehan Aslam, Zaigham Abbas, Shafiq ur Rehman

Erschienen in: Archives of Virology | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten

Abstract

Antimicrobial resistance is a serious threat to public health around the globe. According to the World Health Organization, there will be a return to the pre-penicillin era by 2050 if no new antimicrobials are discovered. It is therefore necessary to find new antimicrobials and alternatives. Pseudomonas aeruginosa exhibits resistance against many antibiotics and causes a variety of infections in immunocompromised individuals and especially in those with burn wounds and lung infections. Bacteriophage RLP against P. aeruginosa strain PA-1 was isolated from the Ravi River near Lahore. It showed marked stability at different pH values and temperatures, with the maximum storage stability at 4 °C. It demonstrated the ability to inhibit bacterial growth for up to 20 h, replicated in 25 min, and produced 154 virions per infected cell. RLP showed a broad host range, infecting 50% (19/38) of the multiple-drug-resistant (MDR) P. aeruginosa strains that were tested. The 43-kbp-long genome of RLP is a double-stranded DNA molecule that encodes 56 proteins in total: 34 with known functions, and 22 with no homolog in the gene databases. A cascade system of lytic machinery is also present in the form of four genes (R/z, R/z1, holin and endolysin). Therapeutic studies of RLP in bacteremic mice infected with P. aeruginosa strain PA-1 demonstrated a 92% survival rate in the treated group compared with 7.4% in the untreated group, and this result was statistically significant. Based on its physiological and genetic properties, ability to cause a reduction in bacterial growth in vitro and its in vivo therapeutic efficacy, RLP could be a good candidate for use in phage therapy.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Pier G, Ramphal R (2005) Pseudomonas aeruginosa. Princip Pract Infect Dis 6:2587–2615 Pier G, Ramphal R (2005) Pseudomonas aeruginosa. Princip Pract Infect Dis 6:2587–2615
3.
Zurück zum Zitat McVay CS, Velásquez M, Fralick JA (2007) Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother 51:1934–1938PubMedPubMedCentralCrossRef McVay CS, Velásquez M, Fralick JA (2007) Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother 51:1934–1938PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Merril CR, Scholl D, Adhya SL (2003) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2:489PubMedCrossRef Merril CR, Scholl D, Adhya SL (2003) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2:489PubMedCrossRef
5.
Zurück zum Zitat Brüssow H (2005) Phage therapy: the Escherichia coli experience. Microbiology 151:2133–2140PubMedCrossRef Brüssow H (2005) Phage therapy: the Escherichia coli experience. Microbiology 151:2133–2140PubMedCrossRef
6.
Zurück zum Zitat Barrow PA, Soothill JS (1997) Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol 5:268–271PubMedCrossRef Barrow PA, Soothill JS (1997) Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol 5:268–271PubMedCrossRef
7.
Zurück zum Zitat Smith HW, Huggins M (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. Microbiology 129:2659–2675CrossRef Smith HW, Huggins M (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. Microbiology 129:2659–2675CrossRef
10.
Zurück zum Zitat Gorski A, Dabrowska K, Switala-Jeleń K, Nowaczyk M, Weber-Dabrowska B, Boratynski J, Wietrzyk J, Opolski A (2003) New insights into the possible role of bacteriophages in host defense and disease. Med Immunol 2:2PubMedPubMedCentralCrossRef Gorski A, Dabrowska K, Switala-Jeleń K, Nowaczyk M, Weber-Dabrowska B, Boratynski J, Wietrzyk J, Opolski A (2003) New insights into the possible role of bacteriophages in host defense and disease. Med Immunol 2:2PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Kochetkova VA, Mamontov AS, Moskovtseva RL, Erastova EI, Trofimov EI, Popov MI, Dzhubalieva SK (1989) Phagotherapy of postoperative suppurative-inflammatory complications in patients with neoplasms. Sovetskaia meditsina (6), 23–26 Kochetkova VA, Mamontov AS, Moskovtseva RL, Erastova EI, Trofimov EI, Popov MI, Dzhubalieva SK (1989) Phagotherapy of postoperative suppurative-inflammatory complications in patients with neoplasms. Sovetskaia meditsina (6), 23–26
13.
Zurück zum Zitat Yin S, Huang G, Zhang Y, Jiang B, Yang Z, Dong Z, You B, Yuan Z, Hu F, Zhao Y (2017) Phage Abp1 rescues human cells and mice from infection by pan-drug resistant Acinetobacter baumannii. Cell Physiol Biochem 44:2337–2345PubMedCrossRef Yin S, Huang G, Zhang Y, Jiang B, Yang Z, Dong Z, You B, Yuan Z, Hu F, Zhao Y (2017) Phage Abp1 rescues human cells and mice from infection by pan-drug resistant Acinetobacter baumannii. Cell Physiol Biochem 44:2337–2345PubMedCrossRef
14.
Zurück zum Zitat Khawaja KA, Rauf M, Abbas Z (2016) A virulent phage JHP against Pseudomonas aeruginosa showed infectivity against multiple genera. J Basic Microbiol 56:1090–1097PubMedCrossRef Khawaja KA, Rauf M, Abbas Z (2016) A virulent phage JHP against Pseudomonas aeruginosa showed infectivity against multiple genera. J Basic Microbiol 56:1090–1097PubMedCrossRef
15.
Zurück zum Zitat Bibi Z, Abbas Z, Rehman Su (2016) The phage P. E1 isolated from hospital sewage reduces the growth of Escherichia coli. Biocontrol Sci Tech 26:181–188CrossRef Bibi Z, Abbas Z, Rehman Su (2016) The phage P. E1 isolated from hospital sewage reduces the growth of Escherichia coli. Biocontrol Sci Tech 26:181–188CrossRef
16.
Zurück zum Zitat Kutter E (2009) Phage host range and efficiency of plating. Bacteriophages. Springer, Berlin, pp 141–149 Kutter E (2009) Phage host range and efficiency of plating. Bacteriophages. Springer, Berlin, pp 141–149
17.
Zurück zum Zitat Alvi IA, Asif M, Tabassum R, Abbas Z, ur Rehman S (2018) Storage of bacteriophages at 4 C leads to no loss in their titer after one year. Pakis J Zool 50:1999–2398 Alvi IA, Asif M, Tabassum R, Abbas Z, ur Rehman S (2018) Storage of bacteriophages at 4 C leads to no loss in their titer after one year. Pakis J Zool 50:1999–2398
19.
Zurück zum Zitat Asif M, Alvi IA, Tabassum R, Rehman SU (2020) TAC1, an unclassified bacteriophage of the family Myoviridae infecting Acinetobacter baumannii with a large burst size and a short latent period. Arch Virol 165(2):419–424PubMedCrossRef Asif M, Alvi IA, Tabassum R, Rehman SU (2020) TAC1, an unclassified bacteriophage of the family Myoviridae infecting Acinetobacter baumannii with a large burst size and a short latent period. Arch Virol 165(2):419–424PubMedCrossRef
20.
Zurück zum Zitat Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol: chloroform. Cold Spring Harbor Protocols 2006:pdb. prot4455 Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol: chloroform. Cold Spring Harbor Protocols 2006:pdb. prot4455
21.
Zurück zum Zitat Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75CrossRef Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75CrossRef
22.
Zurück zum Zitat Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21PubMedPubMedCentralCrossRef Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Lavigne R, Sun W, Volckaert G (2004) PHIRE, a deterministic approach to reveal regulatory elements in bacteriophage genomes. Bioinformatics 20:629–635PubMedCrossRef Lavigne R, Sun W, Volckaert G (2004) PHIRE, a deterministic approach to reveal regulatory elements in bacteriophage genomes. Bioinformatics 20:629–635PubMedCrossRef
24.
Zurück zum Zitat Tiwari BR, Kim S, Rahman M, Kim J (2011) Antibacterial efficacy of lytic Pseudomonas bacteriophage in normal and neutropenic mice models. J Microbiol 49:994–999PubMedCrossRef Tiwari BR, Kim S, Rahman M, Kim J (2011) Antibacterial efficacy of lytic Pseudomonas bacteriophage in normal and neutropenic mice models. J Microbiol 49:994–999PubMedCrossRef
25.
Zurück zum Zitat Skorupski K, Pierce JC, Sauer B, Sternberg N (1992) Bacteriophage P1 genes involved in the recognition and cleavage of the phage packaging site (pac). J Mol Biol 223:977–989PubMedCrossRef Skorupski K, Pierce JC, Sauer B, Sternberg N (1992) Bacteriophage P1 genes involved in the recognition and cleavage of the phage packaging site (pac). J Mol Biol 223:977–989PubMedCrossRef
26.
Zurück zum Zitat Pallavali RR, Degati VL, Lomada D, Reddy MC, Durbaka VRP (2017) Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections. PLoS One 12:e0179245PubMedPubMedCentralCrossRef Pallavali RR, Degati VL, Lomada D, Reddy MC, Durbaka VRP (2017) Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections. PLoS One 12:e0179245PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Haq IU, Chaudhry WN, Andleeb S, Qadri I (2012) Isolation and partial characterization of a virulent bacteriophage IHQ1 specific for Aeromonas punctata from stream water. Microb Ecol 63:954–963CrossRef Haq IU, Chaudhry WN, Andleeb S, Qadri I (2012) Isolation and partial characterization of a virulent bacteriophage IHQ1 specific for Aeromonas punctata from stream water. Microb Ecol 63:954–963CrossRef
28.
Zurück zum Zitat Ceyssens P-J, Lavigne R, Mattheus W, Chibeu A, Hertveldt K, Mast J, Robben J, Volckaert G (2006) Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: establishment of the φKMV subgroup within the T7 supergroup. J Bacteriol 188:6924–6931PubMedPubMedCentralCrossRef Ceyssens P-J, Lavigne R, Mattheus W, Chibeu A, Hertveldt K, Mast J, Robben J, Volckaert G (2006) Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: establishment of the φKMV subgroup within the T7 supergroup. J Bacteriol 188:6924–6931PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Jamal M, Chaudhry WN, Hussain T, Das CR, Andleeb S (2015) Characterization of new Myoviridae bacteriophage WZ1 against multi-drug resistant (MDR) Shigella dysenteriae. J Basic Microbiol 55:420–431PubMedCrossRef Jamal M, Chaudhry WN, Hussain T, Das CR, Andleeb S (2015) Characterization of new Myoviridae bacteriophage WZ1 against multi-drug resistant (MDR) Shigella dysenteriae. J Basic Microbiol 55:420–431PubMedCrossRef
30.
Zurück zum Zitat Jończyk E, Kłak M, Międzybrodzki R, Górski A (2011) The influence of external factors on bacteriophages. Folia Microbiol 56:191–200CrossRef Jończyk E, Kłak M, Międzybrodzki R, Górski A (2011) The influence of external factors on bacteriophages. Folia Microbiol 56:191–200CrossRef
31.
Zurück zum Zitat Ackermann HW, Tremblay D, Moineau S (2004) Long-term bacteriophage preservation. WFCC Newslett 38:35–40 Ackermann HW, Tremblay D, Moineau S (2004) Long-term bacteriophage preservation. WFCC Newslett 38:35–40
32.
Zurück zum Zitat Garbe J, Wesche A, Bunk B, Kazmierczak M, Selezska K, Rohde C, Sikorski J, Rohde M, Jahn D, Schobert M (2010) Characterization of JG024, a Pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions. BMC Microbiol 10:301PubMedPubMedCentralCrossRef Garbe J, Wesche A, Bunk B, Kazmierczak M, Selezska K, Rohde C, Sikorski J, Rohde M, Jahn D, Schobert M (2010) Characterization of JG024, a Pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions. BMC Microbiol 10:301PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Ahiwale S, Prakash D, Gajbhiye M, Jagdale S, Patil N, Kapadnis B (2012) BVPaP-3, a T7-like lytic phage of Pseudomonas aeruginosa: its isolation and characterisation. Curr Microbiol 64:305–311PubMedCrossRef Ahiwale S, Prakash D, Gajbhiye M, Jagdale S, Patil N, Kapadnis B (2012) BVPaP-3, a T7-like lytic phage of Pseudomonas aeruginosa: its isolation and characterisation. Curr Microbiol 64:305–311PubMedCrossRef
34.
Zurück zum Zitat Lavigne R, Burkal’tseva MV, Robben J, Sykilinda NN, Kurochkina LP, Grymonprez B, Jonckx B, Krylov VN, Mesyanzhinov VV, Volckaert G (2003) The genome of bacteriophage φKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 312:49–59 Lavigne R, Burkal’tseva MV, Robben J, Sykilinda NN, Kurochkina LP, Grymonprez B, Jonckx B, Krylov VN, Mesyanzhinov VV, Volckaert G (2003) The genome of bacteriophage φKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 312:49–59
35.
Zurück zum Zitat Yamaguchi K, Miyata R, Shigehisa R, Uchiyama J, Takemura-Uchiyama I, Kato S-I, Ujihara T, Sakaguchi Y, Daibata M, Matsuzaki S (2014) Genome analysis of Pseudomonas aeruginosa bacteriophage KPP23, belonging to the family Siphoviridae. Genome Announc 2:e00233–e00234PubMedPubMedCentralCrossRef Yamaguchi K, Miyata R, Shigehisa R, Uchiyama J, Takemura-Uchiyama I, Kato S-I, Ujihara T, Sakaguchi Y, Daibata M, Matsuzaki S (2014) Genome analysis of Pseudomonas aeruginosa bacteriophage KPP23, belonging to the family Siphoviridae. Genome Announc 2:e00233–e00234PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Krylov V, Pleteneva E, Bourkaltseva M, Shaburova O, Volckaert G, Sykilinda N, Kurochkina L, Mesyanzhinov V (2003) Myoviridae bacteriophages of Pseudomonas aeruginosa: a long and complex evolutionary pathway. Res Microbiol 154:269–275PubMedCrossRef Krylov V, Pleteneva E, Bourkaltseva M, Shaburova O, Volckaert G, Sykilinda N, Kurochkina L, Mesyanzhinov V (2003) Myoviridae bacteriophages of Pseudomonas aeruginosa: a long and complex evolutionary pathway. Res Microbiol 154:269–275PubMedCrossRef
37.
Zurück zum Zitat Alves DR, Perez-Esteban P, Kot W, Bean J, Arnot T, Hansen LH, Enright MC, Jenkins ATA (2016) A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb Biotechnol 9:61–74PubMedCrossRef Alves DR, Perez-Esteban P, Kot W, Bean J, Arnot T, Hansen LH, Enright MC, Jenkins ATA (2016) A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb Biotechnol 9:61–74PubMedCrossRef
38.
Zurück zum Zitat Karumidze N, Thomas JA, Kvatadze N, Goderdzishvili M, Hakala KW, Weintraub ST, Alavidze Z, Hardies SC (2012) Characterization of lytic Pseudomonas aeruginosa bacteriophages via biological properties and genomic sequences. Appl Microbiol Biotechnol 94:1609–1617PubMedCrossRef Karumidze N, Thomas JA, Kvatadze N, Goderdzishvili M, Hakala KW, Weintraub ST, Alavidze Z, Hardies SC (2012) Characterization of lytic Pseudomonas aeruginosa bacteriophages via biological properties and genomic sequences. Appl Microbiol Biotechnol 94:1609–1617PubMedCrossRef
39.
Zurück zum Zitat Essoh C, Latino L, Midoux C, Blouin Y, Loukou G, Nguetta S-PA, Lathro S, Cablanmian A, Kouassi AK, Vergnaud G (2015) Investigation of a large collection of Pseudomonas aeruginosa bacteriophages collected from a single environmental source in Abidjan, Côte d’Ivoire. PloS One 10:e0130548PubMedPubMedCentralCrossRef Essoh C, Latino L, Midoux C, Blouin Y, Loukou G, Nguetta S-PA, Lathro S, Cablanmian A, Kouassi AK, Vergnaud G (2015) Investigation of a large collection of Pseudomonas aeruginosa bacteriophages collected from a single environmental source in Abidjan, Côte d’Ivoire. PloS One 10:e0130548PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Streisinger G, Emrich J, Stahl MM (1967) Chromosome structure in phage t4, iii. Terminal redundancy and length determination. Proc Natl Acad Sci 57:292–295PubMedCrossRef Streisinger G, Emrich J, Stahl MM (1967) Chromosome structure in phage t4, iii. Terminal redundancy and length determination. Proc Natl Acad Sci 57:292–295PubMedCrossRef
41.
Zurück zum Zitat Ceyssens P-J, Hertveldt K, Ackermann H-W, Noben J-P, Demeke M, Volckaert G, Lavigne R (2008) The intron-containing genome of the lytic Pseudomonas phage LUZ24 resembles the temperate phage PaP3. Virology 377:233–238PubMedCrossRef Ceyssens P-J, Hertveldt K, Ackermann H-W, Noben J-P, Demeke M, Volckaert G, Lavigne R (2008) The intron-containing genome of the lytic Pseudomonas phage LUZ24 resembles the temperate phage PaP3. Virology 377:233–238PubMedCrossRef
42.
Zurück zum Zitat Hanych B, Kędzierska S, Walderich B, Uznański B, Taylor A (1993) Expression of the Rz gene and the overlapping Rz1 reading frame present at the right end of the bacteriophage lambda genome. Gene 129:1–8PubMedCrossRef Hanych B, Kędzierska S, Walderich B, Uznański B, Taylor A (1993) Expression of the Rz gene and the overlapping Rz1 reading frame present at the right end of the bacteriophage lambda genome. Gene 129:1–8PubMedCrossRef
43.
Zurück zum Zitat Kȩdzierska S, Wawrzynow A, Taylor A (1996) The Rz1 gene product of bacteriophage lambda is a lipoprotein localized in the outer membrane of Escherichia coli. Gene 168:1–8PubMedCrossRef Kȩdzierska S, Wawrzynow A, Taylor A (1996) The Rz1 gene product of bacteriophage lambda is a lipoprotein localized in the outer membrane of Escherichia coli. Gene 168:1–8PubMedCrossRef
44.
Zurück zum Zitat Young R, Wang N, Roof WD (2000) Phages will out: strategies of host cell lysis. Trends Microbiol 8:120–128PubMedCrossRef Young R, Wang N, Roof WD (2000) Phages will out: strategies of host cell lysis. Trends Microbiol 8:120–128PubMedCrossRef
45.
Zurück zum Zitat Berry J, Summer EJ, Struck DK, Young R (2008) The final step in the phage infection cycle: the Rz and Rz1 lysis proteins link the inner and outer membranes. Mol Microbiol 70:341–351PubMedPubMedCentralCrossRef Berry J, Summer EJ, Struck DK, Young R (2008) The final step in the phage infection cycle: the Rz and Rz1 lysis proteins link the inner and outer membranes. Mol Microbiol 70:341–351PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Grymonprez B, Jonckx B, Krylov V, Mesyanzhinov V, Volckaert G (2003) The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 312:4959 Grymonprez B, Jonckx B, Krylov V, Mesyanzhinov V, Volckaert G (2003) The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 312:4959
47.
Zurück zum Zitat Cao Z, Zhang J, Niu YD, Cui N, Ma Y, Cao F, Jin L, Li Z, Xu Y (2015) Isolation and characterization of a “phiKMV-like” bacteriophage and its therapeutic effect on mink hemorrhagic pneumonia. PLoS One 10:e0116571PubMedPubMedCentralCrossRef Cao Z, Zhang J, Niu YD, Cui N, Ma Y, Cao F, Jin L, Li Z, Xu Y (2015) Isolation and characterization of a “phiKMV-like” bacteriophage and its therapeutic effect on mink hemorrhagic pneumonia. PLoS One 10:e0116571PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Payne RJ, Jansen VA (2003) Pharmacokinetic principles of bacteriophage therapy. Clin Pharmacokinet 42:315–325PubMedCrossRef Payne RJ, Jansen VA (2003) Pharmacokinetic principles of bacteriophage therapy. Clin Pharmacokinet 42:315–325PubMedCrossRef
49.
Zurück zum Zitat Payne RJ, Jansen VA (2000) Phage therapy: the peculiar kinetics of self-replicating pharmaceuticals. Clin Pharmacol Ther 68:225–230PubMedCrossRef Payne RJ, Jansen VA (2000) Phage therapy: the peculiar kinetics of self-replicating pharmaceuticals. Clin Pharmacol Ther 68:225–230PubMedCrossRef
50.
Zurück zum Zitat Uchiyama J, Maeda Y, Takemura I, Chess-Williams R, Wakiguchi H, Matsuzaki S (2009) Blood kinetics of four intraperitoneally administered therapeutic candidate bacteriophages in healthy and neutropenic mice. Microbiol Immunol 53:301–304PubMedCrossRef Uchiyama J, Maeda Y, Takemura I, Chess-Williams R, Wakiguchi H, Matsuzaki S (2009) Blood kinetics of four intraperitoneally administered therapeutic candidate bacteriophages in healthy and neutropenic mice. Microbiol Immunol 53:301–304PubMedCrossRef
51.
Zurück zum Zitat Schneider G, Szentes N, Horváth M, Dorn Á, Cox A, Nagy G, Dofkay Z, Maróti G, Rákhely G, Kovács T (2018) Kinetics of targeted phage rescue in a mouse model of systemic Escherichia coli K1. BioMed Res Int 2018:7569645PubMedPubMedCentralCrossRef Schneider G, Szentes N, Horváth M, Dorn Á, Cox A, Nagy G, Dofkay Z, Maróti G, Rákhely G, Kovács T (2018) Kinetics of targeted phage rescue in a mouse model of systemic Escherichia coli K1. BioMed Res Int 2018:7569645PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Henry M, Lavigne R, Debarbieux L (2013) Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob Agents Chemother 57:5961–5968PubMedPubMedCentralCrossRef Henry M, Lavigne R, Debarbieux L (2013) Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob Agents Chemother 57:5961–5968PubMedPubMedCentralCrossRef
Metadaten
Titel
RLP, a bacteriophage of the family Podoviridae, rescues mice from bacteremia caused by multi-drug-resistant Pseudomonas aeruginosa
verfasst von
Iqbal Ahmad Alvi
Muhammad Asif
Rabia Tabassum
Rehan Aslam
Zaigham Abbas
Shafiq ur Rehman
Publikationsdatum
03.04.2020
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 6/2020
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-020-04601-x

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Innere Medizin

Metastasiertes CRC: besser Checkpointhemmer im Doppelpack!

Die Kombination von Nivolumab plus Ipilimumab ist beim metastasierten Kolorektalkarzinom mit MSI-H- oder dMMR klar im Vorteil gegenüber einer Nivolumab-Monotherapie: Das Progressionsrisiko war damit in einer Phase-3-Studie um 38% reduziert.

Riesenzellarteriitis: bilaterale Biopsie der Temporalarterien von Vorteil

Die Riesenzellarteriitis (RZA) erfordert eine rasche und präzise Diagnose, da innerhalb weniger Tage ein schwerer, irreversibler Sehverlust drohen kann. In diesem Zusammenhang scheint die bilaterale Biopsie der Temporalarterien (TAB) der unilateralen überlegen zu sein.

Große Trinkmengen bei Blasentumoren möglicherweise von Nachteil

Beim nicht-muskelinvasiven Blasenkrebs scheint eine hohe Flüssigkeitszufuhr keinen schützenden Effekt in Bezug auf das Risiko eines Rezidivs oder einer Krankheitsprogression zu haben. Eine niederländische Studie legt sogar nahe, dass große Trinkmengen das Fortschreiten der Erkrankung begünstigen könnten.

Höhere Trefferquoten bei Brustkrebsscreening dank KI?

Künstliche Intelligenz unterstützt bei der Auswertung von Mammografie-Screenings und senkt somit den Arbeitsaufwand für Radiologen. Wie wirken sich diese Technologien auf die Trefferquote und die Falsch-positiv-Rate aus? Das hat jetzt eine Studie aus Schweden untersucht.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.