Skip to main content
Erschienen in: Medical Oncology 9/2020

01.09.2020 | Original Paper

RNA-binding protein Musashi2 regulates Hippo signaling via SAV1 and MOB1 in pancreatic cancer

verfasst von: Haiyan Yang, Jiong Hu, Jingde Chen, Zhiqin Chen, Feng Jiao, Jiujie Cui, Ming Quan, Liwei Wang

Erschienen in: Medical Oncology | Ausgabe 9/2020

Einloggen, um Zugang zu erhalten

Abstract

Musashi 2 (MSI2), a member of the Musashi RNA-binding family, is reported to be an oncoprotein in pancreatic ductal adenocarcinoma (PDAC), but the mechanisms of MSI2 in the development and progression of PDAC have not been fully demonstrated. In this research, we studied the clinical significance, biologic effects and the underlying mechanism of MSI2 in the progression of PDAC. The expression of MSI2, Mps-binding protein 1 (MOB1) and Salvador family WW domain-containing protein 1 (SAV1) in PDAC tissues were analyzed immunohistochemically. The biologic effects of MSI2 regarding PDAC cell proliferation, migration and invasion were studied using gain- and loss-of-function assays. MSI2 regulated Hippo signaling pathway via SAV1 and MOB1 was tested in several PDAC cell lines, and the mechanisms were studied using molecular biologic methods. The expression of MSI2 was significantly increased in PDAC cell lines and tissues, and positively associated with tumor poorer differentiation, lymph nodes metastasis and TNM stages. Overexpression of MSI2 promoted PDAC cells proliferation, migration and invasion. Further studies demonstrated that MSI2 regulated the Hippo signaling pathway via directly binding to the mRNAs of SAV1 and MOB1, and controlled the translation and stability of SAV1 and the translation of MOB1. This study demonstrated that MSI2 regulated the Hippo signaling pathway via suppressing SAV1 and MOB1 at post-transcriptional level and promoted PDAC progression.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.CrossRef
2.
Zurück zum Zitat Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21.PubMedCrossRef Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21.PubMedCrossRef
3.
Zurück zum Zitat Sheng W, Shi X, Lin Y, Tang J, Jia C, Cao R, et al. Musashi2 promotes EGF-induced EMT in pancreatic cancer via ZEB1-ERK/MAPK signaling. J Exp Clin Can Res. 2020;39(1):16.CrossRef Sheng W, Shi X, Lin Y, Tang J, Jia C, Cao R, et al. Musashi2 promotes EGF-induced EMT in pancreatic cancer via ZEB1-ERK/MAPK signaling. J Exp Clin Can Res. 2020;39(1):16.CrossRef
4.
Zurück zum Zitat Park SM, Gonen M, Vu L, Minuesa G, Tivnan P, Barlowe TS, et al. Musashi2 sustains the mixed-lineage leukemia-driven stem cell regulatory program. J Clin Invest. 2015;125(3):1286–98.PubMedPubMedCentralCrossRef Park SM, Gonen M, Vu L, Minuesa G, Tivnan P, Barlowe TS, et al. Musashi2 sustains the mixed-lineage leukemia-driven stem cell regulatory program. J Clin Invest. 2015;125(3):1286–98.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Wang X, Wang R, Bai S, Xiong S, Li Y, Liu M, et al. Musashi2 contributes to the maintenance of CD44v6+ liver cancer stem cells via notch1 signaling pathway. J Exp Clin Can Res. 2019;38(1):505.CrossRef Wang X, Wang R, Bai S, Xiong S, Li Y, Liu M, et al. Musashi2 contributes to the maintenance of CD44v6+ liver cancer stem cells via notch1 signaling pathway. J Exp Clin Can Res. 2019;38(1):505.CrossRef
6.
Zurück zum Zitat Nishimoto Y, Okano H. New insight into cancer therapeutics: induction of differentiation by regulating the Musashi/Numb/Notch pathway. Cell Res. 2010;20(10):1083–5.PubMedCrossRef Nishimoto Y, Okano H. New insight into cancer therapeutics: induction of differentiation by regulating the Musashi/Numb/Notch pathway. Cell Res. 2010;20(10):1083–5.PubMedCrossRef
7.
Zurück zum Zitat Zhan Y, Chen Z, Li Y, He A, He S, Gong Y, et al. Long non-coding RNA DANCR promotes malignant phenotypes of bladder cancer cells by modulating the miR-149/MSI2 axis as a ceRNA. J Exp Clin Can Res. 2018;37(1):273.CrossRef Zhan Y, Chen Z, Li Y, He A, He S, Gong Y, et al. Long non-coding RNA DANCR promotes malignant phenotypes of bladder cancer cells by modulating the miR-149/MSI2 axis as a ceRNA. J Exp Clin Can Res. 2018;37(1):273.CrossRef
8.
Zurück zum Zitat Kudinov AE, Karanicolas J, Golemis EA, Boumber Y. Musashi RNA-binding proteins as cancer drivers and novel therapeutic targets. Clin Cancer Res. 2017;23(9):2143–53.PubMedPubMedCentralCrossRef Kudinov AE, Karanicolas J, Golemis EA, Boumber Y. Musashi RNA-binding proteins as cancer drivers and novel therapeutic targets. Clin Cancer Res. 2017;23(9):2143–53.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Zhao J, Zhang Y, Liu XS, Zhu FM, Xie F, Jiang CY, et al. RNA-binding protein Musashi2 stabilizing androgen receptor drives prostate cancer progression. Cancer Sci. 2020;111(2):369–82.PubMedPubMedCentralCrossRef Zhao J, Zhang Y, Liu XS, Zhu FM, Xie F, Jiang CY, et al. RNA-binding protein Musashi2 stabilizing androgen receptor drives prostate cancer progression. Cancer Sci. 2020;111(2):369–82.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Jiang X, Tan J, Wen Y, Liu W, Wu S, Wang L, et al. MSI2-TGF-beta/TGF-beta R1/SMAD3 positive feedback regulation in glioblastoma. Cancer Chemother Pharmacol. 2019;84(2):415–25.PubMedCrossRef Jiang X, Tan J, Wen Y, Liu W, Wu S, Wang L, et al. MSI2-TGF-beta/TGF-beta R1/SMAD3 positive feedback regulation in glioblastoma. Cancer Chemother Pharmacol. 2019;84(2):415–25.PubMedCrossRef
11.
Zurück zum Zitat Yang Z, Li J, Shi Y, Li L, Guo X. Increased musashi 2 expression indicates a poor prognosis and promotes malignant phenotypes in gastric cancer. Oncol Lett. 2019;17(3):2599–606.PubMedPubMedCentral Yang Z, Li J, Shi Y, Li L, Guo X. Increased musashi 2 expression indicates a poor prognosis and promotes malignant phenotypes in gastric cancer. Oncol Lett. 2019;17(3):2599–606.PubMedPubMedCentral
12.
Zurück zum Zitat Sheng W, Dong M, Chen C, Li Y, Liu Q, Dong Q. Musashi2 promotes the development and progression of pancreatic cancer by down-regulating Numb protein. Oncotarget. 2017;8(9):14359–73.PubMedCrossRef Sheng W, Dong M, Chen C, Li Y, Liu Q, Dong Q. Musashi2 promotes the development and progression of pancreatic cancer by down-regulating Numb protein. Oncotarget. 2017;8(9):14359–73.PubMedCrossRef
13.
Zurück zum Zitat Sheng W, Dong M, Chen C, Wang Z, Li Y, Wang K, et al. Cooperation of Musashi-2, Numb, MDM2, and P53 in drug resistance and malignant biology of pancreatic cancer. FASEB J. 2017;31(6):2429–38.PubMedCrossRef Sheng W, Dong M, Chen C, Wang Z, Li Y, Wang K, et al. Cooperation of Musashi-2, Numb, MDM2, and P53 in drug resistance and malignant biology of pancreatic cancer. FASEB J. 2017;31(6):2429–38.PubMedCrossRef
14.
Zurück zum Zitat Guo K, Cui J, Quan M, Xie D, Jia Z, Wei D, et al. The Novel KLF4/MSI2 Signaling Pathway Regulates Growth and Metastasis of Pancreatic Cancer. Clin Cancer Res. 2017;23(3):687–96.PubMedCrossRef Guo K, Cui J, Quan M, Xie D, Jia Z, Wei D, et al. The Novel KLF4/MSI2 Signaling Pathway Regulates Growth and Metastasis of Pancreatic Cancer. Clin Cancer Res. 2017;23(3):687–96.PubMedCrossRef
15.
Zurück zum Zitat Maugeri-Sacca M, De Maria R. The Hippo pathway in normal development and cancer. Pharmacol Ther. 2018;186:60–72.PubMedCrossRef Maugeri-Sacca M, De Maria R. The Hippo pathway in normal development and cancer. Pharmacol Ther. 2018;186:60–72.PubMedCrossRef
16.
Zurück zum Zitat Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13(4):246–57.PubMedCrossRef Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13(4):246–57.PubMedCrossRef
18.
Zurück zum Zitat Quan M, Chen Z, Jiao F, Xiao X, Xia Q, Chen J, et al. Lysine demethylase 2 (KDM2B) regulates hippo pathway via MOB1 to promote pancreatic ductal adenocarcinoma (PDAC) progression. J Exp Clin Can Res. 2020;39(1):13.CrossRef Quan M, Chen Z, Jiao F, Xiao X, Xia Q, Chen J, et al. Lysine demethylase 2 (KDM2B) regulates hippo pathway via MOB1 to promote pancreatic ductal adenocarcinoma (PDAC) progression. J Exp Clin Can Res. 2020;39(1):13.CrossRef
19.
Zurück zum Zitat Bae SJ, Ni L, Osinski A, Tomchick DR, Brautigam CA, Luo X. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK. eLife. 2017;6:e30278.PubMedPubMedCentralCrossRef Bae SJ, Ni L, Osinski A, Tomchick DR, Brautigam CA, Luo X. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK. eLife. 2017;6:e30278.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Kulaberoglu Y, Lin K, Holder M, Gai Z, Gomez M, Assefa Shifa B, et al. Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control. Nat Commun. 2017;8(1):695.PubMedPubMedCentralCrossRef Kulaberoglu Y, Lin K, Holder M, Gai Z, Gomez M, Assefa Shifa B, et al. Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control. Nat Commun. 2017;8(1):695.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Ansari D, Ohlsson H, Althini C, Bauden M, Zhou Q, Hu D, et al. The Hippo Signaling Pathway in Pancreatic Cancer. Anticancer Res. 2019;39(7):3317–21.PubMedCrossRef Ansari D, Ohlsson H, Althini C, Bauden M, Zhou Q, Hu D, et al. The Hippo Signaling Pathway in Pancreatic Cancer. Anticancer Res. 2019;39(7):3317–21.PubMedCrossRef
23.
Zurück zum Zitat Xie D, Cui J, Xia T, Jia Z, Wang L, Wei W, et al. Hippo transducer TAZ promotes epithelial mesenchymal transition and supports pancreatic cancer progression. Oncotarget. 2015;6(34):35949–63.PubMedPubMedCentralCrossRef Xie D, Cui J, Xia T, Jia Z, Wang L, Wei W, et al. Hippo transducer TAZ promotes epithelial mesenchymal transition and supports pancreatic cancer progression. Oncotarget. 2015;6(34):35949–63.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Cui J, Zhou Z, Yang H, Jiao F, Li N, Gao Y, et al. MST1 Suppresses Pancreatic Cancer Progression via ROS-Induced Pyroptosis. Mol Cancer Res. 2019;17(6):1316–25.PubMedCrossRef Cui J, Zhou Z, Yang H, Jiao F, Li N, Gao Y, et al. MST1 Suppresses Pancreatic Cancer Progression via ROS-Induced Pyroptosis. Mol Cancer Res. 2019;17(6):1316–25.PubMedCrossRef
25.
Zurück zum Zitat Wang L, Wei D, Huang S, Peng Z, Le X, Wu TT, et al. Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res. 2003;9(17):6371–80.PubMed Wang L, Wei D, Huang S, Peng Z, Le X, Wu TT, et al. Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res. 2003;9(17):6371–80.PubMed
26.
Zurück zum Zitat Huang C, Qiu Z, Wang L, Peng Z, Jia Z, Logsdon CD, et al. A novel FoxM1-caveolin signaling pathway promotes pancreatic cancer invasion and metastasis. Cancer Res. 2012;72(3):655–65.PubMedCrossRef Huang C, Qiu Z, Wang L, Peng Z, Jia Z, Logsdon CD, et al. A novel FoxM1-caveolin signaling pathway promotes pancreatic cancer invasion and metastasis. Cancer Res. 2012;72(3):655–65.PubMedCrossRef
27.
Zurück zum Zitat Donninger H, Allen N, Henson A, Pogue J, Williams A, Gordon L, et al. Salvador protein is a tumor suppressor effector of RASSF1A with hippo pathway-independent functions. J Biol Chem. 2011;286(21):18483–911.PubMedPubMedCentralCrossRef Donninger H, Allen N, Henson A, Pogue J, Williams A, Gordon L, et al. Salvador protein is a tumor suppressor effector of RASSF1A with hippo pathway-independent functions. J Biol Chem. 2011;286(21):18483–911.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Mann KM, Ying H, Juan J, Jenkins NA, Copeland NG. KRAS-related proteins in pancreatic cancer. Pharmacol Ther. 2016;168:29–422.PubMedCrossRef Mann KM, Ying H, Juan J, Jenkins NA, Copeland NG. KRAS-related proteins in pancreatic cancer. Pharmacol Ther. 2016;168:29–422.PubMedCrossRef
29.
Zurück zum Zitat Fox RG, Lytle NK, Jaquish DV, Park FD, Ito T, Bajaj J, et al. Image-based detection and targeting of therapy resistance in pancreatic adenocarcinoma. Nature. 2016;534(7607):407–11.PubMedPubMedCentralCrossRef Fox RG, Lytle NK, Jaquish DV, Park FD, Ito T, Bajaj J, et al. Image-based detection and targeting of therapy resistance in pancreatic adenocarcinoma. Nature. 2016;534(7607):407–11.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Li X, Zhou X, Fan Y, Zhang Y, Zu L, Yao F, et al. WW45, a Gli1 binding protein, negatively regulated Hedgehog signaling in lung cancer. Oncotarget. 2016;7(42):68966–75.PubMedPubMedCentralCrossRef Li X, Zhou X, Fan Y, Zhang Y, Zu L, Yao F, et al. WW45, a Gli1 binding protein, negatively regulated Hedgehog signaling in lung cancer. Oncotarget. 2016;7(42):68966–75.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Jiang J, Chang W, Fu Y, Gao Y, Zhao C, Zhang X, et al. SAV1 represses the development of human colorectal cancer by regulating the Akt-mTOR pathway in a YAP-dependent manner. Cell Prolif. 2017;50(4):e12351.PubMedCentralCrossRef Jiang J, Chang W, Fu Y, Gao Y, Zhao C, Zhang X, et al. SAV1 represses the development of human colorectal cancer by regulating the Akt-mTOR pathway in a YAP-dependent manner. Cell Prolif. 2017;50(4):e12351.PubMedCentralCrossRef
32.
Zurück zum Zitat Wang L, Wang M, Hu C, Li P, Qiao Y, Xia Y, et al. Protein salvador homolog 1 acts as a tumor suppressor and is modulated by hypermethylation in pancreatic ductal adenocarcinoma. Oncotarget. 2017;8(38):62953–61.PubMedPubMedCentralCrossRef Wang L, Wang M, Hu C, Li P, Qiao Y, Xia Y, et al. Protein salvador homolog 1 acts as a tumor suppressor and is modulated by hypermethylation in pancreatic ductal adenocarcinoma. Oncotarget. 2017;8(38):62953–61.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Liu X, Fu Y, Zhang G, Zhang D, Liang N, Li F, et al. miR-424-5p promotes anoikis resistance and lung metastasis by inactivating hippo signaling in thyroid cancer. Mol Ther Oncolytics. 2019;15:248–60.PubMedPubMedCentralCrossRef Liu X, Fu Y, Zhang G, Zhang D, Liang N, Li F, et al. miR-424-5p promotes anoikis resistance and lung metastasis by inactivating hippo signaling in thyroid cancer. Mol Ther Oncolytics. 2019;15:248–60.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Matsuura K, Nakada C, Mashio M, Narimatsu T, Yoshimoto T, Tanigawa M, et al. Downregulation of SAV1 plays a role in pathogenesis of high-grade clear cell renal cell carcinoma. BMC Cancer. 2011;11:523.PubMedPubMedCentralCrossRef Matsuura K, Nakada C, Mashio M, Narimatsu T, Yoshimoto T, Tanigawa M, et al. Downregulation of SAV1 plays a role in pathogenesis of high-grade clear cell renal cell carcinoma. BMC Cancer. 2011;11:523.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Chen M, Wang M, Xu S, Guo X, Jiang J. Upregulation of miR-181c contributes to chemoresistance in pancreatic cancer by inactivating the Hippo signaling pathway. Oncotarget. 2015;6(42):44466–79.PubMedPubMedCentralCrossRef Chen M, Wang M, Xu S, Guo X, Jiang J. Upregulation of miR-181c contributes to chemoresistance in pancreatic cancer by inactivating the Hippo signaling pathway. Oncotarget. 2015;6(42):44466–79.PubMedPubMedCentralCrossRef
36.
37.
38.
Zurück zum Zitat Lignitto L, Arcella A, Sepe M, Rinaldi L, Delle Donne R, Gallo A, et al. Proteolysis of MOB1 by the ubiquitin ligase praja2 attenuates Hippo signalling and supports glioblastoma growth. Nat Commun. 2013;4:1822.PubMedPubMedCentralCrossRef Lignitto L, Arcella A, Sepe M, Rinaldi L, Delle Donne R, Gallo A, et al. Proteolysis of MOB1 by the ubiquitin ligase praja2 attenuates Hippo signalling and supports glioblastoma growth. Nat Commun. 2013;4:1822.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T, Miyachi Y, et al. Dysregulated YAP1/TAZ and TGF-beta signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci USA. 2016;113(1):E71–80.PubMedCrossRef Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T, Miyachi Y, et al. Dysregulated YAP1/TAZ and TGF-beta signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci USA. 2016;113(1):E71–80.PubMedCrossRef
40.
Zurück zum Zitat Sasaki H, Kawano O, Endo K, Suzuki E, Yukiue H, Kobayashi Y, et al. Human MOB1 expression in non-small-cell lung cancer. Clin Lung Cancer. 2007;8(4):273–6.PubMedCrossRef Sasaki H, Kawano O, Endo K, Suzuki E, Yukiue H, Kobayashi Y, et al. Human MOB1 expression in non-small-cell lung cancer. Clin Lung Cancer. 2007;8(4):273–6.PubMedCrossRef
41.
Zurück zum Zitat Zhang M, Zhao Y, Zhang Y, Wang D, Gu S, Feng W, et al. LncRNA UCA1 promotes migration and invasion in pancreatic cancer cells via the Hippo pathway. Biochim Biophys Acta Mol Basis Dis. 2018;1864(5 Pt A):1770–2182182.PubMedCrossRef Zhang M, Zhao Y, Zhang Y, Wang D, Gu S, Feng W, et al. LncRNA UCA1 promotes migration and invasion in pancreatic cancer cells via the Hippo pathway. Biochim Biophys Acta Mol Basis Dis. 2018;1864(5 Pt A):1770–2182182.PubMedCrossRef
Metadaten
Titel
RNA-binding protein Musashi2 regulates Hippo signaling via SAV1 and MOB1 in pancreatic cancer
verfasst von
Haiyan Yang
Jiong Hu
Jingde Chen
Zhiqin Chen
Feng Jiao
Jiujie Cui
Ming Quan
Liwei Wang
Publikationsdatum
01.09.2020
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 9/2020
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-020-01384-8

Weitere Artikel der Ausgabe 9/2020

Medical Oncology 9/2020 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.