Skip to main content
Erschienen in: Journal of Robotic Surgery 4/2018

31.03.2018 | Original Article

Robotic kidney autotransplantation in a porcine model: a procedure-specific training platform for the simulation of robotic intracorporeal vascular anastomosis

verfasst von: Ho Yee Tiong, Benjamin Yen Seow Goh, Edmund Chiong, Lincoln Guan Lim Tan, Anatharaman Vathsala

Erschienen in: Journal of Robotic Surgery | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Robotic-assisted kidney transplantation (RKT) with the Da Vinci (Intuitive, USA) platform has been recently developed to improve outcomes by decreasing surgical site complications and morbidity, especially in obese patients. This potential paradigm shift in the surgical technique of kidney transplantation is performed in only a few centers. For wider adoption of this high stake complex operation, we aimed to develop a procedure-specific simulation platform in a porcine model for the training of robotic intracorporeal vascular anastomosis and evaluating vascular anastomoses patency. This paper describes the requirements and steps developed for the above training purpose. Over a series of four animal ethics’ approved experiments, the technique of robotic-assisted laparoscopic autotransplantation of the kidney was developed in Amsterdam live pigs (60–70 kg). The surgery was based around the vascular anastomosis technique described by Menon et al. This non-survival porcine training model is targeted at transplant surgeons with robotic surgery experience. Under general anesthesia, each pig was placed in lateral decubitus position with the placement of one robotic camera port, two robotic 8 mm ports and one assistant port. Robotic docking over the pig posteriorly was performed. The training platform involved the following procedural steps. First, ipsilateral iliac vessel dissection was performed. Second, robotic-assisted laparoscopic donor nephrectomy was performed with in situ perfusion of the kidney with cold Hartmann’s solution prior to complete division of the hilar vessels, ureter and kidney mobilization. Thirdly, the kidney was either kept in situ for orthotopic autotransplantation or mobilized to the pelvis and orientated for the vascular anastomosis, which was performed end to end or end to side after vessel loop clamping of the iliac vessels, respectively, using 6/0 Gore-Tex sutures. Following autotransplantation and release of vessel loops, perfusion of the graft was assessed using intraoperative indocyanine green imaging and monitoring urine output after unclamping. This training platform demonstrates adequate face and content validity. With practice, arterial anastomotic time could be improved, showing its construct validity. This porcine training model can be useful in providing training for robotic intracorporeal vascular anastomosis and may facilitate confident translation into a transplant human recipient.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Abaza R, Ghani KR, Sood A et al (2014) Robotic kidney transplantation with intraoperative regional hypothermia. BJU Int 113:679–681CrossRef Abaza R, Ghani KR, Sood A et al (2014) Robotic kidney transplantation with intraoperative regional hypothermia. BJU Int 113:679–681CrossRef
2.
Zurück zum Zitat Boggi U, Vistoli F, Signori S et al (2011) Robotic renal transplantation: first European case. Transpl Int 24:213–218CrossRef Boggi U, Vistoli F, Signori S et al (2011) Robotic renal transplantation: first European case. Transpl Int 24:213–218CrossRef
3.
Zurück zum Zitat Giulianotti P, Gorodner V, Sbrana F et al (2010) Robotic transabdominal kidney transplantation in a morbidly obese patient. Am J Transplant 10:1478–1482CrossRef Giulianotti P, Gorodner V, Sbrana F et al (2010) Robotic transabdominal kidney transplantation in a morbidly obese patient. Am J Transplant 10:1478–1482CrossRef
4.
Zurück zum Zitat Gordon ZN, Angell J, Abaza R (2014) Completely intracorporeal robotic renal autotransplantation. J Urol 192:1516–1522CrossRef Gordon ZN, Angell J, Abaza R (2014) Completely intracorporeal robotic renal autotransplantation. J Urol 192:1516–1522CrossRef
5.
Zurück zum Zitat He B, Mou L, Sharpe K et al (2014) Laparoscopic kidney transplant by extra peritoneal approach: the safe transition from laboratory to the clinic. Am J Transplant 14:1931–1936CrossRef He B, Mou L, Sharpe K et al (2014) Laparoscopic kidney transplant by extra peritoneal approach: the safe transition from laboratory to the clinic. Am J Transplant 14:1931–1936CrossRef
6.
Zurück zum Zitat He B, Musk GC, Mou L et al (2013) Laparoscopic surgery for kidney orthotopic transplant in the pig model. JSLS 17:126–131CrossRef He B, Musk GC, Mou L et al (2013) Laparoscopic surgery for kidney orthotopic transplant in the pig model. JSLS 17:126–131CrossRef
7.
Zurück zum Zitat Hoznek A, Zaki SK, Samadi DB et al (2002) Robotic assisted kidney transplantation: an initial experience. J Urol 167:1604–1606CrossRef Hoznek A, Zaki SK, Samadi DB et al (2002) Robotic assisted kidney transplantation: an initial experience. J Urol 167:1604–1606CrossRef
8.
Zurück zum Zitat Lynch RJ, Ranney DN, Shijie C et al (2009) Obesity, surgical site infection, and outcome following renal transplantation. Ann Surg 250:1014–1020CrossRef Lynch RJ, Ranney DN, Shijie C et al (2009) Obesity, surgical site infection, and outcome following renal transplantation. Ann Surg 250:1014–1020CrossRef
9.
Zurück zum Zitat Mcculloch P, Altman DG, Campbell WB et al (2009) No surgical innovation without evaluation: the IDEAL recommendations. Lancet 374:1105–1112CrossRef Mcculloch P, Altman DG, Campbell WB et al (2009) No surgical innovation without evaluation: the IDEAL recommendations. Lancet 374:1105–1112CrossRef
10.
Zurück zum Zitat Menon M, Abaza R, Sood A et al (2014) Robotic kidney transplantation with regional hypothermia: evolution of a novel procedure utilizing the IDEAL guidelines (IDEAL phase 0 and 1). Eur Urol 65:1001–1009CrossRef Menon M, Abaza R, Sood A et al (2014) Robotic kidney transplantation with regional hypothermia: evolution of a novel procedure utilizing the IDEAL guidelines (IDEAL phase 0 and 1). Eur Urol 65:1001–1009CrossRef
11.
Zurück zum Zitat Menon M, Sood A, Bhandari M et al (2014) Robotic kidney transplantation with regional hypothermia: a step-by-step description of the Vattikuti Urology Institute-Medanta technique (IDEAL phase 2a). Eur Urol 65:991–1000CrossRef Menon M, Sood A, Bhandari M et al (2014) Robotic kidney transplantation with regional hypothermia: a step-by-step description of the Vattikuti Urology Institute-Medanta technique (IDEAL phase 2a). Eur Urol 65:991–1000CrossRef
12.
Zurück zum Zitat Modi P, Pal B, Kumar S et al (2015) Laparoscopic transplantation following transvaginal insertion of the kidney: description of technique and outcome. Am J Transplant 15:1915–1922CrossRef Modi P, Pal B, Kumar S et al (2015) Laparoscopic transplantation following transvaginal insertion of the kidney: description of technique and outcome. Am J Transplant 15:1915–1922CrossRef
13.
Zurück zum Zitat Modi P, Pal B, Modi J et al (2013) Retroperitoneoscopic living-donor nephrectomy and laparoscopic kidney transplantation: experience of initial 72 cases. Transplantation 95:100–105CrossRef Modi P, Pal B, Modi J et al (2013) Retroperitoneoscopic living-donor nephrectomy and laparoscopic kidney transplantation: experience of initial 72 cases. Transplantation 95:100–105CrossRef
14.
Zurück zum Zitat Modi P, Rizvi J, Pal B et al (2011) Laparoscopic kidney transplantation: an initial experience. Am J Transplant 11:1320–1324CrossRef Modi P, Rizvi J, Pal B et al (2011) Laparoscopic kidney transplantation: an initial experience. Am J Transplant 11:1320–1324CrossRef
15.
Zurück zum Zitat Oberholzer J, Giulianotti P, Danielson KK et al (2013) Minimally invasive robotic kidney transplantation for obese patients previously denied access to transplantation. Am J Transplant 13:721–728CrossRef Oberholzer J, Giulianotti P, Danielson KK et al (2013) Minimally invasive robotic kidney transplantation for obese patients previously denied access to transplantation. Am J Transplant 13:721–728CrossRef
16.
Zurück zum Zitat Oyen O (2008) Minimally invasive kidney transplantation (MIKT). J Surg Res 145:4CrossRef Oyen O (2008) Minimally invasive kidney transplantation (MIKT). J Surg Res 145:4CrossRef
17.
Zurück zum Zitat Oyen O, Scholz T, Hartmann A et al (2006) Minimally invasive kidney transplantation: the first experience. Transplant Proc 38:2798–2802CrossRef Oyen O, Scholz T, Hartmann A et al (2006) Minimally invasive kidney transplantation: the first experience. Transplant Proc 38:2798–2802CrossRef
18.
Zurück zum Zitat Rosales A, Salvador JT, Urdaneta G et al (2010) Laparoscopic kidney transplantation. Eur Urol 57:164–167CrossRef Rosales A, Salvador JT, Urdaneta G et al (2010) Laparoscopic kidney transplantation. Eur Urol 57:164–167CrossRef
19.
Zurück zum Zitat Sood A, Ghosh P, Jeong W et al (2015) Minimally invasive kidney transplantation: perioperative considerations and key 6-month outcomes. Transplantation 99:316–323CrossRef Sood A, Ghosh P, Jeong W et al (2015) Minimally invasive kidney transplantation: perioperative considerations and key 6-month outcomes. Transplantation 99:316–323CrossRef
20.
Zurück zum Zitat Sood A, Ghosh P, Menon M et al (2015) Robotic renal transplantation: current status. J Minim Access Surg 11:35–39CrossRef Sood A, Ghosh P, Menon M et al (2015) Robotic renal transplantation: current status. J Minim Access Surg 11:35–39CrossRef
21.
Zurück zum Zitat Wszola M, Kwiatkowski A, Ostaszewska A et al (2013) Surgical site infections after kidney transplantation—where do we stand now? Transplantation 95:878–882CrossRef Wszola M, Kwiatkowski A, Ostaszewska A et al (2013) Surgical site infections after kidney transplantation—where do we stand now? Transplantation 95:878–882CrossRef
Metadaten
Titel
Robotic kidney autotransplantation in a porcine model: a procedure-specific training platform for the simulation of robotic intracorporeal vascular anastomosis
verfasst von
Ho Yee Tiong
Benjamin Yen Seow Goh
Edmund Chiong
Lincoln Guan Lim Tan
Anatharaman Vathsala
Publikationsdatum
31.03.2018
Verlag
Springer London
Erschienen in
Journal of Robotic Surgery / Ausgabe 4/2018
Print ISSN: 1863-2483
Elektronische ISSN: 1863-2491
DOI
https://doi.org/10.1007/s11701-018-0806-5

Weitere Artikel der Ausgabe 4/2018

Journal of Robotic Surgery 4/2018 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

CME: 2 Punkte

Prof. Dr. med. Gregor Antoniadis Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

CME: 2 Punkte

Dr. med. Benjamin Meyknecht, PD Dr. med. Oliver Pieske Das Webinar S2e-Leitlinie „Distale Radiusfraktur“ beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

CME: 2 Punkte

Dr. med. Mihailo Andric
Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.