Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 1/2017

12.07.2016 | Original Article

Robotic ultrasound-guided SBRT of the prostate: feasibility with respect to plan quality

verfasst von: Stefan Gerlach, Ivo Kuhlemann, Philipp Jauer, Ralf Bruder, Floris Ernst, Christoph Fürweger, Alexander Schlaefer

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Advances in radiation therapy delivery systems have enabled motion compensated SBRT of the prostate. A remaining challenge is the integration of fast, non-ionizing volumetric imaging. Recently, robotic ultrasound has been proposed as an intra-fraction image modality. We study the impact of integrating a light-weight robotic arm carrying an ultrasound probe with the CyberKnife system. Particularly, we analyze the effect of different robot poses on the plan quality.

Methods

A method to detect the collision of beams with the robot or the transducer was developed and integrated into our treatment planning system. A safety margin accounts for beam motion and uncertainties. Using strict dose bounds and the objective to maximize target coverage, we generated a total of 7650 treatment plans for five different prostate cases. For each case, ten different poses of the ultrasound robot and transducer were considered. The effect of different sets of beam source positions and different motion margins ranging from 5 to 50 mm was analyzed.

Results

Compared to reference plans without the ultrasound robot, the coverage typically drops for all poses. Depending on the patient, the robot pose, and the motion margin, the reduction in coverage may be up to 50 % points. However, for all patient cases, there exist poses for which the loss in coverage was below 1 % point for motion margins of up to 20 mm. In general, there is a positive correlation between the number of treatment beams and the coverage.

Conclusion

While the blocking of beam directions has a negative effect on the plan quality, the results indicate that a careful choice of the ultrasound robot’s pose and a large solid angle covered by beam starting positions can offset this effect. Identifying robot poses that yield acceptable plan quality and allow for intra-fraction ultrasound image guidance, therefore, appears feasible.
Literatur
1.
Zurück zum Zitat King CR, Freeman D, Kaplan I, Fuller D, Bolzicco G, Collins S, Meier R, Wang J, Kupelian P, Steinberg M, Katz A (2013) Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiother Oncol 109(2):217–221CrossRefPubMed King CR, Freeman D, Kaplan I, Fuller D, Bolzicco G, Collins S, Meier R, Wang J, Kupelian P, Steinberg M, Katz A (2013) Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiother Oncol 109(2):217–221CrossRefPubMed
2.
Zurück zum Zitat Fuller DB, Naitoh J, Lee C, Hardy S, Jin H (2008) Virtual HDR cyberknife treatment for localized prostatic carcinoma: dosimetry comparison with HDR brachytherapy and preliminary clinical observations. Int J Radiat Oncol Biol Phys 70(5):1588–1597CrossRefPubMed Fuller DB, Naitoh J, Lee C, Hardy S, Jin H (2008) Virtual HDR cyberknife treatment for localized prostatic carcinoma: dosimetry comparison with HDR brachytherapy and preliminary clinical observations. Int J Radiat Oncol Biol Phys 70(5):1588–1597CrossRefPubMed
3.
Zurück zum Zitat Schweikard A, Glosser G, Bodduluri M, Murphy MJ, Adler JR (2000) Robotic motion compensation for respiratory movement during radiosurgery. Comput Aided Surg 5(4):263–277CrossRefPubMed Schweikard A, Glosser G, Bodduluri M, Murphy MJ, Adler JR (2000) Robotic motion compensation for respiratory movement during radiosurgery. Comput Aided Surg 5(4):263–277CrossRefPubMed
4.
Zurück zum Zitat Keall PJ, Sawant A, Cho B, Ruan D, Wu J, Poulsen P, Petersen J, Newell LJ, Cattell H, Korreman S (2011) Electromagnetic-guided dynamic multileaf collimator tracking enables motion management for intensity-modulated arc therapy. Int J Radiat Oncol Biol Phys 79(1):312–320CrossRefPubMed Keall PJ, Sawant A, Cho B, Ruan D, Wu J, Poulsen P, Petersen J, Newell LJ, Cattell H, Korreman S (2011) Electromagnetic-guided dynamic multileaf collimator tracking enables motion management for intensity-modulated arc therapy. Int J Radiat Oncol Biol Phys 79(1):312–320CrossRefPubMed
5.
Zurück zum Zitat Krauss A, Fast MF, Nill S, Oelfke U (2012) Multileaf collimator tracking integrated with a novel X-ray imaging system and external surrogate monitoring. Phys Med Biol 57(8):2425–2439CrossRefPubMed Krauss A, Fast MF, Nill S, Oelfke U (2012) Multileaf collimator tracking integrated with a novel X-ray imaging system and external surrogate monitoring. Phys Med Biol 57(8):2425–2439CrossRefPubMed
6.
Zurück zum Zitat Lang S, Zeimetz J, Ochsner G, Schmid Daners M, Riesterer O, Klöck S (2014) Development and evaluation of a prototype tracking system using the treatment couch. Med Phys 41(2):021720CrossRefPubMed Lang S, Zeimetz J, Ochsner G, Schmid Daners M, Riesterer O, Klöck S (2014) Development and evaluation of a prototype tracking system using the treatment couch. Med Phys 41(2):021720CrossRefPubMed
7.
Zurück zum Zitat D’Souza WD, Naqvi SA, Yu CX (2005) Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study. Phys Med Biol 50(17):4021–4033CrossRefPubMed D’Souza WD, Naqvi SA, Yu CX (2005) Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study. Phys Med Biol 50(17):4021–4033CrossRefPubMed
8.
Zurück zum Zitat Depuydt T, Poels K, Verellen D, Engels B, Collen C, Haverbeke C, Gevaert T, Buls N, Van Gompel G, Reynders T, Duchateau M, Tournel K, Boussaer M, Steenbeke F, Vandenbroucke F, De Ridder M (2013) Initial assessment of tumor tracking with a gimbaled linac system in clinical circumstances: a patient simulation study. Radiother Oncol 106(2):236–240CrossRefPubMed Depuydt T, Poels K, Verellen D, Engels B, Collen C, Haverbeke C, Gevaert T, Buls N, Van Gompel G, Reynders T, Duchateau M, Tournel K, Boussaer M, Steenbeke F, Vandenbroucke F, De Ridder M (2013) Initial assessment of tumor tracking with a gimbaled linac system in clinical circumstances: a patient simulation study. Radiother Oncol 106(2):236–240CrossRefPubMed
9.
Zurück zum Zitat Tong X, Chen X, Li J, Xu Q, Lin MH, Chen L, Price RA, Ma CM (2015) Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system. J Appl Clin Med Phys 16(2):5013PubMed Tong X, Chen X, Li J, Xu Q, Lin MH, Chen L, Price RA, Ma CM (2015) Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system. J Appl Clin Med Phys 16(2):5013PubMed
10.
Zurück zum Zitat Kupelian P, Willoughby T, Mahadevan A, Djemil T, Weinstein G, Jani S, Enke C, Solberg T, Flores N, Liu D, Beyer D, Levine L (2007) Multi-institutional clinical experience with the Calypso system in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 67(4):1088–1098CrossRefPubMed Kupelian P, Willoughby T, Mahadevan A, Djemil T, Weinstein G, Jani S, Enke C, Solberg T, Flores N, Liu D, Beyer D, Levine L (2007) Multi-institutional clinical experience with the Calypso system in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 67(4):1088–1098CrossRefPubMed
11.
Zurück zum Zitat Fallone BG (2014) The rotating biplanar linac-magnetic resonance imaging system. Semin Radiat Oncol 24(3):200–202CrossRefPubMed Fallone BG (2014) The rotating biplanar linac-magnetic resonance imaging system. Semin Radiat Oncol 24(3):200–202CrossRefPubMed
12.
Zurück zum Zitat Keall PJ, Barton M, Crozier S (2014) On behalf of the Australian MRI-Linac Program, including contributors from the Ingham Institute, Illawarra Cancer Care Centre, Liverpool Hospital, Stanford University, Universities of Newcastle, Queensland, Sydney, Western Sydney, and Wollongong. The Australian magnetic resonance imaging-linac program. Semin Radiat Oncol 24(3):203–206 Keall PJ, Barton M, Crozier S (2014) On behalf of the Australian MRI-Linac Program, including contributors from the Ingham Institute, Illawarra Cancer Care Centre, Liverpool Hospital, Stanford University, Universities of Newcastle, Queensland, Sydney, Western Sydney, and Wollongong. The Australian magnetic resonance imaging-linac program. Semin Radiat Oncol 24(3):203–206
13.
Zurück zum Zitat Lagendijk JJ, Raaymakers BW, Raaijmakers AJ, Overweg J, Brown KJ, Kerkhof EM, van der Put RW, Hårdemark B, van Vulpen M, van der Heide UA (2008) MRI/linac integration. Radiother Oncol 86(1):25–29CrossRefPubMed Lagendijk JJ, Raaymakers BW, Raaijmakers AJ, Overweg J, Brown KJ, Kerkhof EM, van der Put RW, Hårdemark B, van Vulpen M, van der Heide UA (2008) MRI/linac integration. Radiother Oncol 86(1):25–29CrossRefPubMed
14.
Zurück zum Zitat Bruder R, Ernst F, Schlaefer A, Schweikard A (2009) TH-C-304A-07: real-time tracking of the pulmonary veins in 3D ultrasound of the beating heart. 51st Annual meeting of the AAPM. Med Phys, vol 36, p 2804 Bruder R, Ernst F, Schlaefer A, Schweikard A (2009) TH-C-304A-07: real-time tracking of the pulmonary veins in 3D ultrasound of the beating heart. 51st Annual meeting of the AAPM. Med Phys, vol 36, p 2804
15.
Zurück zum Zitat Bruder R, Ernst F, Schlaefer A, Schweikard A (2011) A framework for real-time target tracking in radiosurgery using three-dimensional ultrasound. In: Proceedings of the 25th international congress and exhibition on computer assisted radiology and surgery (CARS’11), Int J CARS, vol 6, pp S306–S307 Bruder R, Ernst F, Schlaefer A, Schweikard A (2011) A framework for real-time target tracking in radiosurgery using three-dimensional ultrasound. In: Proceedings of the 25th international congress and exhibition on computer assisted radiology and surgery (CARS’11), Int J CARS, vol 6, pp S306–S307
16.
Zurück zum Zitat Schlosser J, Salisbury K, Hristov D (2010) Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery. Med Phys 37(12):6357–6367CrossRefPubMed Schlosser J, Salisbury K, Hristov D (2010) Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery. Med Phys 37(12):6357–6367CrossRefPubMed
17.
Zurück zum Zitat Bohrer M, Schröder P, Welzel G, Wertz H, Lohr F, Wenz F, Mai SK (2008) Reduced rectal toxicity with ultrasound-based image guided radiotherapy using BAT (B-mode acquisition and targeting system) for prostate cancer. Strahlenther Onkol 184(12):674–678CrossRefPubMed Bohrer M, Schröder P, Welzel G, Wertz H, Lohr F, Wenz F, Mai SK (2008) Reduced rectal toxicity with ultrasound-based image guided radiotherapy using BAT (B-mode acquisition and targeting system) for prostate cancer. Strahlenther Onkol 184(12):674–678CrossRefPubMed
18.
Zurück zum Zitat Cury FL, Shenouda G, Souhami L, Duclos M, Faria SL, David M, Verhaegen F, Corns R, Falco T (2006) Ultrasound-based image guided radiotherapy for prostate cancer: comparison of cross-modality and intramodality methods for daily localization during external beam radiotherapy. Int J Radiat Oncol Biol Phys 66(5):1562–1567CrossRefPubMed Cury FL, Shenouda G, Souhami L, Duclos M, Faria SL, David M, Verhaegen F, Corns R, Falco T (2006) Ultrasound-based image guided radiotherapy for prostate cancer: comparison of cross-modality and intramodality methods for daily localization during external beam radiotherapy. Int J Radiat Oncol Biol Phys 66(5):1562–1567CrossRefPubMed
19.
Zurück zum Zitat Bruder R, Ernst F, Schweikard A (2011) SU-D-220-02: optimal transducer positions for 4D ultrasound guidance in cardiac IGRT. 53rd Annual meeting of the AAPM. Med Phys, vol 38, p 3390 Bruder R, Ernst F, Schweikard A (2011) SU-D-220-02: optimal transducer positions for 4D ultrasound guidance in cardiac IGRT. 53rd Annual meeting of the AAPM. Med Phys, vol 38, p 3390
20.
Zurück zum Zitat Kuhlemann I, Bruder R, Ernst F, Schweikard A (2014) WEG-BRF-09: force-and image-adaptive strategies for robotised placement of 4D ultrasound probes. 56th Annual meeting of the AAPM. Med Phys, vol 41, p 523 Kuhlemann I, Bruder R, Ernst F, Schweikard A (2014) WEG-BRF-09: force-and image-adaptive strategies for robotised placement of 4D ultrasound probes. 56th Annual meeting of the AAPM. Med Phys, vol 41, p 523
21.
Zurück zum Zitat Bortfeld T (2010) The number of beams in IMRT-theoretical investigations and implications for single-arc IMRT. Phys Med Biol 55(1):83–97 Bortfeld T (2010) The number of beams in IMRT-theoretical investigations and implications for single-arc IMRT. Phys Med Biol 55(1):83–97
22.
Zurück zum Zitat Stein J, Mohan R, Wang XH, Bortfeld T, Wu Q, Preiser K, Ling CC, Schlegel W (1997) Number and orientations of beams in intensity-modulated radiation treatments. Med Phys 24(2):149–160 Stein J, Mohan R, Wang XH, Bortfeld T, Wu Q, Preiser K, Ling CC, Schlegel W (1997) Number and orientations of beams in intensity-modulated radiation treatments. Med Phys 24(2):149–160
23.
Zurück zum Zitat Schlaefer A, Gill J, Schweikard A (2008) A simulation and training environment for robotic radiosurgery. Int J CARS 3:267–274CrossRef Schlaefer A, Gill J, Schweikard A (2008) A simulation and training environment for robotic radiosurgery. Int J CARS 3:267–274CrossRef
24.
Zurück zum Zitat Echner GG, Kilby W, Lee M, Earnst E, Sayeh S, Schlaefer A, Rhein B, Dooley JR, Lang C, Blanck O, Lessard E, Maurer CR Jr, Schlegel W (2009) The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery. Phys Med Biol 54(18):5359–5380CrossRefPubMed Echner GG, Kilby W, Lee M, Earnst E, Sayeh S, Schlaefer A, Rhein B, Dooley JR, Lang C, Blanck O, Lessard E, Maurer CR Jr, Schlegel W (2009) The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery. Phys Med Biol 54(18):5359–5380CrossRefPubMed
25.
Zurück zum Zitat Schweikard A, Schlaefer A, Adler JR Jr (2006) Resampling: an optimization method for inverse planning in robotic radiosurgery. Med Phys 33(11):4005–4011CrossRefPubMed Schweikard A, Schlaefer A, Adler JR Jr (2006) Resampling: an optimization method for inverse planning in robotic radiosurgery. Med Phys 33(11):4005–4011CrossRefPubMed
26.
Zurück zum Zitat Schlaefer A, Schweikard A (2008) Stepwise multi-criteria optimization for robotic radiosurgery. Med Phys 35(5):2094–2103CrossRefPubMed Schlaefer A, Schweikard A (2008) Stepwise multi-criteria optimization for robotic radiosurgery. Med Phys 35(5):2094–2103CrossRefPubMed
27.
Zurück zum Zitat Lovelock DM, Messineo AP, Cox BW, Kollmeier MA, Zelefsky MJ (2015) Continuous monitoring and intrafraction target position correction during treatment improves target coverage for patients undergoing SBRT prostate therapy. Int J Radiat Oncol Biol Phys 91(3):588–594CrossRefPubMed Lovelock DM, Messineo AP, Cox BW, Kollmeier MA, Zelefsky MJ (2015) Continuous monitoring and intrafraction target position correction during treatment improves target coverage for patients undergoing SBRT prostate therapy. Int J Radiat Oncol Biol Phys 91(3):588–594CrossRefPubMed
28.
Zurück zum Zitat Şen HT, Lediju BMA, Zhang Y, Ding K, Wong J, Iordachita I, Kazanzides P (2015) System integration and preliminary in-vivo experiments of a robot for ultrasound guidance and monitoring during radiotherapy. In: Proceedings of the international conference on advanced robotics, 2015, pp 53–59 Şen HT, Lediju BMA, Zhang Y, Ding K, Wong J, Iordachita I, Kazanzides P (2015) System integration and preliminary in-vivo experiments of a robot for ultrasound guidance and monitoring during radiotherapy. In: Proceedings of the international conference on advanced robotics, 2015, pp 53–59
29.
Zurück zum Zitat Bazalova-Carter M, Schlosser J, Chen J, Hristov D (2015) Monte Carlo modeling of ultrasound probes for image guided radiotherapy. Med Phys 42(10):5745–5756CrossRefPubMedPubMedCentral Bazalova-Carter M, Schlosser J, Chen J, Hristov D (2015) Monte Carlo modeling of ultrasound probes for image guided radiotherapy. Med Phys 42(10):5745–5756CrossRefPubMedPubMedCentral
30.
Metadaten
Titel
Robotic ultrasound-guided SBRT of the prostate: feasibility with respect to plan quality
verfasst von
Stefan Gerlach
Ivo Kuhlemann
Philipp Jauer
Ralf Bruder
Floris Ernst
Christoph Fürweger
Alexander Schlaefer
Publikationsdatum
12.07.2016
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 1/2017
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-016-1455-7

Weitere Artikel der Ausgabe 1/2017

International Journal of Computer Assisted Radiology and Surgery 1/2017 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.