Skip to main content
Erschienen in:

26.01.2022 | Imaging Informatics and Artificial Intelligence

Role of hepatic metastatic lesion size on inter-reader reproducibility of CT-based radiomics features

verfasst von: Linda C. Kelahan, Donald Kim, Moataz Soliman, Ryan J. Avery, Hatice Savas, Rishi Agrawal, Michael Magnetta, Benjamin P. Liu, Yuri S. Velichko

Erschienen in: European Radiology | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To evaluate the effect of hepatic metastatic lesion size on inter-reader reproducibility of CT-based 2D radiomics imaging features.

Methods

Computerized tomography (CT) scans of 59 liver metastases from 34 patients with colorectal cancer were evaluated. Image segmentation was performed manually by three readers blinded to each other’s results. For each radiomics feature, we created two datasets by sorting measurements according to size, i.e., (i) from the smallest to the largest lesion and (ii) from the largest to the smallest lesion. The Lin concordance correlation coefficient (CCC) was employed to analyze the reproducibility of radiomics features. In particular, the CCC was computed as a function of a number of elements in the dataset, by gradually adding lesions from each sorted dataset. To evaluate the effect of lesion size, we analyzed the difference between these two functions thus assessing the contribution of small and large lesions into the reproducibility of radiomics features.

Results

Inter-reader reproducibility of CT-based 2D radiomics features assessed using Lin’s CCC demonstrates tumor-size dependence. For example, the Lin CCC for GLCM contrast equals 0.88 (95% C.I. 0.84 to 0.92, p < 0.003) and could change by an additional + / − 0.06 depending on the presence of large or small lesions.

Conclusions

Groups of “large” and “small” lesions show different inter-reader reproducibility. The inter-reader reproducibility from the mixed group consisting of “large” and “small” lesions depends on the lesion-size distribution and can vary widely. This finding could partially explain variability in reproducibility of radiomics features in the literature.

Key Points

Groups of “large” and “small” lesions show different inter-reader reproducibility.
The inter-reader reproducibility from the mixed group consisting of “large” and “small” lesions depends on the lesion-size distribution.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gillies RJ, Kinahan PE, Hricak H (2015) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577CrossRef Gillies RJ, Kinahan PE, Hricak H (2015) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577CrossRef
2.
Zurück zum Zitat Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446CrossRef Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446CrossRef
3.
Zurück zum Zitat Tomaszewski MR, Gillies RJ (2021) The biological meaning of radiomic features. Radiology 202553 Tomaszewski MR, Gillies RJ (2021) The biological meaning of radiomic features. Radiology 202553
4.
Zurück zum Zitat Balluff B, Hanselmann M, Heeren RM (2017) Mass spectrometry imaging for the investigation of intratumor heterogeneity. Adv Cancer Res 134:201–230CrossRef Balluff B, Hanselmann M, Heeren RM (2017) Mass spectrometry imaging for the investigation of intratumor heterogeneity. Adv Cancer Res 134:201–230CrossRef
5.
Zurück zum Zitat Silva M, Maddalo M, Leoni E et al (2021) Integrated prognostication of intrahepatic cholangiocarcinoma by contrast-enhanced computed tomography: the adjunct yield of radiomics. Abdom Radiol 46(10):4689–4700CrossRef Silva M, Maddalo M, Leoni E et al (2021) Integrated prognostication of intrahepatic cholangiocarcinoma by contrast-enhanced computed tomography: the adjunct yield of radiomics. Abdom Radiol 46(10):4689–4700CrossRef
6.
Zurück zum Zitat Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15(2):81–94CrossRef Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15(2):81–94CrossRef
7.
Zurück zum Zitat Lambin P, Leijenaar RT, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762CrossRef Lambin P, Leijenaar RT, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762CrossRef
8.
Zurück zum Zitat Hao D, Wang L, Di L-J (2016) Distinct mutation accumulation rates among tissues determine the variation in cancer risk. Sci Rep 6(1):19458CrossRef Hao D, Wang L, Di L-J (2016) Distinct mutation accumulation rates among tissues determine the variation in cancer risk. Sci Rep 6(1):19458CrossRef
9.
Zurück zum Zitat Borhani AA, Catania R, Velichko YS, Hectors S, Taouli B, Lewis S (2021) Radiomics of hepatocellular carcinoma: promising roles in patient selection, prediction, and assessment of treatment response. Abdom Radiol (NY) 46(8):3674–3685 Borhani AA, Catania R, Velichko YS, Hectors S, Taouli B, Lewis S (2021) Radiomics of hepatocellular carcinoma: promising roles in patient selection, prediction, and assessment of treatment response. Abdom Radiol (NY) 46(8):3674–3685
10.
Zurück zum Zitat Gillies RJ, Schabath MB (2020) Radiomics improves cancer screening and early detection. Cancer Epidemiol Prev Biomark 29(12):2556–2567CrossRef Gillies RJ, Schabath MB (2020) Radiomics improves cancer screening and early detection. Cancer Epidemiol Prev Biomark 29(12):2556–2567CrossRef
11.
Zurück zum Zitat Thawani R, McLane M, Beig N et al (2018) Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer 115:34–41CrossRef Thawani R, McLane M, Beig N et al (2018) Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer 115:34–41CrossRef
12.
Zurück zum Zitat Liu R, Elhalawani H, Radwan Mohamed AS et al (2020) Stability analysis of CT radiomic features with respect to segmentation variation in oropharyngeal cancer. Clin Transl Radiat Oncol 21:11–18CrossRef Liu R, Elhalawani H, Radwan Mohamed AS et al (2020) Stability analysis of CT radiomic features with respect to segmentation variation in oropharyngeal cancer. Clin Transl Radiat Oncol 21:11–18CrossRef
13.
Zurück zum Zitat Yepes-Calderon F, Gordon McComb J (2019) Manual segmentation errors in medical imaging. Proposing a reliable gold standard. In: Florez H, Leon M, Diaz-Nafria JM, Belli S eds. Applied informatics. Cham: Springer International Publishing p 230–41 Yepes-Calderon F, Gordon McComb J (2019) Manual segmentation errors in medical imaging. Proposing a reliable gold standard. In: Florez H, Leon M, Diaz-Nafria JM, Belli S eds. Applied informatics. Cham: Springer International Publishing p 230–41
14.
Zurück zum Zitat Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys 102(4):1143–1158CrossRef Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys 102(4):1143–1158CrossRef
15.
Zurück zum Zitat Larue RT, van Timmeren JE, de Jong EE et al (2017) Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Acta Oncol 56(11):1544–1553CrossRef Larue RT, van Timmeren JE, de Jong EE et al (2017) Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Acta Oncol 56(11):1544–1553CrossRef
16.
Zurück zum Zitat Zhao B, Tan Y, Tsai WY et al (2016) Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep 6:23428CrossRef Zhao B, Tan Y, Tsai WY et al (2016) Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep 6:23428CrossRef
17.
Zurück zum Zitat Parmar C, Rios Velazquez E, Leijenaar R et al (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 9(7):e102107CrossRef Parmar C, Rios Velazquez E, Leijenaar R et al (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 9(7):e102107CrossRef
18.
Zurück zum Zitat Velichko YS, Mozafarykhamseh A, Trabzonlu TA, Zhang Z, Rademaker AW, Yaghmai V (2021) Association between the size and 3D CT-based radiomic features of breast cancer hepatic metastasis. Acad Radiol 28(4):e93–e100CrossRef Velichko YS, Mozafarykhamseh A, Trabzonlu TA, Zhang Z, Rademaker AW, Yaghmai V (2021) Association between the size and 3D CT-based radiomic features of breast cancer hepatic metastasis. Acad Radiol 28(4):e93–e100CrossRef
19.
Zurück zum Zitat Dercle L, Ammari S, Bateson M et al (2017) Limits of radiomic-based entropy as a surrogate of tumor heterogeneity: ROI-area, acquisition protocol and tissue site exert substantial influence. Sci Rep 7(1):7952CrossRef Dercle L, Ammari S, Bateson M et al (2017) Limits of radiomic-based entropy as a surrogate of tumor heterogeneity: ROI-area, acquisition protocol and tissue site exert substantial influence. Sci Rep 7(1):7952CrossRef
20.
Zurück zum Zitat Hatt M, Majdoub M, Vallières M et al (2015) 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi–cancer site patient cohort. J Nucl Med 56(1):38–44CrossRef Hatt M, Majdoub M, Vallières M et al (2015) 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi–cancer site patient cohort. J Nucl Med 56(1):38–44CrossRef
21.
Zurück zum Zitat Orlhac F, Soussan M, Maisonobe J-A, Garcia CA, Vanderlinden B, Buvat I (2014) Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med 55(3):414–422CrossRef Orlhac F, Soussan M, Maisonobe J-A, Garcia CA, Vanderlinden B, Buvat I (2014) Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med 55(3):414–422CrossRef
22.
Zurück zum Zitat Shafiq-ul-Hassan M, Latifi K, Zhang G, Ullah G, Gillies R, Moros E (2018) Voxel size and gray level normalization of CT radiomic features in lung cancer. Sci Rep 8(1):10545CrossRef Shafiq-ul-Hassan M, Latifi K, Zhang G, Ullah G, Gillies R, Moros E (2018) Voxel size and gray level normalization of CT radiomic features in lung cancer. Sci Rep 8(1):10545CrossRef
23.
Zurück zum Zitat Shafiq-Ul-Hassan M, Zhang GG, Latifi K et al (2017) Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys 44(3):1050–1062CrossRef Shafiq-Ul-Hassan M, Zhang GG, Latifi K et al (2017) Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys 44(3):1050–1062CrossRef
24.
Zurück zum Zitat Fave X, Zhang L, Yang J et al (2016) Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Transl Cancer Res 5(4):349–363CrossRef Fave X, Zhang L, Yang J et al (2016) Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Transl Cancer Res 5(4):349–363CrossRef
25.
Zurück zum Zitat Lehmann TM, Gonner C, Spitzer K (2001) Addendum: B-spline interpolation in medical image processing. IEEE Trans Med Imaging 20(7):660–665CrossRef Lehmann TM, Gonner C, Spitzer K (2001) Addendum: B-spline interpolation in medical image processing. IEEE Trans Med Imaging 20(7):660–665CrossRef
26.
Zurück zum Zitat Chu LC, Park S, Kawamoto S et al (2019) Utility of CT radiomics features in differentiation of pancreatic ductal adenocarcinoma from normal pancreatic tissue. AJR Am J Roentgenol 213(2):349–357CrossRef Chu LC, Park S, Kawamoto S et al (2019) Utility of CT radiomics features in differentiation of pancreatic ductal adenocarcinoma from normal pancreatic tissue. AJR Am J Roentgenol 213(2):349–357CrossRef
27.
Zurück zum Zitat Limkin EJ, Sun R, Dercle L et al (2017) Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol 28(6):1191–1206CrossRef Limkin EJ, Sun R, Dercle L et al (2017) Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol 28(6):1191–1206CrossRef
28.
Zurück zum Zitat Lin G, Keshari KR, Park JM (2017) Cancer metabolism and tumor heterogeneity: imaging perspectives using MR imaging and spectroscopy. Contrast Media Mol Imaging 2017 Lin G, Keshari KR, Park JM (2017) Cancer metabolism and tumor heterogeneity: imaging perspectives using MR imaging and spectroscopy. Contrast Media Mol Imaging 2017
29.
Zurück zum Zitat Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 295(2):328–38CrossRef Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 295(2):328–38CrossRef
30.
Zurück zum Zitat Benson AB, Venook AP, Al-Hawary MM et al (2021) Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 19(3):329–59CrossRef Benson AB, Venook AP, Al-Hawary MM et al (2021) Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 19(3):329–59CrossRef
31.
Zurück zum Zitat Nioche C, Orlhac F, Boughdad S et al (2017) A freeware for tumor heterogeneity characterization in PET, SPECT, CT, MRI and US to accelerate advances in radiomics. J Nucl Med 58(supplement 1):1316 Nioche C, Orlhac F, Boughdad S et al (2017) A freeware for tumor heterogeneity characterization in PET, SPECT, CT, MRI and US to accelerate advances in radiomics. J Nucl Med 58(supplement 1):1316
32.
Zurück zum Zitat Kusunoki T, Matsuoka J, Ohtsu H, Kagimura T, Nakamura H (2009) Relationship between intraclass and concordance correlation coefficients: similarities and differences. Jpn J Biom 30(1):35–53CrossRef Kusunoki T, Matsuoka J, Ohtsu H, Kagimura T, Nakamura H (2009) Relationship between intraclass and concordance correlation coefficients: similarities and differences. Jpn J Biom 30(1):35–53CrossRef
33.
Zurück zum Zitat McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1(1):30–46CrossRef McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1(1):30–46CrossRef
34.
Zurück zum Zitat Altman DG (1990) Practical statistics for medical research: Taylor & Francis Altman DG (1990) Practical statistics for medical research: Taylor & Francis
Metadaten
Titel
Role of hepatic metastatic lesion size on inter-reader reproducibility of CT-based radiomics features
verfasst von
Linda C. Kelahan
Donald Kim
Moataz Soliman
Ryan J. Avery
Hatice Savas
Rishi Agrawal
Michael Magnetta
Benjamin P. Liu
Yuri S. Velichko
Publikationsdatum
26.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 6/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-08526-0

Neu im Fachgebiet Radiologie

Hölzerner Fremdkörper in der Orbita? Zuerst eine CT!

Besteht der Verdacht, dass ein Fremdkörper aus Holz in den Orbitalraum eingedrungen ist, spielt die Bildgebung eine entscheidende diagnostische Rolle. Was von CT und MRT zu erwarten ist, hat ein chinesisches Radiologenteam untersucht.

Diagnostik von Rippenfrakturen: KI schlägt Radiologen

Mensch gegen Maschine: Beim Erkennen von Rippenfrakturen in Röntgen- und CT-Aufnahmen entschied sich dieses Duell zugunsten der künstlichen Intelligenz (KI). Die Algorithmen zeigten eine höhere Sensitivität als ihre menschlichen Kollegen.

Ärztinnen überholen Ärzte bei Praxisgründungen

Bei Praxisgründungen haben inzwischen die Frauen deutlich die Nase vorn: Seit zehn Jahren wagen laut apoBank mehr Ärztinnen als Ärzte den Schritt in die Selbstständigkeit. In puncto Finanzierung sind sie aber vorsichtiger als die männlichen Kollegen.

Ambulante Behandlung darf länger dauern als stationäre

Ambulante Behandlungen haben Vorrang vor stationären - auch wenn diese läner dauern. Das hat das Bundessozialgericht klargestellt. Konkret ging es um Liposuktionen der Ober- und Unterschenkel.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.