Skip to main content
Erschienen in: Inflammation 2/2016

01.02.2016 | ORIGINAL ARTICLE

Role of Metallothionein in Post-Burn Inflammation

verfasst von: Wei Zhang, Yongjun Xie, Weihua Liu, Xuefeng Xu, Xuelian Chen, Hairong Liu, Yueming Liu

Erschienen in: Inflammation | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

Metallothioneins (MTs) are a family of low molecular-weight and cysteine-rich metalloproteins that regulate metal metabolism and protect cells from oxygen free radicals. Recent studies suggested that MTs have some anti-inflammatory effects. However, the role of MTs in post-burn inflammation remains unclear. This study is designed to investigate the role of MTs in post-burn inflammation in a mouse burn model. MT-I/II null (−/−) and C57BL/6 wild-type (WT) mice were randomly divided into sham burn, burn, Zn treated, and Zn-MT-2 treated groups. The inflammatory cytokines levels were measured by enzyme-linked immunosorbent assay (ELISA). Myeloperoxidase (MPO) activity was determined by spectrophotometry. In in vitro study, exogenous MT-2 was added to macrophages that were stimulated with burn serum in the presence or absence of a p38 MAPK inhibitor SB203580. The IL-6 and TNF-α messenger RNA (mRNA) expression were detected by quantitative real-time polymerase chain reaction. The levels of p38 expression were determined by Western blot. Burn induced increased inflammatory cytokines such as interleukin (IL)-1β, IL-6, tumor necrosis factors-α, and macrophage chemoattractant protein-1 production in burn wound and serum. The MPO activities in the lung and heart were also increased after burn. These effects were significantly more prominent in MT (−/−) mice than in WT mice. Furthermore, these effects were inhibited by administration of exogenous MT-2 to both WT and MT (−/−) mice. Exogenous MT-2 inhibited the p38 expression and abrogated the increase of IL-6 and TNF-α mRNA expression from macrophages that were stimulated with burn serum. The effect of MT-2 was not further strengthened in the presence of SB203580. MTs may have a protective role against post-burn inflammation and inflammatory organ damage, at least partly through inhibiting the p38 MAPK signaling.
Literatur
1.
Zurück zum Zitat Dahiya, P. 2009. Burns as a model of SIRS. Frontiers in bioscience 14: 4962–4967.CrossRef Dahiya, P. 2009. Burns as a model of SIRS. Frontiers in bioscience 14: 4962–4967.CrossRef
2.
Zurück zum Zitat Evers, L.H., D. Bhavsar, and P. Mailander. 2010. The biology of burn injury. Exp Dermatol 19: 777–783.CrossRefPubMed Evers, L.H., D. Bhavsar, and P. Mailander. 2010. The biology of burn injury. Exp Dermatol 19: 777–783.CrossRefPubMed
3.
Zurück zum Zitat Lynes, M.A., J. Hidalgo, Y. Manso, L. Devisscher, D. Laukens, and D.A. Lawrence. 2014. Metallothionein and stress combine to affect multiple organ systems. Cell Stress Chaperones 19: 605–611.CrossRefPubMedPubMedCentral Lynes, M.A., J. Hidalgo, Y. Manso, L. Devisscher, D. Laukens, and D.A. Lawrence. 2014. Metallothionein and stress combine to affect multiple organ systems. Cell Stress Chaperones 19: 605–611.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Inoue, K., H. Takano, A. Shimada, and M. Satoh. 2009. Metallothionein as an anti-inflammatory mediator. Mediators Inflamm 2009: 101659.PubMedPubMedCentral Inoue, K., H. Takano, A. Shimada, and M. Satoh. 2009. Metallothionein as an anti-inflammatory mediator. Mediators Inflamm 2009: 101659.PubMedPubMedCentral
5.
Zurück zum Zitat Quaife, C.J., S.D. Findley, J.C. Erickson, G.J. Froelick, E.J. Kelly, B.P. Zambrowicz, et al. 1994. Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 33: 7250–7259.CrossRefPubMed Quaife, C.J., S.D. Findley, J.C. Erickson, G.J. Froelick, E.J. Kelly, B.P. Zambrowicz, et al. 1994. Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 33: 7250–7259.CrossRefPubMed
6.
Zurück zum Zitat Palmiter, R.D. 1987. Molecular biology of metallothionein gene expression. Experientia Supplementum 52: 63–80.CrossRefPubMed Palmiter, R.D. 1987. Molecular biology of metallothionein gene expression. Experientia Supplementum 52: 63–80.CrossRefPubMed
7.
Zurück zum Zitat Masters, B.A., C.J. Quaife, J.C. Erickson, E.J. Kelly, G.J. Froelick, B.P. Zambrowicz, et al. 1994. Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles. The Journal of neuroscience : the official journal of the Society for Neuroscience 14: 5844–5857. Masters, B.A., C.J. Quaife, J.C. Erickson, E.J. Kelly, G.J. Froelick, B.P. Zambrowicz, et al. 1994. Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles. The Journal of neuroscience : the official journal of the Society for Neuroscience 14: 5844–5857.
8.
Zurück zum Zitat Moffatt, P., and C. Seguin. 1998. Expression of the gene encoding metallothionein-3 in organs of the reproductive system. DNA and cell biology 17: 501–510.CrossRefPubMed Moffatt, P., and C. Seguin. 1998. Expression of the gene encoding metallothionein-3 in organs of the reproductive system. DNA and cell biology 17: 501–510.CrossRefPubMed
9.
Zurück zum Zitat West, A.K., R. Stallings, C.E. Hildebrand, R. Chiu, M. Karin, and R.I. Richards. 1990. Human metallothionein genes: structure of the functional locus at 16q13. Genomics 8: 513–518.CrossRefPubMed West, A.K., R. Stallings, C.E. Hildebrand, R. Chiu, M. Karin, and R.I. Richards. 1990. Human metallothionein genes: structure of the functional locus at 16q13. Genomics 8: 513–518.CrossRefPubMed
10.
Zurück zum Zitat Raudenska, M., J. Gumulec, O. Podlaha, M. Sztalmachova, P. Babula, T. Eckschlager, et al. 2014. Metallothionein polymorphisms in pathological processes. Metallomics 6: 55–68.CrossRefPubMed Raudenska, M., J. Gumulec, O. Podlaha, M. Sztalmachova, P. Babula, T. Eckschlager, et al. 2014. Metallothionein polymorphisms in pathological processes. Metallomics 6: 55–68.CrossRefPubMed
11.
Zurück zum Zitat Inoue, K., H. Takano, A. Shimada, E. Wada, R. Yanagisawa, M. Sakurai, et al. 2006. Role of metallothionein in coagulatory disturbance and systemic inflammation induced by lipopolysaccharide in mice. FASEB J 20: 533–535.PubMed Inoue, K., H. Takano, A. Shimada, E. Wada, R. Yanagisawa, M. Sakurai, et al. 2006. Role of metallothionein in coagulatory disturbance and systemic inflammation induced by lipopolysaccharide in mice. FASEB J 20: 533–535.PubMed
12.
Zurück zum Zitat Inoue, K., H. Takano, R. Yanagisawa, M. Sakurai, T. Ichinose, K. Sadakane, et al. 2005. Role of metallothionein in antigen-related airway inflammation. Experimental biology and medicine 230: 75–81.PubMed Inoue, K., H. Takano, R. Yanagisawa, M. Sakurai, T. Ichinose, K. Sadakane, et al. 2005. Role of metallothionein in antigen-related airway inflammation. Experimental biology and medicine 230: 75–81.PubMed
13.
Zurück zum Zitat Manso, Y., P.A. Adlard, J. Carrasco, M. Vasak, and J. Hidalgo. 2011. Metallothionein and brain inflammation. J Biol Inorg Chem 16: 1103–1113.CrossRefPubMed Manso, Y., P.A. Adlard, J. Carrasco, M. Vasak, and J. Hidalgo. 2011. Metallothionein and brain inflammation. J Biol Inorg Chem 16: 1103–1113.CrossRefPubMed
14.
Zurück zum Zitat Ceylan-Isik, A.F., P. Zhao, B. Zhang, X. Xiao, G. Su, and J. Ren. 2010. Cardiac overexpression of metallothionein rescues cardiac contractile dysfunction and endoplasmic reticulum stress but not autophagy in sepsis. Journal of molecular and cellular cardiology 48: 367–378.CrossRefPubMedPubMedCentral Ceylan-Isik, A.F., P. Zhao, B. Zhang, X. Xiao, G. Su, and J. Ren. 2010. Cardiac overexpression of metallothionein rescues cardiac contractile dysfunction and endoplasmic reticulum stress but not autophagy in sepsis. Journal of molecular and cellular cardiology 48: 367–378.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Tsuji, T., Y. Naito, T. Takagi, M. Kugai, H. Yoriki, R. Horie, et al. 2013. Role of metallothionein in murine experimental colitis. Int J Mol Med 31: 1037–1046.PubMed Tsuji, T., Y. Naito, T. Takagi, M. Kugai, H. Yoriki, R. Horie, et al. 2013. Role of metallothionein in murine experimental colitis. Int J Mol Med 31: 1037–1046.PubMed
16.
Zurück zum Zitat Shen, C.A., S. Fagan, A.J. Fischman, E.E. Carter, J.K. Chai, X.M. Lu, et al. 2011. Effects of glucagon-like peptide 1 on glycemia control and its metabolic consequence after severe thermal injury—studies in an animal model. Surgery 149: 635–644.CrossRefPubMedPubMedCentral Shen, C.A., S. Fagan, A.J. Fischman, E.E. Carter, J.K. Chai, X.M. Lu, et al. 2011. Effects of glucagon-like peptide 1 on glycemia control and its metabolic consequence after severe thermal injury—studies in an animal model. Surgery 149: 635–644.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Itoh, N., T. Kimura, H. Nakanishi, N. Muto, M. Kobayashi, I. Kitagawa, et al. 1997. Metallothionein-independent hepatoprotection by zinc and sakuraso-saponin. Toxicol Lett 93: 135–140.CrossRefPubMed Itoh, N., T. Kimura, H. Nakanishi, N. Muto, M. Kobayashi, I. Kitagawa, et al. 1997. Metallothionein-independent hepatoprotection by zinc and sakuraso-saponin. Toxicol Lett 93: 135–140.CrossRefPubMed
18.
Zurück zum Zitat Xiao, M., L. Li, C. Li, P. Zhang, Q. Hu, L. Ma, et al. 2014. Role of autophagy and apoptosis in wound tissue of deep second-degree burn in rats. Acad Emerg Med 21: 383–391.CrossRefPubMedPubMedCentral Xiao, M., L. Li, C. Li, P. Zhang, Q. Hu, L. Ma, et al. 2014. Role of autophagy and apoptosis in wound tissue of deep second-degree burn in rats. Acad Emerg Med 21: 383–391.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Schmittgen, T.D., and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3: 1101–1108.CrossRefPubMed Schmittgen, T.D., and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3: 1101–1108.CrossRefPubMed
20.
Zurück zum Zitat Lord, J.M., M.J. Midwinter, Y.F. Chen, A. Belli, K. Brohi, E.J. Kovacs, et al. 2014. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet 384: 1455–1465.CrossRefPubMedPubMedCentral Lord, J.M., M.J. Midwinter, Y.F. Chen, A. Belli, K. Brohi, E.J. Kovacs, et al. 2014. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet 384: 1455–1465.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Raymond, A.D., B. Gekonge, M.S. Giri, A. Hancock, E. Papasavvas, J. Chehimi, et al. 2010. Increased metallothionein gene expression, zinc, and zinc-dependent resistance to apoptosis in circulating monocytes during HIV viremia. J Leukoc Biol 88: 589–596.CrossRefPubMedPubMedCentral Raymond, A.D., B. Gekonge, M.S. Giri, A. Hancock, E. Papasavvas, J. Chehimi, et al. 2010. Increased metallothionein gene expression, zinc, and zinc-dependent resistance to apoptosis in circulating monocytes during HIV viremia. J Leukoc Biol 88: 589–596.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Coyle, P., J.C. Philcox, L.C. Carey, and A.M. Rofe. 2002. Metallothionein: the multipurpose protein. Cell Mol Life Sci 59: 627–647.CrossRefPubMed Coyle, P., J.C. Philcox, L.C. Carey, and A.M. Rofe. 2002. Metallothionein: the multipurpose protein. Cell Mol Life Sci 59: 627–647.CrossRefPubMed
23.
Zurück zum Zitat Manso, Y., J. Carrasco, G. Comes, P.A. Adlard, A.I. Bush, and J. Hidalgo. 2012. Characterization of the role of the antioxidant proteins metallothioneins 1 and 2 in an animal model of Alzheimer’s disease. Cellular and molecular life sciences : CMLS 69: 3665–3681.CrossRefPubMed Manso, Y., J. Carrasco, G. Comes, P.A. Adlard, A.I. Bush, and J. Hidalgo. 2012. Characterization of the role of the antioxidant proteins metallothioneins 1 and 2 in an animal model of Alzheimer’s disease. Cellular and molecular life sciences : CMLS 69: 3665–3681.CrossRefPubMed
24.
Zurück zum Zitat Devisscher, L., P. Hindryckx, K. Olievier, H. Peeters, M. De Vos, and D. Laukens. 2011. Inverse correlation between metallothioneins and hypoxia-inducible factor 1 alpha in colonocytes and experimental colitis. Biochemical and biophysical research communications 416: 307–312.CrossRefPubMed Devisscher, L., P. Hindryckx, K. Olievier, H. Peeters, M. De Vos, and D. Laukens. 2011. Inverse correlation between metallothioneins and hypoxia-inducible factor 1 alpha in colonocytes and experimental colitis. Biochemical and biophysical research communications 416: 307–312.CrossRefPubMed
25.
Zurück zum Zitat Zhou, Z.B., H.Q. Ding, F.J. Qin, L. Liu, and S. Cheng. 2003. Effect of Zn7-metallothionein on oxidative stress in liver of rats with severe thermal injury. Acta Pharmacol Sin 24: 764–770.PubMed Zhou, Z.B., H.Q. Ding, F.J. Qin, L. Liu, and S. Cheng. 2003. Effect of Zn7-metallothionein on oxidative stress in liver of rats with severe thermal injury. Acta Pharmacol Sin 24: 764–770.PubMed
26.
Zurück zum Zitat Ding, H.Q., B.J. Zhou, L. Liu, and S. Cheng. 2002. Oxidative stress and metallothionein expression in the liver of rats with severe thermal injury. Burns 28: 215–221.CrossRefPubMed Ding, H.Q., B.J. Zhou, L. Liu, and S. Cheng. 2002. Oxidative stress and metallothionein expression in the liver of rats with severe thermal injury. Burns 28: 215–221.CrossRefPubMed
27.
Zurück zum Zitat Asmussen, J.W., M.L. Von Sperling, and M. Penkowa. 2009. Intraneuronal signaling pathways of metallothionein. Journal of neuroscience research 87: 2926–2936.CrossRefPubMed Asmussen, J.W., M.L. Von Sperling, and M. Penkowa. 2009. Intraneuronal signaling pathways of metallothionein. Journal of neuroscience research 87: 2926–2936.CrossRefPubMed
Metadaten
Titel
Role of Metallothionein in Post-Burn Inflammation
verfasst von
Wei Zhang
Yongjun Xie
Weihua Liu
Xuefeng Xu
Xuelian Chen
Hairong Liu
Yueming Liu
Publikationsdatum
01.02.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0305-7

Weitere Artikel der Ausgabe 2/2016

Inflammation 2/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.