Skip to main content
Erschienen in: Tumor Biology 12/2016

24.10.2015 | Original Article

Role of miR-138 in the regulation of larynx carcinoma cell metastases

verfasst von: Shang Gao, Jie Wang, Jin Xie, Tianzhen Zhang, Pin Dong

Erschienen in: Tumor Biology | Ausgabe 12/2016

Einloggen, um Zugang zu erhalten

Abstract

The cases of larynx carcinoma (LC) with poor prognosis largely result from the distal metastases of the primary tumor. Since microRNAs (miRNAs) play critical roles during cancer metastases, determination of the involved miRNAs in the regulation of the LC metastases may provide novel therapeutic targets for LC treatment. Here, we studied the LC specimens from the patients and found that the levels of miR-138 were significantly decreased and the levels of ZEB2, a critical factor that regulates cancer cell invasiveness, were significantly increased in LC, compared to the paired normal larynx tissue. Metastatic LC appeared to contained lower levels of miR-138. Moreover, miR-138 and ZEB2 inversely correlated in LC specimens. Bioinformatics analyses showed that miR-138 targeted the 3′-untranslated region (3′-UTR) of ZEB2 mRNA to inhibit its translation, which was confirmed in a luciferase reporter assay. Further, miR-138 overexpression inhibited ZEB2-mediated cell invasiveness, while miR-138 depletion increased ZEB2-mediated cell invasiveness in LC cells. Together, our data suggest that miR-138 suppression in LC cells may promote ZEB2-mediated cancer metastases. Thus, miR-138 appears to be an intriguing therapeutic target to prevent metastases of LC.
Literatur
1.
Zurück zum Zitat Mojica-Manosa P, Reidy J, Wilson K, Douglas W. Larynx squamous cell carcinoma: concepts and future directions. Surg Oncol Clin N Am. 2004;13:99–112.CrossRefPubMed Mojica-Manosa P, Reidy J, Wilson K, Douglas W. Larynx squamous cell carcinoma: concepts and future directions. Surg Oncol Clin N Am. 2004;13:99–112.CrossRefPubMed
2.
Zurück zum Zitat Hu Q, Tong S, Zhao X, Ding W, Gou Y, Xu K, et al. Periostin mediates TGF-beta-induced epithelial mesenchymal transition in prostate cancer cells. Cell Physiol Biochem. 2015;36:799–809.CrossRefPubMed Hu Q, Tong S, Zhao X, Ding W, Gou Y, Xu K, et al. Periostin mediates TGF-beta-induced epithelial mesenchymal transition in prostate cancer cells. Cell Physiol Biochem. 2015;36:799–809.CrossRefPubMed
3.
Zurück zum Zitat Sa Y, Li C, Li H, Guo H. TIMP-1 induces alpha-smooth muscle actin in fibroblasts to promote urethral scar formation. Cell Physiol Biochem. 2015;35:2233–43.CrossRefPubMed Sa Y, Li C, Li H, Guo H. TIMP-1 induces alpha-smooth muscle actin in fibroblasts to promote urethral scar formation. Cell Physiol Biochem. 2015;35:2233–43.CrossRefPubMed
4.
Zurück zum Zitat Lan A, Qi Y, Du J. Akt2 mediates TGF-beta1-induced epithelial to mesenchymal transition by deactivating GSK3beta/snail signaling pathway in renal tubular epithelial cells. Cell Physiol Biochem. 2014;34:368–82.CrossRefPubMed Lan A, Qi Y, Du J. Akt2 mediates TGF-beta1-induced epithelial to mesenchymal transition by deactivating GSK3beta/snail signaling pathway in renal tubular epithelial cells. Cell Physiol Biochem. 2014;34:368–82.CrossRefPubMed
5.
Zurück zum Zitat Teng Y, Zhao L, Zhang Y, Chen W, Li X. Id-1, a protein repressed by miR-29b, facilitates the TGFbeta1-induced epithelial-mesenchymal transition in human ovarian cancer cells. Cell Physiol Biochem. 2014;33:717–30.CrossRefPubMed Teng Y, Zhao L, Zhang Y, Chen W, Li X. Id-1, a protein repressed by miR-29b, facilitates the TGFbeta1-induced epithelial-mesenchymal transition in human ovarian cancer cells. Cell Physiol Biochem. 2014;33:717–30.CrossRefPubMed
6.
Zurück zum Zitat Guo Y, Lang X, Lu Z, Wang J, Li T, Liao Y, et al. MiR-10b directly targets ZEB1 and PIK3CA to curb adenomyotic epithelial cell invasiveness via upregulation of E-cadherin and inhibition of Akt phosphorylation. Cell Physiol Biochem. 2015;35:2169–80.CrossRefPubMed Guo Y, Lang X, Lu Z, Wang J, Li T, Liao Y, et al. MiR-10b directly targets ZEB1 and PIK3CA to curb adenomyotic epithelial cell invasiveness via upregulation of E-cadherin and inhibition of Akt phosphorylation. Cell Physiol Biochem. 2015;35:2169–80.CrossRefPubMed
7.
Zurück zum Zitat Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 2009;28:151–66.CrossRefPubMed Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 2009;28:151–66.CrossRefPubMed
9.
Zurück zum Zitat Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18:282–9.CrossRefPubMed Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18:282–9.CrossRefPubMed
10.
Zurück zum Zitat Mei Q, Li F, Quan H, Liu Y, Xu H. Busulfan inhibits growth of human osteosarcoma through miR-200 family microRNAs in vitro and in vivo. Cancer Sci. 2014;105:755–62.CrossRefPubMedPubMedCentral Mei Q, Li F, Quan H, Liu Y, Xu H. Busulfan inhibits growth of human osteosarcoma through miR-200 family microRNAs in vitro and in vivo. Cancer Sci. 2014;105:755–62.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Wang F, Xiao W, Sun J, Han D, Zhu Y. MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMed Wang F, Xiao W, Sun J, Han D, Zhu Y. MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMed
12.
Zurück zum Zitat Liu G, Jiang C, Li D, Wang R, Wang W. MiRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer. Tumour Biol. 2014;35:9801–6.CrossRefPubMed Liu G, Jiang C, Li D, Wang R, Wang W. MiRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer. Tumour Biol. 2014;35:9801–6.CrossRefPubMed
13.
Zurück zum Zitat Mitomo S, Maesawa C, Ogasawara S, Iwaya T, Shibazaki M, Yashima-Abo A, et al. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci. 2008;99:280–6.CrossRefPubMed Mitomo S, Maesawa C, Ogasawara S, Iwaya T, Shibazaki M, Yashima-Abo A, et al. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci. 2008;99:280–6.CrossRefPubMed
14.
Zurück zum Zitat Zhao X, Yang L, Hu J, Ruan J. MiR-138 might reverse multidrug resistance of leukemia cells. Leuk Res. 2010;34:1078–82.CrossRefPubMed Zhao X, Yang L, Hu J, Ruan J. MiR-138 might reverse multidrug resistance of leukemia cells. Leuk Res. 2010;34:1078–82.CrossRefPubMed
15.
Zurück zum Zitat Liu X, Lv XB, Wang XP, Sang Y, Xu S, Hu K, et al. MiR-138 suppressed nasopharyngeal carcinoma growth and tumorigenesis by targeting the CCND1 oncogene. Cell Cycle. 2012;11:2495–506.CrossRefPubMed Liu X, Lv XB, Wang XP, Sang Y, Xu S, Hu K, et al. MiR-138 suppressed nasopharyngeal carcinoma growth and tumorigenesis by targeting the CCND1 oncogene. Cell Cycle. 2012;11:2495–506.CrossRefPubMed
16.
Zurück zum Zitat Wang W, Zhao LJ, Tan YX, Ren H, Qi ZT. MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis. 2012;33:1113–20.CrossRefPubMedPubMedCentral Wang W, Zhao LJ, Tan YX, Ren H, Qi ZT. MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis. 2012;33:1113–20.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Zhou X, Qi Y. PLGF inhibition impairs metastasis of larynx carcinoma through MMP3 downregulation. Tumour Biol. 2014;35:9381–6.CrossRefPubMed Zhou X, Qi Y. PLGF inhibition impairs metastasis of larynx carcinoma through MMP3 downregulation. Tumour Biol. 2014;35:9381–6.CrossRefPubMed
19.
Zurück zum Zitat Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2:329–33.CrossRefPubMed Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2:329–33.CrossRefPubMed
20.
Zurück zum Zitat Xu C, Fu H, Gao L, Wang L, Wang W, Li J, et al. BCR-ABl/GATA1/miR-138 mini circuitry contributes to the leukemogenesis of chronic myeloid leukemia. Oncogene. 2014;33:44–54.CrossRefPubMed Xu C, Fu H, Gao L, Wang L, Wang W, Li J, et al. BCR-ABl/GATA1/miR-138 mini circuitry contributes to the leukemogenesis of chronic myeloid leukemia. Oncogene. 2014;33:44–54.CrossRefPubMed
21.
Zurück zum Zitat Long L, Huang G, Zhu H, Guo Y, Liu Y, Huo J. Down-regulation of miR-138 promotes colorectal cancer metastasis via directly targeting TWIST2. J Transl Med. 2013;11:275.CrossRefPubMedPubMedCentral Long L, Huang G, Zhu H, Guo Y, Liu Y, Huo J. Down-regulation of miR-138 promotes colorectal cancer metastasis via directly targeting TWIST2. J Transl Med. 2013;11:275.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Zhang H, Zhang H, Zhao M, Lv Z, Zhang X, Qin X, et al. MiR-138 inhibits tumor growth through repression of EZH2 in non-small cell lung cancer. Cell Physiol Biochem. 2013;31:56–65.CrossRefPubMed Zhang H, Zhang H, Zhao M, Lv Z, Zhang X, Qin X, et al. MiR-138 inhibits tumor growth through repression of EZH2 in non-small cell lung cancer. Cell Physiol Biochem. 2013;31:56–65.CrossRefPubMed
23.
Zurück zum Zitat Gao Y, Fan X, Li W, Ping W, Deng Y, Fu X. MiR-138-5p reverses gefitinib resistance in non-small cell lung cancer cells via negatively regulating G protein-coupled receptor 124. Biochem Biophys Res Commun. 2014;446:179–86.CrossRefPubMed Gao Y, Fan X, Li W, Ping W, Deng Y, Fu X. MiR-138-5p reverses gefitinib resistance in non-small cell lung cancer cells via negatively regulating G protein-coupled receptor 124. Biochem Biophys Res Commun. 2014;446:179–86.CrossRefPubMed
Metadaten
Titel
Role of miR-138 in the regulation of larynx carcinoma cell metastases
verfasst von
Shang Gao
Jie Wang
Jin Xie
Tianzhen Zhang
Pin Dong
Publikationsdatum
24.10.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 12/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4244-y

Weitere Artikel der Ausgabe 12/2016

Tumor Biology 12/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.