Skip to main content
Erschienen in: Journal of Inherited Metabolic Disease 4/2017

22.02.2017 | SSIEM 2016

Role of miRNAs in human disease and inborn errors of metabolism

verfasst von: Ana Rivera-Barahona, Belén Pérez, Eva Richard, Lourdes R. Desviat

Erschienen in: Journal of Inherited Metabolic Disease | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

MicroRNAs (miRNAs) are short, noncoding RNAs that regulate gene expression posttranscriptionally by base pairing with target messenger RNAs (mRNAs). They are estimated to target ∼60% of all human protein-coding genes and are involved in regulating key physiological processes and intracellular signaling pathways. They also exhibit tissue specificity, and their dysregulation is linked to the progression of pathology. Identifying disease associated miRNAs and their respective targets provides novel molecular insight into disease, enabling the design of new therapeutic strategies. Notably, miRNAs are present in stable form in biological fluids, making them amenable to routine clinical processing and analysis, which has paved the way for their use as novel biomarkers of disease and response to therapy. One of the most relevant findings in miRNA research concerns the therapeutic modulation of specific miRNA levels in vitro and in vivo, which has led to miRNA-based drugs entering clinical trials. Most studies relative to miRNA profiling, association with pathology, and therapeutical modulation have been conducted for cancer, cardiovascular and neurodegenerative diseases. However, for different monogenic diseases, including inborn errors of metabolism (IEM), research contributing to alterations to physiopathology caused by miRNAs is steadily increasing. Herein, we review the biogenesis pathway and mode of miRNA action, their known roles in disease states, and use of circulating miRNAs as biomarkers, describing the available research tools for basic and clinical studies. In addition, we summarize recent literature on miRNA studies in inherited metabolic diseases.
Literatur
Zurück zum Zitat Absalon S, Kochanek DM, Raghavan V, Krichevsky AM (2013) MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci 33:14645–14659CrossRefPubMedPubMedCentral Absalon S, Kochanek DM, Raghavan V, Krichevsky AM (2013) MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci 33:14645–14659CrossRefPubMedPubMedCentral
Zurück zum Zitat Backes C, Kehl T, Stockel D et al (2017) miRPathDB: a new dictionary on microRNAs and target pathways. Nucleic Acids Res 45:D90–D96CrossRefPubMed Backes C, Kehl T, Stockel D et al (2017) miRPathDB: a new dictionary on microRNAs and target pathways. Nucleic Acids Res 45:D90–D96CrossRefPubMed
Zurück zum Zitat Bazett M, Paun A, Haston CK (2011) MicroRNA profiling of cystic fibrosis intestinal disease in mice. Mol Genet Metab 103:38–43CrossRefPubMed Bazett M, Paun A, Haston CK (2011) MicroRNA profiling of cystic fibrosis intestinal disease in mice. Mol Genet Metab 103:38–43CrossRefPubMed
Zurück zum Zitat Callis TE, Pandya K, Seok HY et al (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786CrossRefPubMedPubMedCentral Callis TE, Pandya K, Seok HY et al (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786CrossRefPubMedPubMedCentral
Zurück zum Zitat Chen X, Liang H, Zhang J, Zen K, Zhang CY (2012) Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 22:125–132CrossRefPubMed Chen X, Liang H, Zhang J, Zen K, Zhang CY (2012) Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 22:125–132CrossRefPubMed
Zurück zum Zitat Cheng PH, Li CL, Chang YF et al (2013) miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am J Hum Genet 93:306–312CrossRefPubMedPubMedCentral Cheng PH, Li CL, Chang YF et al (2013) miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am J Hum Genet 93:306–312CrossRefPubMedPubMedCentral
Zurück zum Zitat Chiu LY, Kishnani PS, Chuang TP et al (2014) Identification of differentially expressed microRNAs in human hepatocellular adenoma associated with type I glycogen storage disease: a potential utility as biomarkers. J Gastroenterol 49:1274–1284CrossRefPubMed Chiu LY, Kishnani PS, Chuang TP et al (2014) Identification of differentially expressed microRNAs in human hepatocellular adenoma associated with type I glycogen storage disease: a potential utility as biomarkers. J Gastroenterol 49:1274–1284CrossRefPubMed
Zurück zum Zitat Chou CH, Chang NW, Shrestha S et al (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44:D239–D247CrossRefPubMed Chou CH, Chang NW, Shrestha S et al (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44:D239–D247CrossRefPubMed
Zurück zum Zitat Christopher AF, Kaur RP, Kaur G, Kaur A, Gupta V, Bansal P (2016) MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect Clin Res 7:68–74CrossRefPubMedPubMedCentral Christopher AF, Kaur RP, Kaur G, Kaur A, Gupta V, Bansal P (2016) MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect Clin Res 7:68–74CrossRefPubMedPubMedCentral
Zurück zum Zitat Cole KA, Attiyeh EF, Mosse YP et al (2008) A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6:735–742CrossRefPubMedPubMedCentral Cole KA, Attiyeh EF, Mosse YP et al (2008) A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6:735–742CrossRefPubMedPubMedCentral
Zurück zum Zitat Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74CrossRef Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74CrossRef
Zurück zum Zitat Dasgupta N, Xu YH, Li R et al (2015) Neuronopathic Gaucher disease: dysregulated mRNAs and miRNAs in brain pathogenesis and effects of pharmacologic chaperone treatment in a mouse model. Hum Mol Genet 24:7031–7048PubMedPubMedCentral Dasgupta N, Xu YH, Li R et al (2015) Neuronopathic Gaucher disease: dysregulated mRNAs and miRNAs in brain pathogenesis and effects of pharmacologic chaperone treatment in a mouse model. Hum Mol Genet 24:7031–7048PubMedPubMedCentral
Zurück zum Zitat De Guire V, Robitaille R, Tetreault N et al (2013) Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges. Clin Biochem 46:846–860CrossRefPubMed De Guire V, Robitaille R, Tetreault N et al (2013) Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges. Clin Biochem 46:846–860CrossRefPubMed
Zurück zum Zitat Dweep H, Gretz N (2015) miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 12:697CrossRefPubMed Dweep H, Gretz N (2015) miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 12:697CrossRefPubMed
Zurück zum Zitat Fabbri M, Paone A, Calore F et al (2012) MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 109:E2110–E2116CrossRefPubMedPubMedCentral Fabbri M, Paone A, Calore F et al (2012) MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 109:E2110–E2116CrossRefPubMedPubMedCentral
Zurück zum Zitat Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J (2016) miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res 44:W135–W141CrossRefPubMedPubMedCentral Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J (2016) miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res 44:W135–W141CrossRefPubMedPubMedCentral
Zurück zum Zitat Frankel LB, Di Malta C, Wen J, Eskelinen EL, Ballabio A, Lund AH (2014) A nonconserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder. Nat Commun 5:5840CrossRefPubMed Frankel LB, Di Malta C, Wen J, Eskelinen EL, Ballabio A, Lund AH (2014) A nonconserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder. Nat Commun 5:5840CrossRefPubMed
Zurück zum Zitat Gosline SJ, Gurtan AM, JnBaptiste CK et al (2016) Elucidating MicroRNA regulatory networks using transcriptional, posttranscriptional, and histone modification measurements. Cell Rep 14:310–319CrossRefPubMed Gosline SJ, Gurtan AM, JnBaptiste CK et al (2016) Elucidating MicroRNA regulatory networks using transcriptional, posttranscriptional, and histone modification measurements. Cell Rep 14:310–319CrossRefPubMed
Zurück zum Zitat Guibinga GH, Murray F, Barron N, Pandori W, Hrustanovic G (2013) Deficiency of the purine metabolic gene HPRT dysregulates microRNA-17 family cluster and guanine-based cellular functions: a role for EPAC in Lesch-Nyhan syndrome. Hum Mol Genet 22:4502–4515CrossRefPubMedPubMedCentral Guibinga GH, Murray F, Barron N, Pandori W, Hrustanovic G (2013) Deficiency of the purine metabolic gene HPRT dysregulates microRNA-17 family cluster and guanine-based cellular functions: a role for EPAC in Lesch-Nyhan syndrome. Hum Mol Genet 22:4502–4515CrossRefPubMedPubMedCentral
Zurück zum Zitat Hernandez-Rapp J, Rainone S, Goupil C (2016) microRNA-132/212 deficiency enhances Abeta production and senile plaque deposition in Alzheimer’s disease triple transgenic mice. Sci Rep 6:30953CrossRefPubMedPubMedCentral Hernandez-Rapp J, Rainone S, Goupil C (2016) microRNA-132/212 deficiency enhances Abeta production and senile plaque deposition in Alzheimer’s disease triple transgenic mice. Sci Rep 6:30953CrossRefPubMedPubMedCentral
Zurück zum Zitat Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070CrossRefPubMed Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070CrossRefPubMed
Zurück zum Zitat Jiang Q, Wang Y, Hao Y et al (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–D104CrossRefPubMed Jiang Q, Wang Y, Hao Y et al (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–D104CrossRefPubMed
Zurück zum Zitat Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16:421–433CrossRefPubMed Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16:421–433CrossRefPubMed
Zurück zum Zitat Karatas OF, Guzel E, Karaca E et al (2013) MicroRNA profiling in lymphocytes and serum of tyrosinemia type-I patients. Mol Biol Rep 40:4619–4623CrossRefPubMed Karatas OF, Guzel E, Karaca E et al (2013) MicroRNA profiling in lymphocytes and serum of tyrosinemia type-I patients. Mol Biol Rep 40:4619–4623CrossRefPubMed
Zurück zum Zitat Keller A, Meese E (2016) Can circulating miRNAs live up to the promise of being minimal invasive biomarkers in clinical settings? Wiley Interdiscip Rev RNA 7:148–156CrossRefPubMed Keller A, Meese E (2016) Can circulating miRNAs live up to the promise of being minimal invasive biomarkers in clinical settings? Wiley Interdiscip Rev RNA 7:148–156CrossRefPubMed
Zurück zum Zitat Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216CrossRefPubMed Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216CrossRefPubMed
Zurück zum Zitat Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157CrossRefPubMed Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157CrossRefPubMed
Zurück zum Zitat Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500CrossRefPubMed Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500CrossRefPubMed
Zurück zum Zitat Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefPubMed Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefPubMed
Zurück zum Zitat Lehmann SM, Kruger C, Park B et al (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15:827–835CrossRefPubMed Lehmann SM, Kruger C, Park B et al (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15:827–835CrossRefPubMed
Zurück zum Zitat Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMed Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMed
Zurück zum Zitat Li Y, Peng T, Li L et al (2014a) MicroRNA-9 regulates neural apoptosis in methylmalonic acidemia via targeting BCL2L11. Int J Dev Neurosci 36:19–24CrossRefPubMed Li Y, Peng T, Li L et al (2014a) MicroRNA-9 regulates neural apoptosis in methylmalonic acidemia via targeting BCL2L11. Int J Dev Neurosci 36:19–24CrossRefPubMed
Zurück zum Zitat Li Y, Peng T, Wang X et al (2014b) A primary study on down-regulated miR-9-1 and its biological significances in methylmalonic acidemia. J Mol Neurosci 53:280–286CrossRefPubMed Li Y, Peng T, Wang X et al (2014b) A primary study on down-regulated miR-9-1 and its biological significances in methylmalonic acidemia. J Mol Neurosci 53:280–286CrossRefPubMed
Zurück zum Zitat Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838CrossRefPubMed Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838CrossRefPubMed
Zurück zum Zitat Lynn FC (2009) Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol Metab 20:452–459CrossRefPubMed Lynn FC (2009) Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol Metab 20:452–459CrossRefPubMed
Zurück zum Zitat Martino F, Carlomosti F, Avitabile D et al (2015) Circulating miR-33a and miR-33b are up-regulated in familial hypercholesterolaemia in paediatric age. Clin Sci (Lond) 129:963–972CrossRef Martino F, Carlomosti F, Avitabile D et al (2015) Circulating miR-33a and miR-33b are up-regulated in familial hypercholesterolaemia in paediatric age. Clin Sci (Lond) 129:963–972CrossRef
Zurück zum Zitat Mersey BD, Jin P, Danner DJ (2005) Human microRNA (miR29b) expression controls the amount of branched chain alpha-ketoacid dehydrogenase complex in a cell. Hum Mol Genet 14:3371–3377CrossRefPubMed Mersey BD, Jin P, Danner DJ (2005) Human microRNA (miR29b) expression controls the amount of branched chain alpha-ketoacid dehydrogenase complex in a cell. Hum Mol Genet 14:3371–3377CrossRefPubMed
Zurück zum Zitat Meseguer S, Martinez-Zamora A, Garcia-Arumi E, Andreu AL, Armengod ME (2015) The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome. Hum Mol Genet 24:167–184CrossRefPubMed Meseguer S, Martinez-Zamora A, Garcia-Arumi E, Andreu AL, Armengod ME (2015) The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome. Hum Mol Genet 24:167–184CrossRefPubMed
Zurück zum Zitat Minones-Moyano E, Porta S, Escaramis G et al (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20:3067–3078CrossRefPubMed Minones-Moyano E, Porta S, Escaramis G et al (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20:3067–3078CrossRefPubMed
Zurück zum Zitat Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217CrossRefPubMed Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217CrossRefPubMed
Zurück zum Zitat Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518CrossRefPubMedPubMedCentral Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518CrossRefPubMedPubMedCentral
Zurück zum Zitat Ozsait B, Komurcu-Bayrak E, Levula M et al (2010) Niemann-pick type C fibroblasts have a distinct microRNA profile related to lipid metabolism and certain cellular components. Biochem Biophys Res Commun 403:316–321CrossRefPubMed Ozsait B, Komurcu-Bayrak E, Levula M et al (2010) Niemann-pick type C fibroblasts have a distinct microRNA profile related to lipid metabolism and certain cellular components. Biochem Biophys Res Commun 403:316–321CrossRefPubMed
Zurück zum Zitat Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG (2012) Functional microRNA targets in protein coding sequences. Bioinformatics 28:771–776CrossRefPubMed Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG (2012) Functional microRNA targets in protein coding sequences. Bioinformatics 28:771–776CrossRefPubMed
Zurück zum Zitat Sales G, Coppe A, Bisognin A, Biasiolo M, Bortoluzzi S, Romualdi C (2010) MAGIA, a web-based tool for miRNA and genes integrated analysis. Nucleic Acids Res 38:W352–W359CrossRefPubMedPubMedCentral Sales G, Coppe A, Bisognin A, Biasiolo M, Bortoluzzi S, Romualdi C (2010) MAGIA, a web-based tool for miRNA and genes integrated analysis. Nucleic Acids Res 38:W352–W359CrossRefPubMedPubMedCentral
Zurück zum Zitat Sibley CR, Seow Y, Saayman S et al (2012) The biogenesis and characterization of mammalian microRNAs of mirtron origin. Nucleic Acids Res 40:438–448CrossRefPubMed Sibley CR, Seow Y, Saayman S et al (2012) The biogenesis and characterization of mammalian microRNAs of mirtron origin. Nucleic Acids Res 40:438–448CrossRefPubMed
Zurück zum Zitat Siebert M, Westbroek W, Chen YC et al (2014) Identification of miRNAs that modulate glucocerebrosidase activity in Gaucher disease cells. RNA Biol 11:1291–1300CrossRefPubMed Siebert M, Westbroek W, Chen YC et al (2014) Identification of miRNAs that modulate glucocerebrosidase activity in Gaucher disease cells. RNA Biol 11:1291–1300CrossRefPubMed
Zurück zum Zitat Trelinska J, Fendler W, Dachowska I et al (2016) Abnormal serum microRNA profiles in tuberous sclerosis are normalized during treatment with everolimus: possible clinical implications. Orphanet J Rare Dis 11:129CrossRefPubMedPubMedCentral Trelinska J, Fendler W, Dachowska I et al (2016) Abnormal serum microRNA profiles in tuberous sclerosis are normalized during treatment with everolimus: possible clinical implications. Orphanet J Rare Dis 11:129CrossRefPubMedPubMedCentral
Zurück zum Zitat Turchinovich A, Tonevitsky AG, Burwinkel B (2016) Extracellular miRNA: a collision of two paradigms. Trends Biochem Sci 41:883–892CrossRefPubMed Turchinovich A, Tonevitsky AG, Burwinkel B (2016) Extracellular miRNA: a collision of two paradigms. Trends Biochem Sci 41:883–892CrossRefPubMed
Zurück zum Zitat Vlachos IS, Zagganas K, Paraskevopoulou MD et al (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43:W460–W466CrossRefPubMedPubMedCentral Vlachos IS, Zagganas K, Paraskevopoulou MD et al (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43:W460–W466CrossRefPubMedPubMedCentral
Zurück zum Zitat Wang J, Chen J, Sen S (2016a) MicroRNA as biomarkers and diagnostics. J Cell Physiol 231:25–30CrossRefPubMed Wang J, Chen J, Sen S (2016a) MicroRNA as biomarkers and diagnostics. J Cell Physiol 231:25–30CrossRefPubMed
Zurück zum Zitat Wang J, Liew OW, Richards AM, Chen YT (2016b) Overview of MicroRNAs in cardiac hypertrophy, fibrosis, and apoptosis. Int J Mol Sci 17(5), E749CrossRefPubMed Wang J, Liew OW, Richards AM, Chen YT (2016b) Overview of MicroRNAs in cardiac hypertrophy, fibrosis, and apoptosis. Int J Mol Sci 17(5), E749CrossRefPubMed
Zurück zum Zitat Worm J, Stenvang J, Petri A et al (2009) Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF. Nucleic Acids Res 37:5784–5792CrossRefPubMedPubMedCentral Worm J, Stenvang J, Petri A et al (2009) Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF. Nucleic Acids Res 37:5784–5792CrossRefPubMedPubMedCentral
Zurück zum Zitat Zhang Y, Jia Y, Zheng R et al (2010) Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin Chem 56:1830–1838CrossRefPubMed Zhang Y, Jia Y, Zheng R et al (2010) Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin Chem 56:1830–1838CrossRefPubMed
Metadaten
Titel
Role of miRNAs in human disease and inborn errors of metabolism
verfasst von
Ana Rivera-Barahona
Belén Pérez
Eva Richard
Lourdes R. Desviat
Publikationsdatum
22.02.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Inherited Metabolic Disease / Ausgabe 4/2017
Print ISSN: 0141-8955
Elektronische ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-017-0018-6

Weitere Artikel der Ausgabe 4/2017

Journal of Inherited Metabolic Disease 4/2017 Zur Ausgabe

Highlights

News and views

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.