Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 5/2020

11.02.2020 | Original Article

Role of NLRP3-Inflammasome/Caspase-1/Galectin-3 Pathway on Atrial Remodeling in Diabetic Rabbits

verfasst von: Xiaohan Wu, Yang Liu, Daimiao Tu, Xianjian Liu, Shulin Niu, Ya Suo, Tong Liu, Guangping Li, Changle Liu

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Abstract

Both diabetes mellitus (DM) and atrial fibrillation (AF) are usually associated with enhanced inflammatory response. The effect of the “NACHT, LRR and PYD domain containing protein 3” (NLRP3)-inflammasome/caspase-1/galectin-3 pathway and the potential benefits of NLRP3-inflammasome inhibitor glibenclamide (GLB) on atrial remodeling in the DM state are still unknown. Here, we demonstrated that higher AF inducibility and conduction inhomogeneity, slower epicardial conduction velocity, and increased amount of fibrosis in diabetic rabbits as against normal ones were markedly reduced by GLB. Atrial caspase-1 activity as well as serum IL-1β and IL-18 levels were elevated in diabetic animals but suppressed by GLB. Moreover, GLB decreased the DM-induced protein expression enhancement of NLRP3, Gal-3, TGF-β1, and CaV1.2 according to western blot analysis. Summarily, our findings indicate that the NLRP3-inflammasome/caspase-1/Gal-3 signaling pathway is related to the pathogenesis of AF in the diabetic state. NLRP3-inflammasome inhibitor GLB prevents AF inducibility and moderates atrial structural remodeling in DM.
Literatur
1.
Zurück zum Zitat Harada, M., Van Wagoner, D. R., & Nattel, S. (2015). Role of inflammation in atrial fibrillation pathophysiology and management. Circulation Journal, 79(3), 495–502.CrossRef Harada, M., Van Wagoner, D. R., & Nattel, S. (2015). Role of inflammation in atrial fibrillation pathophysiology and management. Circulation Journal, 79(3), 495–502.CrossRef
2.
Zurück zum Zitat Korantzopoulos, P., Letsas, K. P., Tse, G., Fragakis, N., Goudis, C. A., & Liu, T. (2018). Inflammation and atrial fibrillation: a comprehensive review. Journal of Arrhythm, 34(4), 394–401.CrossRef Korantzopoulos, P., Letsas, K. P., Tse, G., Fragakis, N., Goudis, C. A., & Liu, T. (2018). Inflammation and atrial fibrillation: a comprehensive review. Journal of Arrhythm, 34(4), 394–401.CrossRef
3.
Zurück zum Zitat Karam, B. S., Chavez-Moreno, A., Koh, W., Akar, J. G., & Akar, F. G. (2017). Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovascular Diabetology, 16(1), 120.CrossRef Karam, B. S., Chavez-Moreno, A., Koh, W., Akar, J. G., & Akar, F. G. (2017). Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovascular Diabetology, 16(1), 120.CrossRef
4.
Zurück zum Zitat Hu, Y., Chen, Y., Lin, Y., & Chen, S. (2015). Inflammation and the pathogenesis of atrial fibrillation. Nature Reviews Cardiology, 12, 230–243.CrossRef Hu, Y., Chen, Y., Lin, Y., & Chen, S. (2015). Inflammation and the pathogenesis of atrial fibrillation. Nature Reviews Cardiology, 12, 230–243.CrossRef
5.
Zurück zum Zitat Scott Jr., L., Li, N., & Dobrev, D. (2019). Role of inflammatory signaling in atrial fibrillation. International Journal of Cardiology, 287, 195–200.CrossRef Scott Jr., L., Li, N., & Dobrev, D. (2019). Role of inflammatory signaling in atrial fibrillation. International Journal of Cardiology, 287, 195–200.CrossRef
6.
Zurück zum Zitat Hernandez-Romero, D., Vilchez, J. A., Lahoz, A., et al. (2017). Galectin-3 as a marker of interstitial atrial remodelling involved in atrial fibrillation. Scientific Reports, 7, 40378.CrossRef Hernandez-Romero, D., Vilchez, J. A., Lahoz, A., et al. (2017). Galectin-3 as a marker of interstitial atrial remodelling involved in atrial fibrillation. Scientific Reports, 7, 40378.CrossRef
7.
Zurück zum Zitat Luan, Y., Guo, Y., Li, S., et al. (2010). Interleukin-18 among atrial fibrillation patients in the absence of structural heart disease. Europace : European pacing, arrhythmias, and cardiac electrophysiology, 12, 1713–1718.CrossRef Luan, Y., Guo, Y., Li, S., et al. (2010). Interleukin-18 among atrial fibrillation patients in the absence of structural heart disease. Europace : European pacing, arrhythmias, and cardiac electrophysiology, 12, 1713–1718.CrossRef
8.
Zurück zum Zitat Yao, C., Veleva, T., Scott Jr., L., et al. (2018). Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation, 138(20), 2227–2242.CrossRef Yao, C., Veleva, T., Scott Jr., L., et al. (2018). Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation, 138(20), 2227–2242.CrossRef
9.
Zurück zum Zitat Chen, G., Chelu, M. G., Dobrev, D., & Li, N. (2018). Cardiomyocyte inflammasome signaling in cardiomyopathies and atrial fibrillation: mechanisms and potential therapeutic implications. Frontiers in Physiology, 9, 1115.CrossRef Chen, G., Chelu, M. G., Dobrev, D., & Li, N. (2018). Cardiomyocyte inflammasome signaling in cardiomyopathies and atrial fibrillation: mechanisms and potential therapeutic implications. Frontiers in Physiology, 9, 1115.CrossRef
10.
Zurück zum Zitat Huxley, R. R., Filion, K. B., Konety, S., & Alonso, A. (2011). Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. The American Journal of Cardiology, 108, 56–62.CrossRef Huxley, R. R., Filion, K. B., Konety, S., & Alonso, A. (2011). Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. The American Journal of Cardiology, 108, 56–62.CrossRef
11.
Zurück zum Zitat Staerk, L., Sherer, J. A., Ko, D., Benjamin, E. J., & Helm, R. H. (2017). Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes. Circulation Research, 120(9), 1501–1517.CrossRef Staerk, L., Sherer, J. A., Ko, D., Benjamin, E. J., & Helm, R. H. (2017). Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes. Circulation Research, 120(9), 1501–1517.CrossRef
12.
Zurück zum Zitat Bohne, L. J., Johnson, D., Rose, R. A., Wilton, S. B., & Gillis, A. M. (2019). The association between diabetes mellitus and atrial fibrillation: clinical and mechanistic insights. Frontiers in Physiology, 10, 135.CrossRef Bohne, L. J., Johnson, D., Rose, R. A., Wilton, S. B., & Gillis, A. M. (2019). The association between diabetes mellitus and atrial fibrillation: clinical and mechanistic insights. Frontiers in Physiology, 10, 135.CrossRef
13.
Zurück zum Zitat Xu, J., He, Y., Luo, B. B., et al. (2017). Correlation study between NLRP3 inflammasome and atrial fibrillation. Chinese Circulation Journal, 32(1), 72–76. Xu, J., He, Y., Luo, B. B., et al. (2017). Correlation study between NLRP3 inflammasome and atrial fibrillation. Chinese Circulation Journal, 32(1), 72–76.
14.
Zurück zum Zitat Wan, Y., Xu, L., Wang, Y., Tuerdi, N., Ye, M., & Qi, R. (2018). Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. European Journal of Pharmacology, 833, 545–554.CrossRef Wan, Y., Xu, L., Wang, Y., Tuerdi, N., Ye, M., & Qi, R. (2018). Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. European Journal of Pharmacology, 833, 545–554.CrossRef
15.
Zurück zum Zitat Lamkanfi, M., Mueller, J. L., Vitari, A. C., et al. (2009). Glyburide inhibits the cryopyrin/Nalp3 inflammasome. The Journal of Cell Biology, 187, 61–70.CrossRef Lamkanfi, M., Mueller, J. L., Vitari, A. C., et al. (2009). Glyburide inhibits the cryopyrin/Nalp3 inflammasome. The Journal of Cell Biology, 187, 61–70.CrossRef
16.
Zurück zum Zitat Cai, J., Lu, S., Yao, Z., et al. (2014). Glibenclamide attenuates myocardial injury by lipopoly saccharides in streptozotocin-induced diabetic mice. Cardiovascular Diabetology, 13, 106.CrossRef Cai, J., Lu, S., Yao, Z., et al. (2014). Glibenclamide attenuates myocardial injury by lipopoly saccharides in streptozotocin-induced diabetic mice. Cardiovascular Diabetology, 13, 106.CrossRef
17.
Zurück zum Zitat Liu, C., Liu, R., Fu, H., et al. (2017). Pioglitazone attenuates atrial remodeling and vulnerability to atrial fibrillation in alloxan-induced diabetic rabbits. Cardiovascular Therapeutics, 35(5), e38–e38.CrossRef Liu, C., Liu, R., Fu, H., et al. (2017). Pioglitazone attenuates atrial remodeling and vulnerability to atrial fibrillation in alloxan-induced diabetic rabbits. Cardiovascular Therapeutics, 35(5), e38–e38.CrossRef
18.
Zurück zum Zitat Liu, C., Liu, R., Wu, X., et al. (2018). Effects of peroxisome proliferator-activated receptor gamma-toll-like receptor 4-tumor necrosis factor-alpha targeted pathway on hyperglycemia induced myocardium inflammation and oxidative stress. Chinese Journal of Critical Care Medicine, 30, 416–421. Liu, C., Liu, R., Wu, X., et al. (2018). Effects of peroxisome proliferator-activated receptor gamma-toll-like receptor 4-tumor necrosis factor-alpha targeted pathway on hyperglycemia induced myocardium inflammation and oxidative stress. Chinese Journal of Critical Care Medicine, 30, 416–421.
19.
Zurück zum Zitat Baudino, T. A., Carver, W., Giles, W., & Borg, T. K. (2006). Cardiac fibroblasts: friend or foe? American Journal of Physiology. Heart and Circulatory Physiology, 291, H1015–H1026.CrossRef Baudino, T. A., Carver, W., Giles, W., & Borg, T. K. (2006). Cardiac fibroblasts: friend or foe? American Journal of Physiology. Heart and Circulatory Physiology, 291, H1015–H1026.CrossRef
20.
Zurück zum Zitat Jo, E. K., Kim, J. K., Shin, D. M., et al. (2016). Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology, 13(2), 148–159.CrossRef Jo, E. K., Kim, J. K., Shin, D. M., et al. (2016). Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology, 13(2), 148–159.CrossRef
21.
Zurück zum Zitat Toldo, S., Mezzaroma, E., McGeough, M. D., et al. (2015). Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart. Cardiovascular Research, 105(2), 203–212.CrossRef Toldo, S., Mezzaroma, E., McGeough, M. D., et al. (2015). Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart. Cardiovascular Research, 105(2), 203–212.CrossRef
22.
Zurück zum Zitat Grebe, A., Hoss, F., & Latz, E. (2018). NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circulation Research, 122(12), 1722–1740.CrossRef Grebe, A., Hoss, F., & Latz, E. (2018). NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circulation Research, 122(12), 1722–1740.CrossRef
23.
Zurück zum Zitat Zhang, X., Zhang, Z., Yang, Y., et al. (2018). Alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function in diabetic rabbits. Cardiovascular Diabetology, 17(1), 160.CrossRef Zhang, X., Zhang, Z., Yang, Y., et al. (2018). Alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function in diabetic rabbits. Cardiovascular Diabetology, 17(1), 160.CrossRef
24.
Zurück zum Zitat Jiang, D., Xiao, B., Yang, D., et al. (2004). RyR2 mutation linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca2+ release. Proceedings of the National Academy of Sciences of the United States of America, 101(35), 13062–13067.CrossRef Jiang, D., Xiao, B., Yang, D., et al. (2004). RyR2 mutation linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca2+ release. Proceedings of the National Academy of Sciences of the United States of America, 101(35), 13062–13067.CrossRef
25.
Zurück zum Zitat Hoyt, L. R., Randall, M. J., Ather, J. L., et al. (2017). Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome. Redox Biology, 12, 883–896.CrossRef Hoyt, L. R., Randall, M. J., Ather, J. L., et al. (2017). Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome. Redox Biology, 12, 883–896.CrossRef
26.
Zurück zum Zitat Ren, J. D., Wu, X. B., Jiang, R., et al. (2016). Molecular hydrogen inhibits lipopolysaccharide-triggered NLRP3 inflammasome activation in macrophages by targeting the mitochondrial reactive oxygen species. Biochimica et Biophysica Acta, 1863(1), 50–55.CrossRef Ren, J. D., Wu, X. B., Jiang, R., et al. (2016). Molecular hydrogen inhibits lipopolysaccharide-triggered NLRP3 inflammasome activation in macrophages by targeting the mitochondrial reactive oxygen species. Biochimica et Biophysica Acta, 1863(1), 50–55.CrossRef
27.
Zurück zum Zitat Sayed, A. A., Khalifa, M., & Abd el-Latif, F. F. (2012). Fenugreek attenuation of diabetic nephropathy in alloxan-diabetic rats: attenuation of diabetic nephropathy in rats. Journal of Physiology and Biochemistry, 68, 263–269.CrossRef Sayed, A. A., Khalifa, M., & Abd el-Latif, F. F. (2012). Fenugreek attenuation of diabetic nephropathy in alloxan-diabetic rats: attenuation of diabetic nephropathy in rats. Journal of Physiology and Biochemistry, 68, 263–269.CrossRef
28.
Zurück zum Zitat Qiu, J., Zhao, J., Li, J., Liang, X., et al. (2016). NADPH oxidase inhibitor apocynin prevents atrial remodeling in alloxan-induced diabetic rabbits. International Journal of Cardiology, 221, 812–819.CrossRef Qiu, J., Zhao, J., Li, J., Liang, X., et al. (2016). NADPH oxidase inhibitor apocynin prevents atrial remodeling in alloxan-induced diabetic rabbits. International Journal of Cardiology, 221, 812–819.CrossRef
29.
Zurück zum Zitat Yang, Y., Zhao, J., Qiu, J., et al. (2018). Xanthine oxidase inhibitor allopurinol prevents oxidative stress-mediated atrial remodeling in alloxan-induced diabetes mellitus rabbits. Journal of the American Heart Association, 7(10), e008807.PubMedPubMedCentral Yang, Y., Zhao, J., Qiu, J., et al. (2018). Xanthine oxidase inhibitor allopurinol prevents oxidative stress-mediated atrial remodeling in alloxan-induced diabetes mellitus rabbits. Journal of the American Heart Association, 7(10), e008807.PubMedPubMedCentral
30.
Zurück zum Zitat Wan, Y., Xu, L., Wang, Y., et al. (2018). Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. European Journal of Pharmacology, 883, 545.CrossRef Wan, Y., Xu, L., Wang, Y., et al. (2018). Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. European Journal of Pharmacology, 883, 545.CrossRef
31.
Zurück zum Zitat Yue, L., Xie, J., & Nattel, S. (2011). Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovascular Research, 89, 744–753.CrossRef Yue, L., Xie, J., & Nattel, S. (2011). Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovascular Research, 89, 744–753.CrossRef
32.
Zurück zum Zitat Shen, H., Wang, J., Min, J., et al. (2018). Activation of TGF-β1/α-SMA/Col I profibrotic pathway in fibroblasts by galectin-3 contributes to atrial fibrosis in experimental models and patients. Cellular Physiology and Biochemistry, 47(2), 851–863.CrossRef Shen, H., Wang, J., Min, J., et al. (2018). Activation of TGF-β1/α-SMA/Col I profibrotic pathway in fibroblasts by galectin-3 contributes to atrial fibrosis in experimental models and patients. Cellular Physiology and Biochemistry, 47(2), 851–863.CrossRef
33.
Zurück zum Zitat Takemoto, Y., Ramirez, R. J., Yokokawa, M., et al. (2016). Galectin-3 regulates atrial fibrillation remodeling and predicts catheter ablation outcomes. JACC Basic to Translational Science, 1(3), 143–154.CrossRef Takemoto, Y., Ramirez, R. J., Yokokawa, M., et al. (2016). Galectin-3 regulates atrial fibrillation remodeling and predicts catheter ablation outcomes. JACC Basic to Translational Science, 1(3), 143–154.CrossRef
34.
Zurück zum Zitat Gonzalez, G. E., Rhaleb, N. E., Nakagawa, P., et al. (2014). N-Acetyl-serylaspartyl-lysyl-proline reduces cardiac collagen cross-linking and inflammation in angiotensin II-induced hypertensive rats. Clinical Science (London, England), 126(1), 8594.CrossRef Gonzalez, G. E., Rhaleb, N. E., Nakagawa, P., et al. (2014). N-Acetyl-serylaspartyl-lysyl-proline reduces cardiac collagen cross-linking and inflammation in angiotensin II-induced hypertensive rats. Clinical Science (London, England), 126(1), 8594.CrossRef
35.
Zurück zum Zitat Ridker, P. M., Everett, B. M., Thuren, T., et al. (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. The New England Journal of Medicine, 377, 1119–1131.CrossRef Ridker, P. M., Everett, B. M., Thuren, T., et al. (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. The New England Journal of Medicine, 377, 1119–1131.CrossRef
36.
Zurück zum Zitat Zhang, G., Lin, X., Zhang, S., Xiu, H., Pan, C., & Cui, W. (2017). A protective role of glibenclamide in inflammation-associated injury. Mediators of Inflammation, 3578702. Zhang, G., Lin, X., Zhang, S., Xiu, H., Pan, C., & Cui, W. (2017). A protective role of glibenclamide in inflammation-associated injury. Mediators of Inflammation, 3578702.
37.
Zurück zum Zitat Tamura, K., Ishikawa, G., Yoshie, M., et al. (2017). Glibenclamide inhibits NLRP3 inflammasome-mediated IL-1β secretion in human trophoblasts. Journal of Pharmacological Sciences, 135(2). Tamura, K., Ishikawa, G., Yoshie, M., et al. (2017). Glibenclamide inhibits NLRP3 inflammasome-mediated IL-1β secretion in human trophoblasts. Journal of Pharmacological Sciences, 135(2).
38.
Zurück zum Zitat Hou, L., Yang, Z., Wang, Z., et al. (2018). NLRP3/ASC-mediated alveolar macrophage pyroptosis enhances HMGB1 secretion in acute lung injury induced by cardiopulmonary bypass. Laboratory Investigation, 98, 1052–1064.CrossRef Hou, L., Yang, Z., Wang, Z., et al. (2018). NLRP3/ASC-mediated alveolar macrophage pyroptosis enhances HMGB1 secretion in acute lung injury induced by cardiopulmonary bypass. Laboratory Investigation, 98, 1052–1064.CrossRef
Metadaten
Titel
Role of NLRP3-Inflammasome/Caspase-1/Galectin-3 Pathway on Atrial Remodeling in Diabetic Rabbits
verfasst von
Xiaohan Wu
Yang Liu
Daimiao Tu
Xianjian Liu
Shulin Niu
Ya Suo
Tong Liu
Guangping Li
Changle Liu
Publikationsdatum
11.02.2020
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 5/2020
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-020-09965-8

Weitere Artikel der Ausgabe 5/2020

Journal of Cardiovascular Translational Research 5/2020 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.