Skip to main content
Erschienen in: Calcified Tissue International 4/2013

01.10.2013 | Original Research

Role of Osteopontin in Modulation of Hydroxyapatite Formation

verfasst von: Graeme K. Hunter

Erschienen in: Calcified Tissue International | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

The presence of osteopontin (OPN) at high levels in both mineralized tissues such as bone and ectopic calcifications such as atherosclerotic plaque presents a conundrum: is OPN a promoter or inhibitor of hydroxyapatite (HA) formation? In vitro studies show that OPN adsorbs tightly to HA and is a potent inhibitor of crystal growth. Although the mechanism of the OPN–HA interaction is not fully understood, it is probably electrostatic in nature. Phosphorylation enhances OPN’s ability to adsorb to and inhibit the growth of HA crystals, although other anionic groups also contribute to these properties. Recent findings suggest that OPN is an intrinsically unordered protein and that its lack of folded structure facilitates the protein’s adsorption by allowing multiple binding geometries and the sequential formation of ionic bonds with Ca2+ ions of the crystal surface. By analogy with other biominerals, it is likely that adsorption of OPN to HA results in “pinning” of growth steps. The abundance of OPN at sites of ectopic calcification reflects upregulation of the protein in response to crystal formation or even in response to elevated phosphate levels. Therefore, it appears that OPN is one of a group of proteins that function to prevent crystal formation in soft tissues. The role of OPN in bone mineralization, if any, is less clear. However, it is possible that it modulates HA formation, either by preventing crystal growth in “inappropriate” areas such as the osteoid seam or by regulating crystal growth habit (size and shape).
Literatur
1.
Zurück zum Zitat Herring GM, Kent PW (1963) Some studies on mucosubstances of bovine cortical bone. Biochemistry 89:405–414 Herring GM, Kent PW (1963) Some studies on mucosubstances of bovine cortical bone. Biochemistry 89:405–414
2.
Zurück zum Zitat Franzén A, Heinegård D (1985) Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochemistry 232:715–724 Franzén A, Heinegård D (1985) Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochemistry 232:715–724
3.
Zurück zum Zitat Prince CW, Oosawa T, Butler WT, Tomana M, Bhown AS, Bhown M, Schrohenloher RE (1987) Isolation, characterization, and biosynthesis of phosphorylated glycoprotein from rat bone. J Biol Chem 262:2900–2907PubMed Prince CW, Oosawa T, Butler WT, Tomana M, Bhown AS, Bhown M, Schrohenloher RE (1987) Isolation, characterization, and biosynthesis of phosphorylated glycoprotein from rat bone. J Biol Chem 262:2900–2907PubMed
4.
Zurück zum Zitat Oldberg A, Franzén A, Heinegård D (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci USA 83:8819–8823PubMedCrossRef Oldberg A, Franzén A, Heinegård D (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci USA 83:8819–8823PubMedCrossRef
5.
Zurück zum Zitat Sørensen ES, Højrup P, Petersen TE (1995) Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites. Protein Sci 4:2040–2049PubMedCrossRef Sørensen ES, Højrup P, Petersen TE (1995) Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites. Protein Sci 4:2040–2049PubMedCrossRef
6.
Zurück zum Zitat Keykhosravani M, Doherty-Kirby A, Zhang C, Brewer D, Goldberg HA, Hunter GK, Lajoie G (2005) Comprehensive identification of post-translational modifications of rat bone osteopontin by mass spectrometry. Biochemistry 44:6990–7003PubMedCrossRef Keykhosravani M, Doherty-Kirby A, Zhang C, Brewer D, Goldberg HA, Hunter GK, Lajoie G (2005) Comprehensive identification of post-translational modifications of rat bone osteopontin by mass spectrometry. Biochemistry 44:6990–7003PubMedCrossRef
7.
Zurück zum Zitat Christensen B, Petersen TE, Sorensen ES (2008) Post-translational modification and proteolytic processing of urinary osteopontin. Biochem J 411:53–61PubMedCrossRef Christensen B, Petersen TE, Sorensen ES (2008) Post-translational modification and proteolytic processing of urinary osteopontin. Biochem J 411:53–61PubMedCrossRef
8.
Zurück zum Zitat Masuda K, Takahashi N, Tsukamoto Y, Honma H, Kohri K (2000) N-Glycan structure of an osteopontin from human bone. Biochem Biophys Res Commun 268:814–817PubMedCrossRef Masuda K, Takahashi N, Tsukamoto Y, Honma H, Kohri K (2000) N-Glycan structure of an osteopontin from human bone. Biochem Biophys Res Commun 268:814–817PubMedCrossRef
9.
Zurück zum Zitat Kaartinen MT, Pirhonen A, Linnala-Kankkunen A, Mäenpää PH (1999) Cross-linking of osteopontin by tissue transglutaminase increases its collagen binding properties. J Biol Chem 274:1729–1735PubMedCrossRef Kaartinen MT, Pirhonen A, Linnala-Kankkunen A, Mäenpää PH (1999) Cross-linking of osteopontin by tissue transglutaminase increases its collagen binding properties. J Biol Chem 274:1729–1735PubMedCrossRef
10.
Zurück zum Zitat Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sorensen ES, Boskey AL (2005) Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int 77:45–54PubMedCrossRef Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sorensen ES, Boskey AL (2005) Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int 77:45–54PubMedCrossRef
11.
Zurück zum Zitat Fisher LW, Torchia DA, Fohr B, Young MF, Fedarko NS (2001) Flexible structures of SIBLING proteins, bone sialoprotein and osteopontin. Biochem Biophys Res Commun 280:460–465PubMedCrossRef Fisher LW, Torchia DA, Fohr B, Young MF, Fedarko NS (2001) Flexible structures of SIBLING proteins, bone sialoprotein and osteopontin. Biochem Biophys Res Commun 280:460–465PubMedCrossRef
12.
Zurück zum Zitat Azzopardi PV, O’Young J, Lajoie G, Karttunen M, Goldberg HA, Hunter GK (2010) Roles of charge and conformation in protein–crystal interactions. PLoS ONE 5:e9330PubMedCrossRef Azzopardi PV, O’Young J, Lajoie G, Karttunen M, Goldberg HA, Hunter GK (2010) Roles of charge and conformation in protein–crystal interactions. PLoS ONE 5:e9330PubMedCrossRef
13.
Zurück zum Zitat Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208PubMedCrossRef Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208PubMedCrossRef
14.
Zurück zum Zitat Zhang Q, Domenicucci C, Goldberg HA, Wrana JL, Sodek J (1990) Characterization of fetal porcine bone sialoproteins, secreted phosphoprotein I (SPPI, osteopontin), bone sialoprotein, and a 23-kDa glycoprotein. J Biol Chem 265:7583–7589PubMed Zhang Q, Domenicucci C, Goldberg HA, Wrana JL, Sodek J (1990) Characterization of fetal porcine bone sialoproteins, secreted phosphoprotein I (SPPI, osteopontin), bone sialoprotein, and a 23-kDa glycoprotein. J Biol Chem 265:7583–7589PubMed
15.
Zurück zum Zitat Barros NM, Hoac B, Neves RL, Addison WN, Assis DM, Murshed M, Carmona AK, McKee MD (2012) Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J Bone Miner Res. doi:10.1002/jbmr.1766 Barros NM, Hoac B, Neves RL, Addison WN, Assis DM, Murshed M, Carmona AK, McKee MD (2012) Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J Bone Miner Res. doi:10.​1002/​jbmr.​1766
16.
Zurück zum Zitat Simmer JP, Fincham AG (1995) Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med 6:84–108PubMedCrossRef Simmer JP, Fincham AG (1995) Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med 6:84–108PubMedCrossRef
17.
Zurück zum Zitat Weiner S, Price PA (1986) Disaggregation of bone into crystals. Calcif Tissue Int 39:365–375PubMedCrossRef Weiner S, Price PA (1986) Disaggregation of bone into crystals. Calcif Tissue Int 39:365–375PubMedCrossRef
18.
Zurück zum Zitat Nomura S, Wills AJ, Edwards DR, Heath JK, Hogan BLM (1988) Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. J Cell Biol 106:441–450PubMedCrossRef Nomura S, Wills AJ, Edwards DR, Heath JK, Hogan BLM (1988) Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. J Cell Biol 106:441–450PubMedCrossRef
19.
Zurück zum Zitat Kohri K, Suzuki Y, Yoshida K, Yamamoto K, Amasaki N, Yamate T, Umekawa T, Iguchi M, Sinohara H, Kurita T (1992) Molecular cloning and sequencing of cDNA encoding urinary stone protein, which is identical to osteopontin. Biochem Biophys Res Commun 184:859–864PubMedCrossRef Kohri K, Suzuki Y, Yoshida K, Yamamoto K, Amasaki N, Yamate T, Umekawa T, Iguchi M, Sinohara H, Kurita T (1992) Molecular cloning and sequencing of cDNA encoding urinary stone protein, which is identical to osteopontin. Biochem Biophys Res Commun 184:859–864PubMedCrossRef
20.
Zurück zum Zitat Giachelli CM, Bae N, Almeida M, Denhardt DT, Alpers CE, Schwartz SM (1993) Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest 92:1686–1696PubMedCrossRef Giachelli CM, Bae N, Almeida M, Denhardt DT, Alpers CE, Schwartz SM (1993) Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest 92:1686–1696PubMedCrossRef
21.
Zurück zum Zitat Brown LF, Berse B, Van De Water L, Papadopoulos-Sergious A, Perruzzi CA, Manseau EJ, Dvorak HF, Senger DR (1992) Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol Biol Cell 3:1169–1180PubMedCrossRef Brown LF, Berse B, Van De Water L, Papadopoulos-Sergious A, Perruzzi CA, Manseau EJ, Dvorak HF, Senger DR (1992) Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol Biol Cell 3:1169–1180PubMedCrossRef
22.
Zurück zum Zitat Senger DR, Perruzzi CA, Papadopoulos A, Tenen DG (1989) Purification of human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim Biophys Acta 996:43–48PubMedCrossRef Senger DR, Perruzzi CA, Papadopoulos A, Tenen DG (1989) Purification of human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim Biophys Acta 996:43–48PubMedCrossRef
23.
Zurück zum Zitat Min W, Shiraga H, Chalko C, Goldfarb S, Krishna GG, Hoyer JR (1998) Quantitative studies of human urinary excretion of uropontin. Kidney Int 53:189–193PubMedCrossRef Min W, Shiraga H, Chalko C, Goldfarb S, Krishna GG, Hoyer JR (1998) Quantitative studies of human urinary excretion of uropontin. Kidney Int 53:189–193PubMedCrossRef
24.
Zurück zum Zitat Chen J, McKee MD, Nanci A, Sodek J (1994) Bone sialoprotein mRNA expression and ultrastructural localization in fetal porcine calvarial bone: comparisons with osteopontin. Histochem J 26:67–78PubMed Chen J, McKee MD, Nanci A, Sodek J (1994) Bone sialoprotein mRNA expression and ultrastructural localization in fetal porcine calvarial bone: comparisons with osteopontin. Histochem J 26:67–78PubMed
25.
Zurück zum Zitat McKee MD, Nanci A (1995) Postembedding colloidal-gold immunocytochemistry of noncollogenous extracellular matrix proteins in mineralized tissues. Microsc Res Tech 31:44–62PubMedCrossRef McKee MD, Nanci A (1995) Postembedding colloidal-gold immunocytochemistry of noncollogenous extracellular matrix proteins in mineralized tissues. Microsc Res Tech 31:44–62PubMedCrossRef
26.
Zurück zum Zitat Hirota S, Asada H, Kohri K, Tsukamoto Y, Ito A, Yoshikawa K, Xu Z, Nomura S, Kitamura Y (1995) Possible role of osteopontin in deposition of calcium phosphate in human pilomatricomas. J Invest Dermatol 105:138–142PubMedCrossRef Hirota S, Asada H, Kohri K, Tsukamoto Y, Ito A, Yoshikawa K, Xu Z, Nomura S, Kitamura Y (1995) Possible role of osteopontin in deposition of calcium phosphate in human pilomatricomas. J Invest Dermatol 105:138–142PubMedCrossRef
27.
Zurück zum Zitat Kohri K, Nomura S, Kitamura Y, Nagata T, Yoshioka K, Iguchi M, Yamate T, Umekawa T, Suzuki Y, Sinohara H, Kurita T (1993) Structure and expression of the mRNA encoding urinary stone protein (osteopontin). J Biol Chem 268:15180–15184PubMed Kohri K, Nomura S, Kitamura Y, Nagata T, Yoshioka K, Iguchi M, Yamate T, Umekawa T, Suzuki Y, Sinohara H, Kurita T (1993) Structure and expression of the mRNA encoding urinary stone protein (osteopontin). J Biol Chem 268:15180–15184PubMed
28.
Zurück zum Zitat Beck GR, Zerle B, Moran E (2000) Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci USA 97:8352–8357PubMedCrossRef Beck GR, Zerle B, Moran E (2000) Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci USA 97:8352–8357PubMedCrossRef
29.
Zurück zum Zitat Chen NX, O’Neill KD, Duan D, Moe SM (2002) Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int 62:1724–1731PubMedCrossRef Chen NX, O’Neill KD, Duan D, Moe SM (2002) Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int 62:1724–1731PubMedCrossRef
30.
Zurück zum Zitat Chiba S, Okamoto H, Kon S, Kimura C, Murakami M, Inobe M, Matsui Y, Sugawara T, Shimizu T, Uede T, Kitabatake A (2002) Development of atherosclerosis in osteopontin transgenic mice. Heart Vessels 16:111–117PubMedCrossRef Chiba S, Okamoto H, Kon S, Kimura C, Murakami M, Inobe M, Matsui Y, Sugawara T, Shimizu T, Uede T, Kitabatake A (2002) Development of atherosclerosis in osteopontin transgenic mice. Heart Vessels 16:111–117PubMedCrossRef
31.
Zurück zum Zitat Hamamoto S, Nomura S, Yasui T, Okada A, Hirose M, Shimizu H, Itoh Y, Tozawa K, Kohri K (2010) Effects of impaired functional domains of osteopontin on renal crystal formation: analyses of OPN transgenic and OPN knockout mice. J Bone Miner Res 25:2436–2447 Hamamoto S, Nomura S, Yasui T, Okada A, Hirose M, Shimizu H, Itoh Y, Tozawa K, Kohri K (2010) Effects of impaired functional domains of osteopontin on renal crystal formation: analyses of OPN transgenic and OPN knockout mice. J Bone Miner Res 25:2436–2447
32.
Zurück zum Zitat Rittling SR, Matsumoto HN, McKee MD, Nanci A, An XR, Novick KE, Kowalski AJ, Noda M, Denhardt DT (1998) Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res 13:1101–1111PubMedCrossRef Rittling SR, Matsumoto HN, McKee MD, Nanci A, An XR, Novick KE, Kowalski AJ, Noda M, Denhardt DT (1998) Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res 13:1101–1111PubMedCrossRef
33.
Zurück zum Zitat Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD (2002) Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71:145–154PubMedCrossRef Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD (2002) Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71:145–154PubMedCrossRef
34.
Zurück zum Zitat Harmey D, Johnson KA, Zelken J, Camacho NP, Hoylaerts MF, Noda M, Terkeltaub R, Millan JL (2006) Elevated skeletal osteopontin levels contribute to the hypophosphatasia phenotype in Akp2−/− mice. J Bone Miner Res 21:1377–1386PubMedCrossRef Harmey D, Johnson KA, Zelken J, Camacho NP, Hoylaerts MF, Noda M, Terkeltaub R, Millan JL (2006) Elevated skeletal osteopontin levels contribute to the hypophosphatasia phenotype in Akp2−/− mice. J Bone Miner Res 21:1377–1386PubMedCrossRef
35.
Zurück zum Zitat McKee MD, Nanci A (1996) Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair. Microsc Res Tech 33:141–164PubMedCrossRef McKee MD, Nanci A (1996) Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair. Microsc Res Tech 33:141–164PubMedCrossRef
36.
Zurück zum Zitat Liaw L, Birk DE, Ballas CB, Whitsitt JS, Davidson JM, Hogan BLM (1998) Altered wound healing in mice lacking a functional osteopontin gene (spp 1). J Clin Invest 101:1468–1478PubMed Liaw L, Birk DE, Ballas CB, Whitsitt JS, Davidson JM, Hogan BLM (1998) Altered wound healing in mice lacking a functional osteopontin gene (spp 1). J Clin Invest 101:1468–1478PubMed
37.
Zurück zum Zitat Wesson JA, Johnson RJ, Mazzali M, Beshensky AM, Stietz S, Giachelli C, Liaw L, Alpers CE, Couser WG, Kleinman JG, Hughes J (2003) Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 14:139–147PubMedCrossRef Wesson JA, Johnson RJ, Mazzali M, Beshensky AM, Stietz S, Giachelli C, Liaw L, Alpers CE, Couser WG, Kleinman JG, Hughes J (2003) Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 14:139–147PubMedCrossRef
38.
Zurück zum Zitat Steitz SA, Speer MY, McKee MD, Liaw L, Almeida M, Yang H, Giachelli CM (2002) Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol 161:2035–2046PubMedCrossRef Steitz SA, Speer MY, McKee MD, Liaw L, Almeida M, Yang H, Giachelli CM (2002) Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol 161:2035–2046PubMedCrossRef
39.
Zurück zum Zitat Mo L, Liaw L, Evan AP, Sommer AJ, Lieske JC, Wu XR (2007) Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am J Physiol Renal Physiol 293:F1935–F1943PubMedCrossRef Mo L, Liaw L, Evan AP, Sommer AJ, Lieske JC, Wu XR (2007) Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am J Physiol Renal Physiol 293:F1935–F1943PubMedCrossRef
40.
Zurück zum Zitat Speer MY, McKee MD, Guldberg RE, Liaw L, Yang HY, Tung E, Karsenty G, Giachelli CM (2002) Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein–deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J Exp Med 196:1047–1055PubMedCrossRef Speer MY, McKee MD, Guldberg RE, Liaw L, Yang HY, Tung E, Karsenty G, Giachelli CM (2002) Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein–deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J Exp Med 196:1047–1055PubMedCrossRef
41.
Zurück zum Zitat Schafer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J, Muller-Esterl W, Schinke T, Jahnen-Dechent W (2003) The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 112:357–366PubMed Schafer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J, Muller-Esterl W, Schinke T, Jahnen-Dechent W (2003) The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 112:357–366PubMed
42.
Zurück zum Zitat Boskey AL, Maresca M, Ullrich W, Doty SB, Butler WT, Prince CW (1993) Osteopontin–hydroxyapatite interactions in vitro. Inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner 22:147–159PubMedCrossRef Boskey AL, Maresca M, Ullrich W, Doty SB, Butler WT, Prince CW (1993) Osteopontin–hydroxyapatite interactions in vitro. Inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner 22:147–159PubMedCrossRef
43.
Zurück zum Zitat Goldberg HA, Warner KJ, Li MC, Hunter GK (2001) Binding of bone sialoprotein, osteopontin and synthetic polypeptides to hydroxyapatite. Connect Tissue Res 42:25–37PubMedCrossRef Goldberg HA, Warner KJ, Li MC, Hunter GK (2001) Binding of bone sialoprotein, osteopontin and synthetic polypeptides to hydroxyapatite. Connect Tissue Res 42:25–37PubMedCrossRef
44.
Zurück zum Zitat Silverman LD, Saadia M, Ishal JS, Tishbi N, Leiderman E, Kuyunov I, Recca B, Reitblat C, Viswanathan R (2010) Hydroxyapatite growth inhibition by osteopontin hexapeptide sequences. Langmuir 26:9899–9904PubMedCrossRef Silverman LD, Saadia M, Ishal JS, Tishbi N, Leiderman E, Kuyunov I, Recca B, Reitblat C, Viswanathan R (2010) Hydroxyapatite growth inhibition by osteopontin hexapeptide sequences. Langmuir 26:9899–9904PubMedCrossRef
45.
Zurück zum Zitat Addison WN, Masica DL, Gray JJ, McKee MD (2010) Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J Bone Miner Res 25:695–705PubMedCrossRef Addison WN, Masica DL, Gray JJ, McKee MD (2010) Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J Bone Miner Res 25:695–705PubMedCrossRef
46.
Zurück zum Zitat Fujisawa R, Kuboki Y (1991) Preferential adsorption of dentin and bone acidic proteins on the (100) face of hydroxyapatite crystals. Biochim Biophys Acta 1075:56–60PubMedCrossRef Fujisawa R, Kuboki Y (1991) Preferential adsorption of dentin and bone acidic proteins on the (100) face of hydroxyapatite crystals. Biochim Biophys Acta 1075:56–60PubMedCrossRef
47.
Zurück zum Zitat Hoang QQ, Sicheri F, Howard AJ, Yang DS (2003) Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425:977–980PubMedCrossRef Hoang QQ, Sicheri F, Howard AJ, Yang DS (2003) Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425:977–980PubMedCrossRef
48.
Zurück zum Zitat Huq NL, Cross KJ, Reynolds EC (2000) Molecular modelling of a multiphosphorylated sequence motif bound to hydroxyapatite surfaces. J Mol Model 6:35–47CrossRef Huq NL, Cross KJ, Reynolds EC (2000) Molecular modelling of a multiphosphorylated sequence motif bound to hydroxyapatite surfaces. J Mol Model 6:35–47CrossRef
49.
Zurück zum Zitat Grohe B, O’Young J, Ionescu A, Lajoie G, Rogers KA, Karttunen M, Goldberg HA, Hunter GK (2007) Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide. J Am Chem Soc 129:14946–14951PubMedCrossRef Grohe B, O’Young J, Ionescu A, Lajoie G, Rogers KA, Karttunen M, Goldberg HA, Hunter GK (2007) Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide. J Am Chem Soc 129:14946–14951PubMedCrossRef
50.
Zurück zum Zitat Addison WN, Azari F, Sorensen ES, Kaartinen MT, McKee MD (2007) Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J Biol Chem 282:15872–15883PubMedCrossRef Addison WN, Azari F, Sorensen ES, Kaartinen MT, McKee MD (2007) Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J Biol Chem 282:15872–15883PubMedCrossRef
51.
Zurück zum Zitat Harding JH, Duffy DM, Sushko ML, Rodger PM, Quigley D, Elliott JA (2008) Computational techniques at the organic-inorganic interface in biomineralization. Chem Rev 108:4823–4854PubMedCrossRef Harding JH, Duffy DM, Sushko ML, Rodger PM, Quigley D, Elliott JA (2008) Computational techniques at the organic-inorganic interface in biomineralization. Chem Rev 108:4823–4854PubMedCrossRef
52.
Zurück zum Zitat O’Young J, Liao YY, Xiao YZ, Jalkanen J, Lajoie G, Karttunen M, Goldberg HA, Hunter GK (2011) Matrix Gla protein inhibits ectopic calcification by a direct interaction with hydroxyapatite crystals. J Am Chem Soc 133:18406–18412PubMedCrossRef O’Young J, Liao YY, Xiao YZ, Jalkanen J, Lajoie G, Karttunen M, Goldberg HA, Hunter GK (2011) Matrix Gla protein inhibits ectopic calcification by a direct interaction with hydroxyapatite crystals. J Am Chem Soc 133:18406–18412PubMedCrossRef
53.
Zurück zum Zitat Wada T, McKee MD, Steitz S, Giachelli CM (1999) Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ Res 84:166–178PubMedCrossRef Wada T, McKee MD, Steitz S, Giachelli CM (1999) Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ Res 84:166–178PubMedCrossRef
54.
Zurück zum Zitat Li S, Wang L (2012) Phosphorylated osteopontin peptides inhibit crystallization by resisting the aggregation of calcium phosphate nanoparticles. Cryst Eng Comm 14:8037–8043CrossRef Li S, Wang L (2012) Phosphorylated osteopontin peptides inhibit crystallization by resisting the aggregation of calcium phosphate nanoparticles. Cryst Eng Comm 14:8037–8043CrossRef
55.
Zurück zum Zitat Hunter GK, Kyle CL, Goldberg HA (1994) Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 300:723–728PubMed Hunter GK, Kyle CL, Goldberg HA (1994) Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 300:723–728PubMed
56.
Zurück zum Zitat Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317:59–64PubMed Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317:59–64PubMed
57.
Zurück zum Zitat Boskey AL, Christensen B, Taleb H, Sorensen ES (2012) Post-translational modification of osteopontin: effects on in vitro hydroxyapatite formation and growth. Biochem Biophys Res Commun 419:333–338PubMedCrossRef Boskey AL, Christensen B, Taleb H, Sorensen ES (2012) Post-translational modification of osteopontin: effects on in vitro hydroxyapatite formation and growth. Biochem Biophys Res Commun 419:333–338PubMedCrossRef
58.
Zurück zum Zitat Tomson MB, Nancollas GH (1978) Mineralization kinetics: a constant composition approach. Science 200:1059–1060PubMedCrossRef Tomson MB, Nancollas GH (1978) Mineralization kinetics: a constant composition approach. Science 200:1059–1060PubMedCrossRef
59.
Zurück zum Zitat Beshensky AM, Wesson JA, Worcester EM, Sorokina EJ, Snyder CJ, Kleinman JG (2001) Effects of urinary macromolecules on hydroxyapatite crystal formation. J Am Soc Nephrol 12:2108–2116PubMed Beshensky AM, Wesson JA, Worcester EM, Sorokina EJ, Snyder CJ, Kleinman JG (2001) Effects of urinary macromolecules on hydroxyapatite crystal formation. J Am Soc Nephrol 12:2108–2116PubMed
60.
Zurück zum Zitat Kumura H, Minato N, Shimazaki K (2006) Inhibitory activity of bovine milk osteopontin and its fragments on the formation of calcium phosphate precipitates. J Dairy Res 73:449–453PubMedCrossRef Kumura H, Minato N, Shimazaki K (2006) Inhibitory activity of bovine milk osteopontin and its fragments on the formation of calcium phosphate precipitates. J Dairy Res 73:449–453PubMedCrossRef
61.
Zurück zum Zitat Linde A, Lussi A, Crenshaw MA (1989) Mineral induction by immobilized polyanionic proteins. Calcif Tissue Int 44:286–295PubMedCrossRef Linde A, Lussi A, Crenshaw MA (1989) Mineral induction by immobilized polyanionic proteins. Calcif Tissue Int 44:286–295PubMedCrossRef
62.
Zurück zum Zitat Speer MY, Chien YC, Quan M, Yang HY, Vali H, McKee MD, Giachelli CM (2005) Smooth muscle cells deficient in osteopontin have enhanced susceptibility to calcification in vitro. Cardiovasc Res 66:324–333PubMedCrossRef Speer MY, Chien YC, Quan M, Yang HY, Vali H, McKee MD, Giachelli CM (2005) Smooth muscle cells deficient in osteopontin have enhanced susceptibility to calcification in vitro. Cardiovasc Res 66:324–333PubMedCrossRef
63.
Zurück zum Zitat Jono S, Peinado C, Giachelli CM (2000) Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem 275:20197–20203PubMedCrossRef Jono S, Peinado C, Giachelli CM (2000) Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem 275:20197–20203PubMedCrossRef
64.
Zurück zum Zitat Evans JS (2003) “Apples” and “oranges”: comparing the structural aspects of biomineral- and ice-interaction proteins. Curr Opin Colloid Interface Sci 8:48–54CrossRef Evans JS (2003) “Apples” and “oranges”: comparing the structural aspects of biomineral- and ice-interaction proteins. Curr Opin Colloid Interface Sci 8:48–54CrossRef
65.
Zurück zum Zitat Hunter GK, O’Young J, Grohe B, Karttunen M, Goldberg HA (2010) The flexible polyelectrolyte hypothesis of protein–biomineral interaction. Langmuir 26:18639–18646PubMedCrossRef Hunter GK, O’Young J, Grohe B, Karttunen M, Goldberg HA (2010) The flexible polyelectrolyte hypothesis of protein–biomineral interaction. Langmuir 26:18639–18646PubMedCrossRef
66.
Zurück zum Zitat Vekilov PG (2007) What determines the rate of growth of crystals from solution? Cryst Growth Des 7:2796–2810CrossRef Vekilov PG (2007) What determines the rate of growth of crystals from solution? Cryst Growth Des 7:2796–2810CrossRef
67.
Zurück zum Zitat Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ (2009) Surface aggregation of urinary proteins and aspartic acid–rich peptides on the faces of calcium oxalate monohydrate investigated by in situ force microscopy. Calcif Tissue Int 84:462–473PubMedCrossRef Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ (2009) Surface aggregation of urinary proteins and aspartic acid–rich peptides on the faces of calcium oxalate monohydrate investigated by in situ force microscopy. Calcif Tissue Int 84:462–473PubMedCrossRef
Metadaten
Titel
Role of Osteopontin in Modulation of Hydroxyapatite Formation
verfasst von
Graeme K. Hunter
Publikationsdatum
01.10.2013
Verlag
Springer US
Erschienen in
Calcified Tissue International / Ausgabe 4/2013
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-013-9698-6

Weitere Artikel der Ausgabe 4/2013

Calcified Tissue International 4/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.