Skip to main content
Erschienen in: Cellular Oncology 4/2018

24.05.2018 | Review

Role of PKM2 in directing the metabolic fate of glucose in cancer: a potential therapeutic target

verfasst von: Gustav van Niekerk, Anna-Mart Engelbrecht

Erschienen in: Cellular Oncology | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Background

Many of the hallmarks of cancer are not inherently unique to cancer, but rather represent a re-enactment of normal host responses and activities. A vivid example is aerobic glycolysis (‘Warburg effect’), which is used not only by cancer cells but also by normal cells that undergo rapid proliferation. A common feature of this metabolic adaptation is a shift in the expression of pyruvate kinase (PK) isoform M1 to isoform M2. Here, we highlight the key role of PKM2 in shifting cancer metabolism between ATP production and biosynthetic processes. Since anabolic processes are highly energy dependent, the fate of glucose in energy production versus the contribution of carbon in biosynthetic processes needs to be finely synchronised. PKM2 acts to integrate cellular signalling and allosteric regulation of metabolites in order to align metabolic activities with the changing needs of the cell.

Conclusions

The central role of PKM2 in directing the flow of carbon between catabolic (ATP-producing) and anabolic processes provides unique opportunities for extending the therapeutic window of currently available and/or novel anti-neoplastic agents.
Literatur
1.
Zurück zum Zitat D. Hanahan, R.A. Weinberg, Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011)CrossRefPubMed D. Hanahan, R.A. Weinberg, Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011)CrossRefPubMed
2.
Zurück zum Zitat J.M.S. Lemons, X.-J. Feng, B.D. Bennett, A. Legesse-Miller, E.L. Johnson, I. Raitman, E.A. Pollina, H.A. Rabitz, J.D. Rabinowitz, H.A. Coller, Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol. 8, e1000514 (2010)CrossRefPubMedPubMedCentral J.M.S. Lemons, X.-J. Feng, B.D. Bennett, A. Legesse-Miller, E.L. Johnson, I. Raitman, E.A. Pollina, H.A. Rabitz, J.D. Rabinowitz, H.A. Coller, Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol. 8, e1000514 (2010)CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat G. Eelen, P. de Zeeuw, M. Simons, P. Carmeliet, Endothelial cell metabolism in normal and diseased vasculature. Circ. Res. 116, 1231–1244 (2015)CrossRefPubMedPubMedCentral G. Eelen, P. de Zeeuw, M. Simons, P. Carmeliet, Endothelial cell metabolism in normal and diseased vasculature. Circ. Res. 116, 1231–1244 (2015)CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat L.A.J. O’Neill, R.J. Kishton, J. Rathmell, A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016) L.A.J. O’Neill, R.J. Kishton, J. Rathmell, A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016)
5.
Zurück zum Zitat S.Y. Lunt, M.G. Vander Heiden, Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011)CrossRefPubMed S.Y. Lunt, M.G. Vander Heiden, Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011)CrossRefPubMed
6.
Zurück zum Zitat C.T. Jones, Fertil, fetal metabolism and fetal growth. J. Reprod. 47, 189–201 (1976)CrossRef C.T. Jones, Fertil, fetal metabolism and fetal growth. J. Reprod. 47, 189–201 (1976)CrossRef
7.
Zurück zum Zitat J. Wahlberg, B. Ekman, L. Nyström, U. Hanson, B. Persson, H.J. Arnqvist, Gestational diabetes: Glycaemic predictors for fetal macrosomia and maternal risk of future diabetes. Diabetes Res. Clin. Pract. 114, 99–105 (2016)CrossRefPubMed J. Wahlberg, B. Ekman, L. Nyström, U. Hanson, B. Persson, H.J. Arnqvist, Gestational diabetes: Glycaemic predictors for fetal macrosomia and maternal risk of future diabetes. Diabetes Res. Clin. Pract. 114, 99–105 (2016)CrossRefPubMed
8.
Zurück zum Zitat A. Mohammadbeigi, F. Farhadifar, N. Soufizadeh, N. Mohammadsalehi, M. Rezaiee, M. Aghaei, Fetal macrosomia: Risk factors, maternal, and perinatal outcome. Ann. Med. Health Sci. Res. 3, 546 (2013)CrossRefPubMedPubMedCentral A. Mohammadbeigi, F. Farhadifar, N. Soufizadeh, N. Mohammadsalehi, M. Rezaiee, M. Aghaei, Fetal macrosomia: Risk factors, maternal, and perinatal outcome. Ann. Med. Health Sci. Res. 3, 546 (2013)CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat M. Persson, D. Pasupathy, U. Hanson, M. Norman, Birth size distribution in 3,705 infants born to mothers with type 1 diabetes: A population-based study. Diabetes Care 34, 1145–1149 (2011)CrossRefPubMedPubMedCentral M. Persson, D. Pasupathy, U. Hanson, M. Norman, Birth size distribution in 3,705 infants born to mothers with type 1 diabetes: A population-based study. Diabetes Care 34, 1145–1149 (2011)CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat L.A. Flores-López, M.G. Martínez-Hernández, R. Viedma-Rodríguez, M. Díaz-Flores, L.A. Baiza-Gutman, High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell. Oncol. 39, 365–378 (2016)CrossRef L.A. Flores-López, M.G. Martínez-Hernández, R. Viedma-Rodríguez, M. Díaz-Flores, L.A. Baiza-Gutman, High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell. Oncol. 39, 365–378 (2016)CrossRef
11.
Zurück zum Zitat H. Makinoshima, M. Takita, K. Saruwatari, S. Umemura, Y. Obata, G. Ishii, S. Matsumoto, E. Sugiyama, A. Ochiai, R. Abe, K. Goto, H. Esumi, K. Tsuchihara, Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) Axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma. J. Biol. Chem. 290, 17495–17504 (2015)CrossRefPubMedPubMedCentral H. Makinoshima, M. Takita, K. Saruwatari, S. Umemura, Y. Obata, G. Ishii, S. Matsumoto, E. Sugiyama, A. Ochiai, R. Abe, K. Goto, H. Esumi, K. Tsuchihara, Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) Axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma. J. Biol. Chem. 290, 17495–17504 (2015)CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat M. Muller, M. Mentel, J.J. van Hellemond, K. Henze, C. Woehle, S.B. Gould, R.-Y. Yu, M. van der Giezen, A.G.M. Tielens, W.F. Martin, Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 (2012)CrossRefPubMedPubMedCentral M. Muller, M. Mentel, J.J. van Hellemond, K. Henze, C. Woehle, S.B. Gould, R.-Y. Yu, M. van der Giezen, A.G.M. Tielens, W.F. Martin, Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 (2012)CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat T. Pfeiffer, S. Schuster, S. Bonhoeffer, Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001)CrossRefPubMed T. Pfeiffer, S. Schuster, S. Bonhoeffer, Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001)CrossRefPubMed
15.
Zurück zum Zitat M. Saqcena, S. Mukhopadhyay, C. Hosny, A. Alhamed, A. Chatterjee, D.A. Foster, Blocking anaplerotic entry of glutamine into the TCA cycle sensitizes K-Ras mutant cancer cells to cytotoxic drugs. Oncogene 34, 2672–2680 (2015)CrossRefPubMed M. Saqcena, S. Mukhopadhyay, C. Hosny, A. Alhamed, A. Chatterjee, D.A. Foster, Blocking anaplerotic entry of glutamine into the TCA cycle sensitizes K-Ras mutant cancer cells to cytotoxic drugs. Oncogene 34, 2672–2680 (2015)CrossRefPubMed
16.
Zurück zum Zitat J. Son, C.A. Lyssiotis, H. Ying, X. Wang, S. Hua, M. Ligorio, R.M. Perera, C.R. Ferrone, E. Mullarky, N. Shyh-Chang, Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013)CrossRefPubMedPubMedCentral J. Son, C.A. Lyssiotis, H. Ying, X. Wang, S. Hua, M. Ligorio, R.M. Perera, C.R. Ferrone, E. Mullarky, N. Shyh-Chang, Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013)CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat S. Cardaci, M.R. Ciriolo, TCA cycle defects and cancer: When metabolism tunes redox state. Int. J. Cell Biol. 2012, 1–9 (2012)CrossRef S. Cardaci, M.R. Ciriolo, TCA cycle defects and cancer: When metabolism tunes redox state. Int. J. Cell Biol. 2012, 1–9 (2012)CrossRef
18.
Zurück zum Zitat A. King, M.A. Selak, E. Gottlieb, Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer. Oncogene 25, 4675–4682 (2006)CrossRefPubMed A. King, M.A. Selak, E. Gottlieb, Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer. Oncogene 25, 4675–4682 (2006)CrossRefPubMed
19.
Zurück zum Zitat M. Sciacovelli, E. Gonçalves, T.I. Johnson, V.R. Zecchini, E. Gaude, A.V. Drubbel, S.J. Theobald, S.R. Abbo, M.G. Tran, V. Rajeeve, Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537(544), 544–547 (2016)CrossRefPubMedPubMedCentral M. Sciacovelli, E. Gonçalves, T.I. Johnson, V.R. Zecchini, E. Gaude, A.V. Drubbel, S.J. Theobald, S.R. Abbo, M.G. Tran, V. Rajeeve, Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537(544), 544–547 (2016)CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Z. Xie, J. Dai, L. Dai, M. Tan, Z. Cheng, Y. Wu, J.D. Boeke, Y. Zhao, Lysine succinylation and lysine malonylation in histones. Mol. Cell. Proteomics 11, 100–107 (2012)CrossRefPubMedPubMedCentral Z. Xie, J. Dai, L. Dai, M. Tan, Z. Cheng, Y. Wu, J.D. Boeke, Y. Zhao, Lysine succinylation and lysine malonylation in histones. Mol. Cell. Proteomics 11, 100–107 (2012)CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat X. Mu, T. Zhao, C. Xu, W. Shi, B. Geng, J. Shen, C. Zhang, J. Pan, J. Yang, S. Hu, Oncometabolite succinate promotes angiogenesis by upregulating VEGF expression through GPR91-mediated STAT3 and ERK activation. Oncotarget 8, 13174 (2017)PubMedPubMedCentral X. Mu, T. Zhao, C. Xu, W. Shi, B. Geng, J. Shen, C. Zhang, J. Pan, J. Yang, S. Hu, Oncometabolite succinate promotes angiogenesis by upregulating VEGF expression through GPR91-mediated STAT3 and ERK activation. Oncotarget 8, 13174 (2017)PubMedPubMedCentral
22.
Zurück zum Zitat A. Stincone, A. Prigione, T. Cramer, M. Wamelink, K. Campbell, E. Cheung, V. Olin-Sandoval, N. Grüning, A. Krüger, M. Tauqeer Alam, The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. 90, 927–963 (2015)CrossRefPubMed A. Stincone, A. Prigione, T. Cramer, M. Wamelink, K. Campbell, E. Cheung, V. Olin-Sandoval, N. Grüning, A. Krüger, M. Tauqeer Alam, The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. 90, 927–963 (2015)CrossRefPubMed
24.
Zurück zum Zitat E.H. Ma, G. Bantug, T. Griss, S. Condotta, R.M. Johnson, B. Samborska, N. Mainolfi, V. Suri, H. Guak, M.L. Balmer, Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017)CrossRefPubMed E.H. Ma, G. Bantug, T. Griss, S. Condotta, R.M. Johnson, B. Samborska, N. Mainolfi, V. Suri, H. Guak, M.L. Balmer, Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017)CrossRefPubMed
26.
Zurück zum Zitat J. Fan, J. Ye, J.J. Kamphorst, T. Shlomi, C.B. Thompson, J.D. Rabinowitz, Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014)CrossRefPubMedPubMedCentral J. Fan, J. Ye, J.J. Kamphorst, T. Shlomi, C.B. Thompson, J.D. Rabinowitz, Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014)CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat M. Ost, S. Keipert, E.M. van Schothorst, V. Donner, I. van der Stelt, A.P. Kipp, K.-J. Petzke, M. Jove, R. Pamplona, M. Portero-Otin, Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux. FASEB J. 29, 1314–1328 (2015)CrossRefPubMed M. Ost, S. Keipert, E.M. van Schothorst, V. Donner, I. van der Stelt, A.P. Kipp, K.-J. Petzke, M. Jove, R. Pamplona, M. Portero-Otin, Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux. FASEB J. 29, 1314–1328 (2015)CrossRefPubMed
29.
Zurück zum Zitat E.L. Pearce, M.C. Poffenberger, C.H. Chang, R.G. Jones, Fueling immunity: Insights into metabolism and lymphocyte function. Science 342, 1242454 (2013)CrossRefPubMedPubMedCentral E.L. Pearce, M.C. Poffenberger, C.H. Chang, R.G. Jones, Fueling immunity: Insights into metabolism and lymphocyte function. Science 342, 1242454 (2013)CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat C.J. David, M. Chen, M. Assanah, P. Canoll, J.L. Manley, HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368 (2010)CrossRefPubMed C.J. David, M. Chen, M. Assanah, P. Canoll, J.L. Manley, HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368 (2010)CrossRefPubMed
31.
Zurück zum Zitat R. Sears, F. Nuckolls, E. Haura, Y. Taya, K. Tamai, J.R. Nevins, Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000)CrossRefPubMedPubMedCentral R. Sears, F. Nuckolls, E. Haura, Y. Taya, K. Tamai, J.R. Nevins, Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000)CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat C.D. Little, M.M. Nau, D.N. Carney, A.F. Gazdar, J.D. Minna, Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306, 194–196 (1983)CrossRefPubMed C.D. Little, M.M. Nau, D.N. Carney, A.F. Gazdar, J.D. Minna, Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306, 194–196 (1983)CrossRefPubMed
33.
Zurück zum Zitat W. Yang, Y. Zheng, Y. Xia, H. Ji, X. Chen, F. Guo, C.A. Lyssiotis, K. Aldape, L.C. Cantley, Z. Lu, ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 14, 1295–1304 (2012)CrossRefPubMedPubMedCentral W. Yang, Y. Zheng, Y. Xia, H. Ji, X. Chen, F. Guo, C.A. Lyssiotis, K. Aldape, L.C. Cantley, Z. Lu, ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 14, 1295–1304 (2012)CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat T. Hitosugi, S. Kang, M.G. Vander Heiden, T.W. Chung, S. Elf, K. Lythgoe, S. Dong, S. Lonial, X. Wang, G.Z. Chen, J. Xie, T.L. Gu, R.D. Polakiewicz, J.L. Roesel, T.J. Boggon, F.R. Khuri, D.G. Gilliland, L.C. Cantley, J. Kaufman, J. Chen, Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2, ra73 (2009)CrossRefPubMedPubMedCentral T. Hitosugi, S. Kang, M.G. Vander Heiden, T.W. Chung, S. Elf, K. Lythgoe, S. Dong, S. Lonial, X. Wang, G.Z. Chen, J. Xie, T.L. Gu, R.D. Polakiewicz, J.L. Roesel, T.J. Boggon, F.R. Khuri, D.G. Gilliland, L.C. Cantley, J. Kaufman, J. Chen, Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2, ra73 (2009)CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat H.R. Christofk, M.G. Vander Heiden, N. Wu, J.M. Asara, L.C. Cantley, Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008)CrossRefPubMed H.R. Christofk, M.G. Vander Heiden, N. Wu, J.M. Asara, L.C. Cantley, Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008)CrossRefPubMed
36.
Zurück zum Zitat I. Nemazanyy, C. Espeillac, M. Pende, G. Panasyuk, Role of PI3K, mTOR and Akt2 signalling in hepatic tumorigenesis via the control of PKM2 expression. Biochem. Soc. Trans. 41, 917–922 (2013)CrossRefPubMed I. Nemazanyy, C. Espeillac, M. Pende, G. Panasyuk, Role of PI3K, mTOR and Akt2 signalling in hepatic tumorigenesis via the control of PKM2 expression. Biochem. Soc. Trans. 41, 917–922 (2013)CrossRefPubMed
38.
Zurück zum Zitat J.D. Dombrauckas, B.D. Santarsiero, A.D. Mesecar, Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44, 9417–9429 (2005)CrossRefPubMed J.D. Dombrauckas, B.D. Santarsiero, A.D. Mesecar, Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44, 9417–9429 (2005)CrossRefPubMed
39.
Zurück zum Zitat B. Chaneton, P. Hillmann, L. Zheng, A.C.L. Martin, O.D.K. Maddocks, A. Chokkathukalam, J.E. Coyle, A. Jankevics, F.P. Holding, K.H. Vousden, C. Frezza, M. O’Reilly, E. Gottlieb, Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458–462 (2012)CrossRefPubMedPubMedCentral B. Chaneton, P. Hillmann, L. Zheng, A.C.L. Martin, O.D.K. Maddocks, A. Chokkathukalam, J.E. Coyle, A. Jankevics, F.P. Holding, K.H. Vousden, C. Frezza, M. O’Reilly, E. Gottlieb, Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458–462 (2012)CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat M. Yang, K.H. Vousden, Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016)CrossRefPubMed M. Yang, K.H. Vousden, Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016)CrossRefPubMed
41.
Zurück zum Zitat C. Kung, J. Hixon, S. Choe, K. Marks, S. Gross, E. Murphy, B. DeLaBarre, G. Cianchetta, S. Sethumadhavan, X. Wang, Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol. 19, 1187–1198 (2012)CrossRefPubMedPubMedCentral C. Kung, J. Hixon, S. Choe, K. Marks, S. Gross, E. Murphy, B. DeLaBarre, G. Cianchetta, S. Sethumadhavan, X. Wang, Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol. 19, 1187–1198 (2012)CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat H.P. Morgan, F.J. O’Reilly, M.A. Wear, J.R. O’Neill, L.A. Fothergill-Gilmore, T. Hupp, M.D. Walkinshaw, M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 110, 5881–5886 (2013)CrossRefPubMedPubMedCentral H.P. Morgan, F.J. O’Reilly, M.A. Wear, J.R. O’Neill, L.A. Fothergill-Gilmore, T. Hupp, M.D. Walkinshaw, M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 110, 5881–5886 (2013)CrossRefPubMedPubMedCentral
43.
44.
Zurück zum Zitat T. Sakata, G. Ferdous, T. Tsuruta, T. Satoh, S. Baba, T. Muto, A. Ueno, Y. Kanai, H. Endou, I. Okayasu, L-type amino-acid transporter 1 as a novel biomarker for high-grade malignancy in prostate cancer. Pathol. Int. 59, 7–18 (2009)CrossRefPubMed T. Sakata, G. Ferdous, T. Tsuruta, T. Satoh, S. Baba, T. Muto, A. Ueno, Y. Kanai, H. Endou, I. Okayasu, L-type amino-acid transporter 1 as a novel biomarker for high-grade malignancy in prostate cancer. Pathol. Int. 59, 7–18 (2009)CrossRefPubMed
45.
Zurück zum Zitat H. Nawashiro, N. Otani, N. Shinomiya, S. Fukui, H. Ooigawa, K. Shima, H. Matsuo, Y. Kanai, H. Endou, L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int. J. Cancer 119, 484–492 (2006)CrossRefPubMed H. Nawashiro, N. Otani, N. Shinomiya, S. Fukui, H. Ooigawa, K. Shima, H. Matsuo, Y. Kanai, H. Endou, L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int. J. Cancer 119, 484–492 (2006)CrossRefPubMed
46.
Zurück zum Zitat M.-A. Bjornsti, P.J. Houghton, The TOR pathway: A target for cancer therapy. Nat. Rev. 4, 335–348 (2004)CrossRef M.-A. Bjornsti, P.J. Houghton, The TOR pathway: A target for cancer therapy. Nat. Rev. 4, 335–348 (2004)CrossRef
47.
Zurück zum Zitat D. Anastasiou, G. Poulogiannis, J.M. Asara, M.B. Boxer, J.K. Jiang, M. Shen, G. Bellinger, A.T. Sasaki, J.W. Locasale, D.S. Auld, C.J. Thomas, M.G. Vander Heiden, L.C. Cantley, Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011)CrossRefPubMedPubMedCentral D. Anastasiou, G. Poulogiannis, J.M. Asara, M.B. Boxer, J.K. Jiang, M. Shen, G. Bellinger, A.T. Sasaki, J.W. Locasale, D.S. Auld, C.J. Thomas, M.G. Vander Heiden, L.C. Cantley, Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011)CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat W.J. Israelsen, T.L. Dayton, S.M. Davidson, B.P. Fiske, A.M. Hosios, G. Bellinger, J. Li, Y. Yu, M. Sasaki, J.W. Horner, PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155, 397–409 (2013)CrossRefPubMed W.J. Israelsen, T.L. Dayton, S.M. Davidson, B.P. Fiske, A.M. Hosios, G. Bellinger, J. Li, Y. Yu, M. Sasaki, J.W. Horner, PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155, 397–409 (2013)CrossRefPubMed
49.
Zurück zum Zitat T.L. Dayton, V. Gocheva, K.M. Miller, W.J. Israelsen, A. Bhutkar, C.B. Clish, S.M. Davidson, A. Luengo, R.T. Bronson, T. Jacks, M.G. Vander Heiden, Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes Dev. 30, 1020–1033 (2016)CrossRefPubMedPubMedCentral T.L. Dayton, V. Gocheva, K.M. Miller, W.J. Israelsen, A. Bhutkar, C.B. Clish, S.M. Davidson, A. Luengo, R.T. Bronson, T. Jacks, M.G. Vander Heiden, Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes Dev. 30, 1020–1033 (2016)CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat A.N. Lau, W.J. Israelsen, J. Roper, M.J. Sinnamon, L. Georgeon, T.L. Dayton, A.L. Hillis, O.H. Yilmaz, D. Di Vizio, K.E. Hung, M.G. Vander Heiden, PKM2 is not required for colon cancer initiated by APC loss. Cancer Metab. 5, 10 (2017)CrossRefPubMedPubMedCentral A.N. Lau, W.J. Israelsen, J. Roper, M.J. Sinnamon, L. Georgeon, T.L. Dayton, A.L. Hillis, O.H. Yilmaz, D. Di Vizio, K.E. Hung, M.G. Vander Heiden, PKM2 is not required for colon cancer initiated by APC loss. Cancer Metab. 5, 10 (2017)CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat X. Gao, H. Wang, J.J. Yang, X. Liu, Z.R. Liu, Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 45, 598–609 (2012)CrossRefPubMedPubMedCentral X. Gao, H. Wang, J.J. Yang, X. Liu, Z.R. Liu, Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 45, 598–609 (2012)CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat W. Yang, Y. Xia, D. Hawke, X. Li, J. Liang, D. Xing, K. Aldape, T. Hunter, W.K. Alfred Yung, Z. Lu, PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685–696 (2012)CrossRefPubMedPubMedCentral W. Yang, Y. Xia, D. Hawke, X. Li, J. Liang, D. Xing, K. Aldape, T. Hunter, W.K. Alfred Yung, Z. Lu, PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685–696 (2012)CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat S. Wolff, J.S. Weissman, A. Dillin, Differential scales of protein quality control. Cell 157, 52–64 (2014)CrossRefPubMed S. Wolff, J.S. Weissman, A. Dillin, Differential scales of protein quality control. Cell 157, 52–64 (2014)CrossRefPubMed
55.
Zurück zum Zitat A. Mullard, Cancer metabolism pipeline breaks new ground. Nat. Rev. Drug Discov. 15, 735–737 (2016)CrossRefPubMed A. Mullard, Cancer metabolism pipeline breaks new ground. Nat. Rev. Drug Discov. 15, 735–737 (2016)CrossRefPubMed
56.
Zurück zum Zitat K.M. Nieman, H.A. Kenny, C.V. Penicka, A. Ladanyi, R. Buell-Gutbrod, M.R. Zillhardt, I.L. Romero, M.S. Carey, G.B. Mills, G.S. Hotamisligil, S.D. Yamada, M.E. Peter, K. Gwin, E. Lengyel, Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011) K.M. Nieman, H.A. Kenny, C.V. Penicka, A. Ladanyi, R. Buell-Gutbrod, M.R. Zillhardt, I.L. Romero, M.S. Carey, G.B. Mills, G.S. Hotamisligil, S.D. Yamada, M.E. Peter, K. Gwin, E. Lengyel, Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011)
57.
Zurück zum Zitat H. Ye, B. Adane, N. Khan, T. Sullivan, M. Minhajuddin, M. Gasparetto, B. Stevens, S. Pei, M. Balys, J.M. Ashton, Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19, 23–37 (2016)CrossRefPubMedPubMedCentral H. Ye, B. Adane, N. Khan, T. Sullivan, M. Minhajuddin, M. Gasparetto, B. Stevens, S. Pei, M. Balys, J.M. Ashton, Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19, 23–37 (2016)CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat S. Pavlides, D. Whitaker-Menezes, R. Castello-Cros, N. Flomenberg, A.K. Witkiewicz, P.G. Frank, M.C. Casimiro, C. Wang, P. Fortina, S. Addya, R.G. Pestell, U.E. Martinez-Outschoorn, F. Sotgia, M.P. Lisanti, The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984–4001 (2009)CrossRefPubMed S. Pavlides, D. Whitaker-Menezes, R. Castello-Cros, N. Flomenberg, A.K. Witkiewicz, P.G. Frank, M.C. Casimiro, C. Wang, P. Fortina, S. Addya, R.G. Pestell, U.E. Martinez-Outschoorn, F. Sotgia, M.P. Lisanti, The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984–4001 (2009)CrossRefPubMed
59.
Zurück zum Zitat L. Yang, S. Venneti, D. Nagrath, Glutaminolysis: A hallmark of cancer metabolism. Annu. Rev. Biomed. Eng. 19, 163–194 (2017)CrossRefPubMed L. Yang, S. Venneti, D. Nagrath, Glutaminolysis: A hallmark of cancer metabolism. Annu. Rev. Biomed. Eng. 19, 163–194 (2017)CrossRefPubMed
60.
Zurück zum Zitat S.L. Warner, K.J. Carpenter, D.J. Bearss, Activators of PKM2 in cancer metabolism. Future Med. Chem. 6, 1167–1178 (2014)CrossRefPubMed S.L. Warner, K.J. Carpenter, D.J. Bearss, Activators of PKM2 in cancer metabolism. Future Med. Chem. 6, 1167–1178 (2014)CrossRefPubMed
61.
Zurück zum Zitat S.Y. Lunt, V. Muralidhar, A.M. Hosios, W.J. Israelsen, D.Y. Gui, L. Newhouse, M. Ogrodzinski, V. Hecht, K. Xu, P.N.M. Acevedo, D.P. Hollern, G. Bellinger, T.L. Dayton, S. Christen, I. Elia, A.T. Dinh, G. Stephanopoulos, S.R. Manalis, M.B. Yaffe, E.R. Andrechek, S.M. Fendt, M.G. Vander Heiden, Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 57, 95–107 (2015)CrossRefPubMed S.Y. Lunt, V. Muralidhar, A.M. Hosios, W.J. Israelsen, D.Y. Gui, L. Newhouse, M. Ogrodzinski, V. Hecht, K. Xu, P.N.M. Acevedo, D.P. Hollern, G. Bellinger, T.L. Dayton, S. Christen, I. Elia, A.T. Dinh, G. Stephanopoulos, S.R. Manalis, M.B. Yaffe, E.R. Andrechek, S.M. Fendt, M.G. Vander Heiden, Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation. Mol. Cell 57, 95–107 (2015)CrossRefPubMed
62.
Zurück zum Zitat S.P. Gravel, L. Hulea, N. Toban, E. Birman, M.J. Blouin, M. Zakikhani, Y. Zhao, I. Topisirovic, J. St-Pierre, M. Pollak, Serine deprivation enhances antineoplastic activity of biguanides. Cancer Res. 74, 7521–7533 (2014)CrossRefPubMed S.P. Gravel, L. Hulea, N. Toban, E. Birman, M.J. Blouin, M. Zakikhani, Y. Zhao, I. Topisirovic, J. St-Pierre, M. Pollak, Serine deprivation enhances antineoplastic activity of biguanides. Cancer Res. 74, 7521–7533 (2014)CrossRefPubMed
63.
Zurück zum Zitat A. Janzer, N.J. German, K.N. Gonzalez-Herrera, J.M. Asara, M.C. Haigis, K. Struhl, Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc. Natl. Acad. Sci. U.S.A. 111, 10574–10579 (2014) A. Janzer, N.J. German, K.N. Gonzalez-Herrera, J.M. Asara, M.C. Haigis, K. Struhl, Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc. Natl. Acad. Sci. U.S.A. 111, 10574–10579 (2014)
64.
Zurück zum Zitat E.M. Palsson-Mcdermott, A.M. Curtis, G. Goel, M.A.R. Lauterbach, F.J. Sheedy, L.E. Gleeson, M.W.M. Van Den Bosch, S.R. Quinn, R. Domingo-Fernandez, D.G.W. Johnson, J.K. Jiang, W.J. Israelsen, J. Keane, C. Thomas, C. Clish, M. Vanden Heiden, R.J. Xavier, L.A.J. O’Neill, Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015)CrossRefPubMedPubMedCentral E.M. Palsson-Mcdermott, A.M. Curtis, G. Goel, M.A.R. Lauterbach, F.J. Sheedy, L.E. Gleeson, M.W.M. Van Den Bosch, S.R. Quinn, R. Domingo-Fernandez, D.G.W. Johnson, J.K. Jiang, W.J. Israelsen, J. Keane, C. Thomas, C. Clish, M. Vanden Heiden, R.J. Xavier, L.A.J. O’Neill, Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015)CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat A. Yuan, Y.J. Hsiao, H.Y. Chen, H.W. Chen, C.C. Ho, Y.Y. Chen, Y.C. Liu, T.H. Hong, S.L. Yu, J.J. W. Chen, P.C. Yang, Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci. Rep. 5, 14273 (2015) A. Yuan, Y.J. Hsiao, H.Y. Chen, H.W. Chen, C.C. Ho, Y.Y. Chen, Y.C. Liu, T.H. Hong, S.L. Yu, J.J. W. Chen, P.C. Yang, Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci. Rep. 5, 14273 (2015)
66.
Zurück zum Zitat M. Zhang, Y. He, X. Sun, Q. Li, W. Wang, A. Zhao, W. Di, A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J. Ovarian Res. 7, 1 (2014)CrossRef M. Zhang, Y. He, X. Sun, Q. Li, W. Wang, A. Zhao, W. Di, A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J. Ovarian Res. 7, 1 (2014)CrossRef
67.
Zurück zum Zitat G. Comito, E. Giannoni, C.P. Segura, P. Barcellos-De-Souza, M.R. Raspollini, G. Baroni, M. Lanciotti, S. Serni, P. Chiarugi, Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 33, 2423–2431 (2014)CrossRefPubMed G. Comito, E. Giannoni, C.P. Segura, P. Barcellos-De-Souza, M.R. Raspollini, G. Baroni, M. Lanciotti, S. Serni, P. Chiarugi, Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 33, 2423–2431 (2014)CrossRefPubMed
68.
Zurück zum Zitat L.M. Nusblat, M.J. Carroll, C.M. Roth, Crosstalk between M2 macrophages and glioma stem cells. Cell. Oncol. 40, 471–482 (2017)CrossRef L.M. Nusblat, M.J. Carroll, C.M. Roth, Crosstalk between M2 macrophages and glioma stem cells. Cell. Oncol. 40, 471–482 (2017)CrossRef
69.
Zurück zum Zitat J.I. Fletcher, R.T. Williams, M.J. Henderson, M.D. Norris, M. Haber, ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist. Updat. 26, 1–9 (2016)CrossRefPubMed J.I. Fletcher, R.T. Williams, M.J. Henderson, M.D. Norris, M. Haber, ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist. Updat. 26, 1–9 (2016)CrossRefPubMed
70.
Zurück zum Zitat R.J. Kathawala, P. Gupta, C.R. Ashby, Z.-S. Chen, The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updat. 18, 1–17 (2015)CrossRefPubMed R.J. Kathawala, P. Gupta, C.R. Ashby, Z.-S. Chen, The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updat. 18, 1–17 (2015)CrossRefPubMed
71.
Zurück zum Zitat Y. Kam, T. Das, H. Tian, P. Foroutan, E. Ruiz, G. Martinez, S. Minton, R.J. Gillies, R.A. Gatenby, Sweat but no gain: Inhibiting proliferation of multidrug resistant cancer cells with “ersatzdroges”. Int. J. Cancer 136, E188–E196 (2015)CrossRefPubMed Y. Kam, T. Das, H. Tian, P. Foroutan, E. Ruiz, G. Martinez, S. Minton, R.J. Gillies, R.A. Gatenby, Sweat but no gain: Inhibiting proliferation of multidrug resistant cancer cells with “ersatzdroges”. Int. J. Cancer 136, E188–E196 (2015)CrossRefPubMed
72.
Zurück zum Zitat C. Pan, X. Wang, K. Shi, Y. Zheng, J. Li, Y. Chen, L. Jin, Z. Pan, MiR-122 Reverses the doxorubicinresistance in hepatocellular carcinoma cells through regulating the tumor metabolism. PLoS One 11, e0152090 (2016) C. Pan, X. Wang, K. Shi, Y. Zheng, J. Li, Y. Chen, L. Jin, Z. Pan, MiR-122 Reverses the doxorubicinresistance in hepatocellular carcinoma cells through regulating the tumor metabolism. PLoS One 11, e0152090 (2016)
73.
Zurück zum Zitat Y. Lin, F. Lv, F. Liu, X. Guo, Y. Fan, F. Gu, J. Gu, L. Fu, High expression of pyruvate kinase M2 is associated with Chemosensitivity to Epirubicin and 5-fluorouracil in breast Cancer. J. Cancer 6, 1130–1139 (2015)CrossRefPubMedPubMedCentral Y. Lin, F. Lv, F. Liu, X. Guo, Y. Fan, F. Gu, J. Gu, L. Fu, High expression of pyruvate kinase M2 is associated with Chemosensitivity to Epirubicin and 5-fluorouracil in breast Cancer. J. Cancer 6, 1130–1139 (2015)CrossRefPubMedPubMedCentral
Metadaten
Titel
Role of PKM2 in directing the metabolic fate of glucose in cancer: a potential therapeutic target
verfasst von
Gustav van Niekerk
Anna-Mart Engelbrecht
Publikationsdatum
24.05.2018
Verlag
Springer Netherlands
Erschienen in
Cellular Oncology / Ausgabe 4/2018
Print ISSN: 2211-3428
Elektronische ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-018-0383-7

Weitere Artikel der Ausgabe 4/2018

Cellular Oncology 4/2018 Zur Ausgabe

Neu im Fachgebiet Pathologie