Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 2/2013

01.02.2013 | Original Article

Rosiglitazone and Gemcitabine in combination reduces immune suppression and modulates T cell populations in pancreatic cancer

verfasst von: Stephanie K. Bunt, Ashley M. Mohr, Jennifer M. Bailey, Paul M. Grandgenett, Michael A. Hollingsworth

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 2/2013

Einloggen, um Zugang zu erhalten

Abstract

Pancreatic ductal adenocarcinoma is a leading cause of cancer mortality with a dismal 2–5 % 5-year survival rate. Monotherapy with Gemcitabine has limited success, highlighting the need for additional therapies that enhance the efficacy of current treatments. We evaluated the combination of Gemcitabine and Rosiglitazone, an FDA-approved drug for the treatment of type II diabetes, in an immunocompetent transplantable mouse model of pancreatic cancer. Tumor progression, survival, and metastases were evaluated in immunocompetent mice with subcutaneous or orthotopic pancreatic tumors treated with Pioglitazone, Rosiglitazone, Gemcitabine, or combinations of these. We characterized the impact of high-dose Rosiglitazone and Gemcitabine therapy on immune suppressive mediators, including MDSC and T regulatory cells, and on modulation of peripheral and intra-tumoral T cell populations. Combinations of Rosiglitazone and Gemcitabine significantly reduced tumor progression and metastases, enhanced apoptosis, and significantly extended overall survival compared to Gemcitabine alone. Rosiglitazone altered tumor-associated immune suppressive mediators by limiting early MDSC accumulation and intra-tumoral T regulatory cells. Combination therapy with Rosiglitazone and Gemcitabine modulated T cell populations by enhancing circulating CD8+ T cells and intra-tumoral CD4+ and CD8+ T cells while limiting T regulatory cells. The results suggest that Rosiglitazone, in combination with Gemcitabine, decreases immune suppressive mechanisms in immunocompetent animals and provides pre-clinical data in support of combining Rosiglitazone and Gemcitabine as a clinical therapy for pancreatic cancer.
Literatur
1.
Zurück zum Zitat Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12:5423–5434PubMedCrossRef Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12:5423–5434PubMedCrossRef
2.
Zurück zum Zitat Zhao F, Obermann S, von Wasielewski R, Haile L, Manns MP, Korangy F, Greten T (2009) Increase in frequency of myeloid-derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology 128:141–149PubMedCrossRef Zhao F, Obermann S, von Wasielewski R, Haile L, Manns MP, Korangy F, Greten T (2009) Increase in frequency of myeloid-derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology 128:141–149PubMedCrossRef
3.
Zurück zum Zitat Mukherjee P, Basu GD, Tinder TL, Subramani DB, Bradley JM, Arefayene M, Skaar T, De petris G (2009) Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition. J Immunol 182:216–224PubMedCrossRef Mukherjee P, Basu GD, Tinder TL, Subramani DB, Bradley JM, Arefayene M, Skaar T, De petris G (2009) Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition. J Immunol 182:216–224PubMedCrossRef
4.
Zurück zum Zitat Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD (2009) Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol 9:900–909PubMedCrossRef Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD (2009) Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol 9:900–909PubMedCrossRef
5.
Zurück zum Zitat Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, Holden SA, Chen LB, Fletcher C, Spiegelman BM (1998) Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 4:1046–1052PubMedCrossRef Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, Holden SA, Chen LB, Fletcher C, Spiegelman BM (1998) Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 4:1046–1052PubMedCrossRef
6.
Zurück zum Zitat Koeffler HP (2003) Peroxisome proliferator-activated receptor gamma and cancers. Clin Cancer Res 9:1–9PubMed Koeffler HP (2003) Peroxisome proliferator-activated receptor gamma and cancers. Clin Cancer Res 9:1–9PubMed
7.
Zurück zum Zitat Itami A, Watanabe G, Shimada Y, Hashimoto Y, Kawamura J, Kato M et al (2001) Ligands for peroxisome proliferator-activated receptor gamma inhibit growth of pancreatic cancers both in vitro and in vivo. Int J Cancer 94:370–376PubMedCrossRef Itami A, Watanabe G, Shimada Y, Hashimoto Y, Kawamura J, Kato M et al (2001) Ligands for peroxisome proliferator-activated receptor gamma inhibit growth of pancreatic cancers both in vitro and in vivo. Int J Cancer 94:370–376PubMedCrossRef
8.
Zurück zum Zitat Grommes C, Landreth GE, Sastre M, Beck M, Feinstein DL, Jacobs AH, Schiegel U, Heneka MT (2006) Inhibition of in vivo glioma growth and invasion by peroxisome proliferator-activated receptor gamma agonist treatment. Mol Pharmacol 70:1524–1533PubMedCrossRef Grommes C, Landreth GE, Sastre M, Beck M, Feinstein DL, Jacobs AH, Schiegel U, Heneka MT (2006) Inhibition of in vivo glioma growth and invasion by peroxisome proliferator-activated receptor gamma agonist treatment. Mol Pharmacol 70:1524–1533PubMedCrossRef
9.
Zurück zum Zitat Kassouf W, Chintharlapalli S, Abdelrahim M, Nelkin G, Safe S, Kamat AM (2006) Inhibition of bladder tumor growth by 1,1-bis[3′-indolyl]-1-[p-substitutedphenyl]methanes: a new class of peroxisome proliferator-activated receptor gamma agonists. Cancer Res 66:412–418PubMedCrossRef Kassouf W, Chintharlapalli S, Abdelrahim M, Nelkin G, Safe S, Kamat AM (2006) Inhibition of bladder tumor growth by 1,1-bis[3′-indolyl]-1-[p-substitutedphenyl]methanes: a new class of peroxisome proliferator-activated receptor gamma agonists. Cancer Res 66:412–418PubMedCrossRef
10.
Zurück zum Zitat Sawai H, Liu J, Reber HA, Hines OJ, Eibl G (2006) Activation of peroxisome proliferator-activated receptor-gamma decreases pancreatic cancer cell invasion through modulation of the plasminogen activator system. Mol Cancer Res 4:159–167PubMedCrossRef Sawai H, Liu J, Reber HA, Hines OJ, Eibl G (2006) Activation of peroxisome proliferator-activated receptor-gamma decreases pancreatic cancer cell invasion through modulation of the plasminogen activator system. Mol Cancer Res 4:159–167PubMedCrossRef
11.
Zurück zum Zitat Necela BM, Su W, Thompson EA (2008) Toll-like receptor 4 mediates cross-talk between peroxisome proliferator-activated receptor gamma and nuclear factor-kappaB in macrophages. Immunology 125:344–358PubMedCrossRef Necela BM, Su W, Thompson EA (2008) Toll-like receptor 4 mediates cross-talk between peroxisome proliferator-activated receptor gamma and nuclear factor-kappaB in macrophages. Immunology 125:344–358PubMedCrossRef
12.
Zurück zum Zitat Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA, Flanigan A, Murthy S, Lazar MA, Wu GD (1999) A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J Clin Invest 104:383–389PubMedCrossRef Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA, Flanigan A, Murthy S, Lazar MA, Wu GD (1999) A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J Clin Invest 104:383–389PubMedCrossRef
13.
Zurück zum Zitat Govindarajan R, Ratnasinghe L, Simmons DL, Siegel ER, Midathada MV, Kim L, Kim PJ, Owens RJ, Lang NP (2007) Thiazolidinediones and the risk of lung, prostate, and colon cancer in patients with diabetes. J Clin Oncol 25:1476–1481PubMedCrossRef Govindarajan R, Ratnasinghe L, Simmons DL, Siegel ER, Midathada MV, Kim L, Kim PJ, Owens RJ, Lang NP (2007) Thiazolidinediones and the risk of lung, prostate, and colon cancer in patients with diabetes. J Clin Oncol 25:1476–1481PubMedCrossRef
14.
Zurück zum Zitat Monami M, Lamanna C, Marchionni N, Mannucci E (2008) Rosiglitazone and risk of cancer: a meta-analysis of randomized clinical trials. Diabetes Care 31:1455–1460PubMedCrossRef Monami M, Lamanna C, Marchionni N, Mannucci E (2008) Rosiglitazone and risk of cancer: a meta-analysis of randomized clinical trials. Diabetes Care 31:1455–1460PubMedCrossRef
15.
Zurück zum Zitat Demetri GD, Fletcher CD, Mueller E, Sarraf P, Naujoks R, Campbell N, Spiegelman BM, Singer S (1999) Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci USA 96:3951–3956PubMedCrossRef Demetri GD, Fletcher CD, Mueller E, Sarraf P, Naujoks R, Campbell N, Spiegelman BM, Singer S (1999) Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci USA 96:3951–3956PubMedCrossRef
16.
Zurück zum Zitat Hisatake JI, Ikezoe T, Carey M, Holden S, Tomoyasu S, Koeffler HP (2000) Down-Regulation of prostate-specific antigen expression by ligands for peroxisome proliferator-activated receptor gamma in human prostate cancer. Cancer Res 60:5494–5498PubMed Hisatake JI, Ikezoe T, Carey M, Holden S, Tomoyasu S, Koeffler HP (2000) Down-Regulation of prostate-specific antigen expression by ligands for peroxisome proliferator-activated receptor gamma in human prostate cancer. Cancer Res 60:5494–5498PubMed
17.
Zurück zum Zitat Feng YH, Velazquez-Torres G, Gully C, Chen J, Lee MH, Yeung SC (2011) The impact of type 2 diabetes and antidiabetic drugs on cancer cell growth. J Cell Mol Med 15:825–836PubMedCrossRef Feng YH, Velazquez-Torres G, Gully C, Chen J, Lee MH, Yeung SC (2011) The impact of type 2 diabetes and antidiabetic drugs on cancer cell growth. J Cell Mol Med 15:825–836PubMedCrossRef
18.
Zurück zum Zitat Salesiotis AN, Laguinge L, Ling S, Marshall J, Jessup JM (2004) Rosiglitazone works synergistically with Gemcitabine to induce cell death in pancreas cancer cell lines. Clin Pharmacol Ther 75:P61CrossRef Salesiotis AN, Laguinge L, Ling S, Marshall J, Jessup JM (2004) Rosiglitazone works synergistically with Gemcitabine to induce cell death in pancreas cancer cell lines. Clin Pharmacol Ther 75:P61CrossRef
19.
Zurück zum Zitat Zhang YQ, Tang XQ, Sun L, Dong L, Qin Y, Liu HQ, Xia H, Cao JG (2007) Rosiglitazone enhances fluorouracil-induced apoptosis of HT-29 cells by activating peroxisome proliferator-activated receptor gamma. World J Gastroenterol 13:1534–1540PubMedCrossRef Zhang YQ, Tang XQ, Sun L, Dong L, Qin Y, Liu HQ, Xia H, Cao JG (2007) Rosiglitazone enhances fluorouracil-induced apoptosis of HT-29 cells by activating peroxisome proliferator-activated receptor gamma. World J Gastroenterol 13:1534–1540PubMedCrossRef
20.
Zurück zum Zitat Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2:748–759PubMedCrossRef Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2:748–759PubMedCrossRef
21.
Zurück zum Zitat Van Ginderachter JA, Meerschaut S, Liu Y, Brys L, De Groeve K, Hassanzadeh Ghassabeh G, Geert R, De Baetselier P (2006) Peroxisome proliferator-activated receptor gamma [PPARgamma] ligands reverse CTL suppression by alternatively activated [M2] macrophages in cancer. Blood 108:525–535PubMedCrossRef Van Ginderachter JA, Meerschaut S, Liu Y, Brys L, De Groeve K, Hassanzadeh Ghassabeh G, Geert R, De Baetselier P (2006) Peroxisome proliferator-activated receptor gamma [PPARgamma] ligands reverse CTL suppression by alternatively activated [M2] macrophages in cancer. Blood 108:525–535PubMedCrossRef
22.
Zurück zum Zitat Bailey JM, Mohr AM, Hollingsworth MA (2009) Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer. Oncogene 28:3513–3525PubMedCrossRef Bailey JM, Mohr AM, Hollingsworth MA (2009) Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer. Oncogene 28:3513–3525PubMedCrossRef
23.
Zurück zum Zitat Tsutsumida H, Swanson BJ, Singh PK, Caffrey TC, Kitajima S, Goto M, Yonezawa S, Hollingsworth MA (2006) RNA interference suppression of MUC1 reduces the growth rate and metastatic phenotype of human pancreatic cancer cells. Clin Cancer Res 12:2976–2987PubMedCrossRef Tsutsumida H, Swanson BJ, Singh PK, Caffrey TC, Kitajima S, Goto M, Yonezawa S, Hollingsworth MA (2006) RNA interference suppression of MUC1 reduces the growth rate and metastatic phenotype of human pancreatic cancer cells. Clin Cancer Res 12:2976–2987PubMedCrossRef
24.
Zurück zum Zitat Behrens ME, Grandgenett PM, Bailey JM, Singh PK, Yi CH, Yu F, Hollingsworth MA (2101) The reactive tumor microenvironment: MUC1 signaling directly reprograms transcription of CTGF. Oncogene 29:5667–5677 Behrens ME, Grandgenett PM, Bailey JM, Singh PK, Yi CH, Yu F, Hollingsworth MA (2101) The reactive tumor microenvironment: MUC1 signaling directly reprograms transcription of CTGF. Oncogene 29:5667–5677
25.
Zurück zum Zitat Singh PK, Behrens ME, Eggers JP, Cerny RL, Bailey JM, Shanmugam K, Gendler SJ, Bennett EP, Hollingsworth MA (2008) Phosphorylation of MUC1 by Met modulates interaction with p53 and MMP1 expression. J Biol Chem 283:26985–26995PubMedCrossRef Singh PK, Behrens ME, Eggers JP, Cerny RL, Bailey JM, Shanmugam K, Gendler SJ, Bennett EP, Hollingsworth MA (2008) Phosphorylation of MUC1 by Met modulates interaction with p53 and MMP1 expression. J Biol Chem 283:26985–26995PubMedCrossRef
26.
Zurück zum Zitat Kusmartsev SA, Li Y, Chen SH (2000) Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 165:779–785PubMed Kusmartsev SA, Li Y, Chen SH (2000) Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 165:779–785PubMed
27.
Zurück zum Zitat Galli A, Ceni E, Crabb DW, Mello T, Salzano R, Grappone C, Milani S, Surrenti E, Surrenti C, Casini A (2004) Antidiabetic thiazolidinediones inhibit invasiveness of pancreatic cancer cells via PPARgamma independent mechanisms. Gut 53:1688–1697PubMedCrossRef Galli A, Ceni E, Crabb DW, Mello T, Salzano R, Grappone C, Milani S, Surrenti E, Surrenti C, Casini A (2004) Antidiabetic thiazolidinediones inhibit invasiveness of pancreatic cancer cells via PPARgamma independent mechanisms. Gut 53:1688–1697PubMedCrossRef
28.
Zurück zum Zitat Michalik L, Desvergne B, Wahli W (2004) Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer 4:61–70PubMedCrossRef Michalik L, Desvergne B, Wahli W (2004) Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer 4:61–70PubMedCrossRef
29.
Zurück zum Zitat Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284–290PubMed Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284–290PubMed
30.
Zurück zum Zitat Farrow B, Sugiyama Y, Chen A, Uffort E, Nealon W, Mark Evers B (2004) Inflammatory mechanisms contributing to pancreatic cancer development. Ann Surg 239:763–769, discussion 9–71 Farrow B, Sugiyama Y, Chen A, Uffort E, Nealon W, Mark Evers B (2004) Inflammatory mechanisms contributing to pancreatic cancer development. Ann Surg 239:763–769, discussion 9–71
31.
Zurück zum Zitat Han S, Roman J (2006) Rosiglitazone suppresses human lung carcinoma cell growth through PPARgamma-dependent and PPARgamma-independent signal pathways. Mol Cancer Ther 5:430–437PubMedCrossRef Han S, Roman J (2006) Rosiglitazone suppresses human lung carcinoma cell growth through PPARgamma-dependent and PPARgamma-independent signal pathways. Mol Cancer Ther 5:430–437PubMedCrossRef
32.
Zurück zum Zitat Panigrahy D, Singer S, Shen LQ, Butterfield CE, Freedman DA, Chen EJ, Moses MA, Kilroy S, Duensing S, Fletcher C, Fletcher JA, Hlatky L et al (2002) PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest 110:923–932PubMed Panigrahy D, Singer S, Shen LQ, Butterfield CE, Freedman DA, Chen EJ, Moses MA, Kilroy S, Duensing S, Fletcher C, Fletcher JA, Hlatky L et al (2002) PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest 110:923–932PubMed
33.
Zurück zum Zitat Bradley MC, Hughes CM, Cantwell MM, Napolitano G, Murray LJ (2010) Non-steroidal anti-inflammatory drugs and pancreatic cancer risk: a nested case-control study. Br J Cancer 102:1415–1421PubMedCrossRef Bradley MC, Hughes CM, Cantwell MM, Napolitano G, Murray LJ (2010) Non-steroidal anti-inflammatory drugs and pancreatic cancer risk: a nested case-control study. Br J Cancer 102:1415–1421PubMedCrossRef
34.
Zurück zum Zitat Molina MA, Sitja-Arnau M, Lemoine MG, Frazier ML, Sinicrope FA (1999) Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: growth inhibition by nonsteroidal anti-inflammatory drugs. Cancer Res 59:4356–4362PubMed Molina MA, Sitja-Arnau M, Lemoine MG, Frazier ML, Sinicrope FA (1999) Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: growth inhibition by nonsteroidal anti-inflammatory drugs. Cancer Res 59:4356–4362PubMed
35.
Zurück zum Zitat Yip-Schneider MT, Wu H, Njoku V, Ralstin M, Holcomb B, Crooks PA, Neelakantan S, Sweeney CJ, Schmidt CM (2008) Effect of celecoxib and the novel anti-cancer agent, dimethylamino-parthenolide, in a developmental model of pancreatic cancer. Pancreas 37:e45–e53PubMedCrossRef Yip-Schneider MT, Wu H, Njoku V, Ralstin M, Holcomb B, Crooks PA, Neelakantan S, Sweeney CJ, Schmidt CM (2008) Effect of celecoxib and the novel anti-cancer agent, dimethylamino-parthenolide, in a developmental model of pancreatic cancer. Pancreas 37:e45–e53PubMedCrossRef
36.
Zurück zum Zitat Ferrari V, Valcamonico F, Amoroso V, Simoncini E, Vassalli L, Marpicati P, Pangoni G, Grisanti S, Tiberio GA, Nodari F, Strina C, Marini G (2006) Gemcitabine plus celecoxib [GECO] in advanced pancreatic cancer: a phase II trial. Cancer Chemother Pharmacol 57:185–190PubMedCrossRef Ferrari V, Valcamonico F, Amoroso V, Simoncini E, Vassalli L, Marpicati P, Pangoni G, Grisanti S, Tiberio GA, Nodari F, Strina C, Marini G (2006) Gemcitabine plus celecoxib [GECO] in advanced pancreatic cancer: a phase II trial. Cancer Chemother Pharmacol 57:185–190PubMedCrossRef
37.
Zurück zum Zitat Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513PubMedCrossRef Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513PubMedCrossRef
38.
Zurück zum Zitat Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545PubMedCrossRef Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545PubMedCrossRef
39.
Zurück zum Zitat Cuzzocrea S, Mazzon E, Di Paola R, Peli A, Bonato A, Britti D, Genovese T, Mula C, Crisafulli C, Caputi AP (2006) The role of the peroxisome proliferator-activated receptor-alpha [PPAR-alpha] in the regulation of acute inflammation. J Leukoc Biol 79:999–1010PubMedCrossRef Cuzzocrea S, Mazzon E, Di Paola R, Peli A, Bonato A, Britti D, Genovese T, Mula C, Crisafulli C, Caputi AP (2006) The role of the peroxisome proliferator-activated receptor-alpha [PPAR-alpha] in the regulation of acute inflammation. J Leukoc Biol 79:999–1010PubMedCrossRef
40.
Zurück zum Zitat Hazra S, Batra RK, Tai HH, Sharma S, Cui X, Dubinett SM (2007) Pioglitazone and rosiglitazone decrease prostaglandin E2 in non-small-cell lung cancer cells by up-regulating 15-hydroxyprostaglandin dehydrogenase. Mol Pharmacol 71:1715–1720PubMedCrossRef Hazra S, Batra RK, Tai HH, Sharma S, Cui X, Dubinett SM (2007) Pioglitazone and rosiglitazone decrease prostaglandin E2 in non-small-cell lung cancer cells by up-regulating 15-hydroxyprostaglandin dehydrogenase. Mol Pharmacol 71:1715–1720PubMedCrossRef
41.
Zurück zum Zitat Lee SY, Choi HK, Lee KJ, Jung JY, Hur GY, Jung KH, Kim JH, Shin C, Shim JJ, In KH, Kang KH, Yoo SH (2009) The immune tolerance of cancer is mediated by IDO that is inhibited by COX-2 inhibitors through regulatory T cells. J Immunother 32:22–28PubMedCrossRef Lee SY, Choi HK, Lee KJ, Jung JY, Hur GY, Jung KH, Kim JH, Shin C, Shim JJ, In KH, Kang KH, Yoo SH (2009) The immune tolerance of cancer is mediated by IDO that is inhibited by COX-2 inhibitors through regulatory T cells. J Immunother 32:22–28PubMedCrossRef
42.
Zurück zum Zitat Wang F, Herrington M, Larsson J, Permert J (2003) The relationship between diabetes and pancreatic cancer. Mol Cancer 2:4PubMedCrossRef Wang F, Herrington M, Larsson J, Permert J (2003) The relationship between diabetes and pancreatic cancer. Mol Cancer 2:4PubMedCrossRef
43.
Zurück zum Zitat Hirakata M, Tozawa R, Imura Y, Sugiyama Y (2004) Comparison of the effects of pioglitazone and rosiglitazone on macrophage foam cell formation. Biochem Biophys Res Commun 323:782–788PubMedCrossRef Hirakata M, Tozawa R, Imura Y, Sugiyama Y (2004) Comparison of the effects of pioglitazone and rosiglitazone on macrophage foam cell formation. Biochem Biophys Res Commun 323:782–788PubMedCrossRef
44.
Zurück zum Zitat Vijay SK, Mishra M, Kumar H, Tripathi K (2009) Effect of pioglitazone and rosiglitazone on mediators of endothelial dysfunction, markers of angiogenesis and inflammatory cytokines in type-2 diabetes. Acta Diabetol 46:27–33PubMedCrossRef Vijay SK, Mishra M, Kumar H, Tripathi K (2009) Effect of pioglitazone and rosiglitazone on mediators of endothelial dysfunction, markers of angiogenesis and inflammatory cytokines in type-2 diabetes. Acta Diabetol 46:27–33PubMedCrossRef
45.
Zurück zum Zitat Redondo S, Ruiz E, Santos-Gallego CG, Padilla E, Tejerina T (2005) Pioglitazone induces vascular smooth muscle cell apoptosis through a peroxisome proliferator-activated receptor-gamma, transforming growth factor-beta1, and a Smad2-dependent mechanism. Diabetes 54:811–817PubMedCrossRef Redondo S, Ruiz E, Santos-Gallego CG, Padilla E, Tejerina T (2005) Pioglitazone induces vascular smooth muscle cell apoptosis through a peroxisome proliferator-activated receptor-gamma, transforming growth factor-beta1, and a Smad2-dependent mechanism. Diabetes 54:811–817PubMedCrossRef
Metadaten
Titel
Rosiglitazone and Gemcitabine in combination reduces immune suppression and modulates T cell populations in pancreatic cancer
verfasst von
Stephanie K. Bunt
Ashley M. Mohr
Jennifer M. Bailey
Paul M. Grandgenett
Michael A. Hollingsworth
Publikationsdatum
01.02.2013
Verlag
Springer-Verlag
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 2/2013
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-012-1324-3

Weitere Artikel der Ausgabe 2/2013

Cancer Immunology, Immunotherapy 2/2013 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.