Skip to main content
Erschienen in:

23.05.2017 | Symposium: Improving Care for Patients With ACL Injuries: A Team Approach

Rotational Laxity Control by the Anterolateral Ligament and the Lateral Meniscus Is Dependent on Knee Flexion Angle: A Cadaveric Biomechanical Study

verfasst von: Timothy Lording, FRACS, Gillian Corbo, BSc, Dianne Bryant, PhD, Timothy A. Burkhart, PhD, Alan Getgood, MD

Erschienen in: Clinical Orthopaedics and Related Research® | Ausgabe 10/2017

Einloggen, um Zugang zu erhalten

Abstract

Background

Injury to the anterolateral ligament (ALL) has been reported to contribute to high-grade anterolateral laxity after anterior cruciate ligament (ACL) injury. Failure to address ALL injury has been suggested as a cause of persistent rotational laxity after ACL reconstruction. Lateral meniscus posterior root (LMPR) tears have also been shown to cause increased internal rotation of the knee.

Questions/purposes

The purpose of this study was to determine the functional relationship between the ALL and LMPR in the control of internal rotation of the ACL-deficient knee. Specifically: (1) We asked if there was a difference in internal rotation among: the intact knee; the ACL-deficient knee; the ACL/ALL-deficient knee; the ACL/LMPR-deficient knee; and the ACL/ALL/LMPR-deficient knee. (2) We also asked if there was a difference in anterior translation among these conditions.

Methods

Sixteen fresh frozen cadaveric knee specimens (eight men, mean age 79 years) were potted into a hip simulator (femur) and a 6 degree-of-freedom load cell (tibia). Rigid optical trackers were inserted into the proximal femur and distal tibia, allowing for the motion of the tibia with respect to the femur to be tracked during biomechanical tests. A series of points on the femur and tibia were digitized to create bone coordinate systems that were used to calculate internal rotation and anterior translation. Biomechanical testing involved applying a 5-Nm internal rotation moment to the tibia from full extension to 90° of flexion. Anterior translation was performed by applying a 90-N anterior load using a tensiometer. Both tests were performed in 15° increments tested sequentially in the following conditions: (1) intact; and (2) ACL injury (ACL−). The specimens were then randomized to either have the ALL sectioned (3) first (M+/ALL−); or (4) the LMPR sectioned first (M−/ALL+) followed by the other structure (M−/ALL−). A one-way analysis of variance was performed for each sectioning condition at each angle of knee flexion (α = 0.05).

Results

At 0° of flexion there was an effect of tissue sectioning such that internal rotation of the M−/ALL− condition was greater than ACL− by 1.24° (p = 0.03; 95% confidence interval [CI], 0.16–2.70) and the intact condition by 2.5° (p = 0.01; 95% CI, 0.69–3.91). In addition, the mean (SD) internal rotations for the M+/ALL− (9.99° [5.39°]) and M−/ALL+ (12.05° [5.34°]) were greater by 0.87° (p = 0.04; 95% CI, 0.13–3.83) and by 2.15°, respectively, compared with the intact knee. At 45° the internal rotation for the ACL− (19.15° [9.49°]), M+/ALL− (23.70° [7.00°]), and M−/ALL− (18.80° [8.27°]) conditions was different than the intact (12.78° [9.23°]) condition by 6.37° (p = 0.02; 95% CI, 1.37–11.41), 8.47° (p < 0.01; 95% CI, 3.94–13.00), and 6.02° (p = 0.01; 95% CI, 1.73–10.31), respectively. At 75° there was a 10.11° difference (p < 0.01; 95% CI, 5.20–15.01) in internal rotation between the intact (13.96° [5.34°]) and the M+/ALL− (23.22° [4.46°]) conditions. There was also a 4.08° difference (p = 0.01; 95% CI, 1.14–7.01) between the intact and M−/ALL− (18.05° [7.31°]) conditions. Internal rotation differences of 6.17° and 5.43° were observed between ACL− (16.28° [6.44°]) and M+/ALL− (p < 0.01; 95% CI, 2.45–9.89) as well as between M+/ALL− and M−/ALL− (p = 0.01; 95% CI, −8.17 to −1.63). Throughout the range of flexion, there was no difference in anterior translation with progressive section of the ACL, meniscus, or ALL.

Conclusions

The ALL and LMPR both play a role in aiding the ACL in controlling internal rotation laxity in vitro; however, these effects seem to be dependent on flexion angle. The ALL has a greater role in controlling internal rotation at flexion angles > 30o. The LMPR appears to have more of an effect on controlling rotation closer to extension.

Clinical Relevance

Injury to the ALL and/or LMPR may contribute to high-grade anterolateral laxity after ACL injury. The LMPR and the ALL, along with the iliotibial tract, appear to act in concert as secondary stabilizers of anterolateral rotation and could be considered as the “anterolateral corner” of the knee.
Literatur
1.
Zurück zum Zitat Allaire R, Muriuki M, Gilbertson L, Harner CD. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Joint Surg Am. 2008;90:1922–1931.CrossRefPubMed Allaire R, Muriuki M, Gilbertson L, Harner CD. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Joint Surg Am. 2008;90:1922–1931.CrossRefPubMed
2.
Zurück zum Zitat Bao HRC, Zhu D, Gong H, Gu GS. The effect of complete radial lateral meniscus posterior root tear on the knee contact mechanics: a finite element analysis. J Orthop Sci. 2012;18:256–263.CrossRefPubMed Bao HRC, Zhu D, Gong H, Gu GS. The effect of complete radial lateral meniscus posterior root tear on the knee contact mechanics: a finite element analysis. J Orthop Sci. 2012;18:256–263.CrossRefPubMed
3.
Zurück zum Zitat Caterine S, Litchfield R, Johnson M, Chronik B, Getgood A. A cadaveric study of the anterolateral ligament: re-introducing the lateral capsular ligament. Knee Surg Sports Traumatol Arthrosc. 2015;23:3186–3195.CrossRefPubMed Caterine S, Litchfield R, Johnson M, Chronik B, Getgood A. A cadaveric study of the anterolateral ligament: re-introducing the lateral capsular ligament. Knee Surg Sports Traumatol Arthrosc. 2015;23:3186–3195.CrossRefPubMed
4.
5.
Zurück zum Zitat Dennis DA, Mahfouz MR, Komistek RD, Hoff W. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech. 2005;38:241–253.CrossRefPubMed Dennis DA, Mahfouz MR, Komistek RD, Hoff W. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech. 2005;38:241–253.CrossRefPubMed
6.
Zurück zum Zitat Dodds AL, Halewood C, Gupte CM, Williams A, Amis AA. The anterolateral ligament: anatomy, length changes and association with the Segond fracture. Bone Joint J. 2014;96:325–331.CrossRefPubMed Dodds AL, Halewood C, Gupte CM, Williams A, Amis AA. The anterolateral ligament: anatomy, length changes and association with the Segond fracture. Bone Joint J. 2014;96:325–331.CrossRefPubMed
7.
Zurück zum Zitat Dombrowski ME, Costello JM, Ohashi B, Murawski CD, Rothrauff BB, Arilla FV, Friel NA, Fu FH, Debski RE, Musahl V. Macroscopic anatomical, histological and magnetic resonance imaging correlation of the lateral capsule of the knee. Knee Surg Sports Traumatol Arthrosc. 2016;24:2854–2860.CrossRefPubMed Dombrowski ME, Costello JM, Ohashi B, Murawski CD, Rothrauff BB, Arilla FV, Friel NA, Fu FH, Debski RE, Musahl V. Macroscopic anatomical, histological and magnetic resonance imaging correlation of the lateral capsule of the knee. Knee Surg Sports Traumatol Arthrosc. 2016;24:2854–2860.CrossRefPubMed
8.
Zurück zum Zitat Elmansori A, Lording T, Dumas R, Elmajri K, Neyret P, Lustig S. Proximal tibial bony and meniscal slopes are higher in ACL injured subjects than controls: a comparative MRI study. Knee Surg Sports Traumatol Arthrosc. 2017 Feb 17. [Epub ahead of print] Elmansori A, Lording T, Dumas R, Elmajri K, Neyret P, Lustig S. Proximal tibial bony and meniscal slopes are higher in ACL injured subjects than controls: a comparative MRI study. Knee Surg Sports Traumatol Arthrosc. 2017 Feb 17. [Epub ahead of print]
9.
Zurück zum Zitat Feucht MJ, Salzmann GM, Bode G, Pestka JM, Kühle J, Südkamp NP, Niemeyer P. Posterior root tears of the lateral meniscus. Knee Surg Sports Traumatol Arthrosc. 2014;23:119–125.CrossRefPubMed Feucht MJ, Salzmann GM, Bode G, Pestka JM, Kühle J, Südkamp NP, Niemeyer P. Posterior root tears of the lateral meniscus. Knee Surg Sports Traumatol Arthrosc. 2014;23:119–125.CrossRefPubMed
10.
Zurück zum Zitat Forkel P, Herbort M, Schulze M, Rosenbaum D, Kirstein L, Raschke M, Petersen W. Biomechanical consequences of a posterior root tear of the lateral meniscus: stabilizing effect of the meniscofemoral ligament. Arch Orthop Trauma Surg. 2013;133:621–626.CrossRefPubMed Forkel P, Herbort M, Schulze M, Rosenbaum D, Kirstein L, Raschke M, Petersen W. Biomechanical consequences of a posterior root tear of the lateral meniscus: stabilizing effect of the meniscofemoral ligament. Arch Orthop Trauma Surg. 2013;133:621–626.CrossRefPubMed
11.
Zurück zum Zitat Gadikota HR, Kikuta S, Qi W, Nolan D, Gill TJ, Li G. Effect of increased iliotibial band load on tibiofemoral kinematics and force distributions: a direct measurement in cadaveric knees. J Orthop Sports Phys Ther. 2013;43:478–485.CrossRefPubMed Gadikota HR, Kikuta S, Qi W, Nolan D, Gill TJ, Li G. Effect of increased iliotibial band load on tibiofemoral kinematics and force distributions: a direct measurement in cadaveric knees. J Orthop Sports Phys Ther. 2013;43:478–485.CrossRefPubMed
12.
Zurück zum Zitat Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105:136–144.CrossRefPubMed Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105:136–144.CrossRefPubMed
13.
Zurück zum Zitat Haimes JL, Wroble RR, Grood ES, Noyes FR. Role of the medial structures in the intact and anterior cruciate ligament-deficient knee. Limits of motion in the human knee. Am J Sports Med. 1994;22:402–409.CrossRefPubMed Haimes JL, Wroble RR, Grood ES, Noyes FR. Role of the medial structures in the intact and anterior cruciate ligament-deficient knee. Limits of motion in the human knee. Am J Sports Med. 1994;22:402–409.CrossRefPubMed
14.
Zurück zum Zitat Hein CN, Deperio JG, Ehrensberger MT, Marzo JM. Effects of medial meniscal posterior horn avulsion and repair on meniscal displacement. Knee. 2011;18:189–192.CrossRefPubMed Hein CN, Deperio JG, Ehrensberger MT, Marzo JM. Effects of medial meniscal posterior horn avulsion and repair on meniscal displacement. Knee. 2011;18:189–192.CrossRefPubMed
15.
16.
Zurück zum Zitat Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br. 2000;82:1189–1195.CrossRefPubMed Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br. 2000;82:1189–1195.CrossRefPubMed
17.
Zurück zum Zitat Jakob RP, Hassler H, Staeubli HU. Observations on rotatory instability of the lateral compartment of the knee. Experimental studies on the functional anatomy and the pathomechanism of the true and the reversed pivot shift sign. Acta Orthop Scand Suppl. 1981;191:1–32.CrossRefPubMed Jakob RP, Hassler H, Staeubli HU. Observations on rotatory instability of the lateral compartment of the knee. Experimental studies on the functional anatomy and the pathomechanism of the true and the reversed pivot shift sign. Acta Orthop Scand Suppl. 1981;191:1–32.CrossRefPubMed
18.
Zurück zum Zitat Kennedy MI, Claes S, Fuso FAF, Williams BT, Goldsmith MT, Turnbull TL, Wijdicks CA, LaPrade RF. The anterolateral ligament: an anatomic, radiographic, and biomechanical analysis. Am J Sports Med. 2015;43:1606–1615.CrossRefPubMed Kennedy MI, Claes S, Fuso FAF, Williams BT, Goldsmith MT, Turnbull TL, Wijdicks CA, LaPrade RF. The anterolateral ligament: an anatomic, radiographic, and biomechanical analysis. Am J Sports Med. 2015;43:1606–1615.CrossRefPubMed
19.
Zurück zum Zitat Kittl C, Daou El H, Athwal KK, Gupte CM, Weiler A, Williams A, Amis AA. The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee. Am J Sports Med. 2016;44:345–354.CrossRefPubMed Kittl C, Daou El H, Athwal KK, Gupte CM, Weiler A, Williams A, Amis AA. The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee. Am J Sports Med. 2016;44:345–354.CrossRefPubMed
20.
Zurück zum Zitat Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ. Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32:629–634.CrossRefPubMed Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ. Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32:629–634.CrossRefPubMed
21.
Zurück zum Zitat Kocher MS, Steadman JR, Briggs K, Zurakowski D, Sterett WI, Hawkins RJ. Determinants of patient satisfaction with outcome after anterior cruciate ligament reconstruction. J Bone Joint Surg Am. 2002;84:1560–1572.CrossRefPubMed Kocher MS, Steadman JR, Briggs K, Zurakowski D, Sterett WI, Hawkins RJ. Determinants of patient satisfaction with outcome after anterior cruciate ligament reconstruction. J Bone Joint Surg Am. 2002;84:1560–1572.CrossRefPubMed
22.
Zurück zum Zitat Lerer DB, Umans HR, Hu MX, Jones MH. The role of meniscal root pathology and radial meniscal tear in medial meniscal extrusion. Skeletal Radiol. 2004;33:569–574.CrossRefPubMed Lerer DB, Umans HR, Hu MX, Jones MH. The role of meniscal root pathology and radial meniscal tear in medial meniscal extrusion. Skeletal Radiol. 2004;33:569–574.CrossRefPubMed
23.
Zurück zum Zitat Macchi V, Porzionato A, Morra A, Stecco C, Tortorella C, Menegolo M, Grignon B, De Caro R. The anterolateral ligament of the knee: a radiologic and histotopographic study. Surg Radiol Anat. 2016;38:341–348.CrossRefPubMed Macchi V, Porzionato A, Morra A, Stecco C, Tortorella C, Menegolo M, Grignon B, De Caro R. The anterolateral ligament of the knee: a radiologic and histotopographic study. Surg Radiol Anat. 2016;38:341–348.CrossRefPubMed
24.
Zurück zum Zitat Maher JM, Markey JC, Ebert-May D. The other half of the story: effect size analysis in quantitative research. Cell Biol Educ. 2013;12:345–351.CrossRef Maher JM, Markey JC, Ebert-May D. The other half of the story: effect size analysis in quantitative research. Cell Biol Educ. 2013;12:345–351.CrossRef
25.
Zurück zum Zitat Marzo JM, Gurske-DePerio J. Effects of medial meniscus posterior horn avulsion and repair on tibiofemoral contact area and peak contact pressure with clinical implications. Am J Sports Med. 2008;37:124–129.CrossRefPubMed Marzo JM, Gurske-DePerio J. Effects of medial meniscus posterior horn avulsion and repair on tibiofemoral contact area and peak contact pressure with clinical implications. Am J Sports Med. 2008;37:124–129.CrossRefPubMed
26.
Zurück zum Zitat Monaco E, Ferretti A, Labianca L, Maestri B, Speranza A, Kelly MJ, D’Arrigo C. Navigated knee kinematics after cutting of the ACL and its secondary restraint. Knee Surg Sports Traumatol Arthrosc. 2011;20:870–877.CrossRefPubMed Monaco E, Ferretti A, Labianca L, Maestri B, Speranza A, Kelly MJ, D’Arrigo C. Navigated knee kinematics after cutting of the ACL and its secondary restraint. Knee Surg Sports Traumatol Arthrosc. 2011;20:870–877.CrossRefPubMed
27.
Zurück zum Zitat Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD. The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med. 2010;38:1591–1597.CrossRefPubMed Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD. The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med. 2010;38:1591–1597.CrossRefPubMed
28.
Zurück zum Zitat Musahl V, Rahnemai-Azar AA, Costello J, Arner JW, Fu FH, Hoshino Y, Lopomo N, Samuelsson K, Irrgang JJ. The influence of meniscal and anterolateral capsular injury on knee laxity in patients with anterior cruciate ligament injuries. Am J Sports Med. 2016;44:3126–3131.CrossRefPubMed Musahl V, Rahnemai-Azar AA, Costello J, Arner JW, Fu FH, Hoshino Y, Lopomo N, Samuelsson K, Irrgang JJ. The influence of meniscal and anterolateral capsular injury on knee laxity in patients with anterior cruciate ligament injuries. Am J Sports Med. 2016;44:3126–3131.CrossRefPubMed
29.
Zurück zum Zitat Musahl V, Rahnemai-Azar AA, van Eck CF, Guenther D, Fu FH. Anterolateral ligament of the knee, fact or fiction? Knee Surg Sports Traumatol Arthrosc. 2015;24:2–3.CrossRef Musahl V, Rahnemai-Azar AA, van Eck CF, Guenther D, Fu FH. Anterolateral ligament of the knee, fact or fiction? Knee Surg Sports Traumatol Arthrosc. 2015;24:2–3.CrossRef
30.
Zurück zum Zitat Noyes FR, Jetter AW, Grood ES, Harms SP, Gardner EJ, Levy MS. Anterior cruciate ligament function in providing rotational stability assessed by medial and lateral tibiofemoral compartment translations and subluxations. Am J Sports Med. 2015;43:683–692.CrossRefPubMed Noyes FR, Jetter AW, Grood ES, Harms SP, Gardner EJ, Levy MS. Anterior cruciate ligament function in providing rotational stability assessed by medial and lateral tibiofemoral compartment translations and subluxations. Am J Sports Med. 2015;43:683–692.CrossRefPubMed
31.
Zurück zum Zitat Parsons EM, Gee AO, Spiekerman C, Cavanagh PR. The biomechanical function of the anterolateral ligament of the knee. Am J Sports Med. 2015;43:669–674.CrossRefPubMedPubMedCentral Parsons EM, Gee AO, Spiekerman C, Cavanagh PR. The biomechanical function of the anterolateral ligament of the knee. Am J Sports Med. 2015;43:669–674.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the meniscotibial ligament in posteromedial rotational knee stability. Knee Surg Sports Traumatol Arthrosc. 2015;23:2967–2973.CrossRefPubMed Peltier A, Lording T, Maubisson L, Ballis R, Neyret P, Lustig S. The role of the meniscotibial ligament in posteromedial rotational knee stability. Knee Surg Sports Traumatol Arthrosc. 2015;23:2967–2973.CrossRefPubMed
33.
Zurück zum Zitat Perez-Blanca A, Espejo-Baena A, Amat Trujillo D, Prado Nóvoa M, Espejo-Reina A, Quintero López C, Ezquerro Juanco F. Comparative biomechanical study on contact alterations after lateral meniscus posterior root avulsion, transosseous reinsertion, and total meniscectomy. Arthroscopy. 2016;32:624–633.CrossRefPubMed Perez-Blanca A, Espejo-Baena A, Amat Trujillo D, Prado Nóvoa M, Espejo-Reina A, Quintero López C, Ezquerro Juanco F. Comparative biomechanical study on contact alterations after lateral meniscus posterior root avulsion, transosseous reinsertion, and total meniscectomy. Arthroscopy. 2016;32:624–633.CrossRefPubMed
34.
Zurück zum Zitat Rasmussen MT, Nitri M, Williams BT, Moulton SG, Cruz RS, Dornan GJ, Goldsmith MT, LaPrade RF. An in vitro robotic assessment of the anterolateral ligament, part 1: secondary role of the anterolateral ligament in the setting of an anterior cruciate ligament injury. Am J Sports Med. 2016;44:585–592.CrossRefPubMed Rasmussen MT, Nitri M, Williams BT, Moulton SG, Cruz RS, Dornan GJ, Goldsmith MT, LaPrade RF. An in vitro robotic assessment of the anterolateral ligament, part 1: secondary role of the anterolateral ligament in the setting of an anterior cruciate ligament injury. Am J Sports Med. 2016;44:585–592.CrossRefPubMed
35.
Zurück zum Zitat Ristanis S, Stergiou N, Patras K, Vasiliadis HS, Giakas G, Georgoulis AD. Excessive tibial rotation during high-demand activities is not restored by anterior cruciate ligament reconstruction. Arthroscopy. 2005;21:1323–1329.CrossRefPubMed Ristanis S, Stergiou N, Patras K, Vasiliadis HS, Giakas G, Georgoulis AD. Excessive tibial rotation during high-demand activities is not restored by anterior cruciate ligament reconstruction. Arthroscopy. 2005;21:1323–1329.CrossRefPubMed
36.
Zurück zum Zitat Saiegh YA, Suero EM, Guenther D, Hawi N, Decker S, Krettek C, Citak M, Omar M. Sectioning the anterolateral ligament did not increase tibiofemoral translation or rotation in an ACL-deficient cadaveric model. Knee Surg Sports Traumatol Arthrosc. 2015;21:257. Saiegh YA, Suero EM, Guenther D, Hawi N, Decker S, Krettek C, Citak M, Omar M. Sectioning the anterolateral ligament did not increase tibiofemoral translation or rotation in an ACL-deficient cadaveric model. Knee Surg Sports Traumatol Arthrosc. 2015;21:257.
37.
Zurück zum Zitat Shybut TB, Vega CE, Haddad J, Alexander JW, Gold JE, Noble PC, Lowe WR. Effect of lateral meniscal root tear on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med. 2015;43:905–911.CrossRefPubMed Shybut TB, Vega CE, Haddad J, Alexander JW, Gold JE, Noble PC, Lowe WR. Effect of lateral meniscal root tear on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med. 2015;43:905–911.CrossRefPubMed
38.
Zurück zum Zitat Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM. A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech. 2010;43:1702–1707.CrossRefPubMedPubMedCentral Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM. A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech. 2010;43:1702–1707.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Spencer L, Burkhart TA, Tran MN, Rezansoff AJ, Deo S, Caterine S, Getgood AM. Biomechanical analysis of simulated clinical testing and reconstruction of the anterolateral ligament of the knee. Am J Sports Med. 2015;43:2189–2197.CrossRefPubMed Spencer L, Burkhart TA, Tran MN, Rezansoff AJ, Deo S, Caterine S, Getgood AM. Biomechanical analysis of simulated clinical testing and reconstruction of the anterolateral ligament of the knee. Am J Sports Med. 2015;43:2189–2197.CrossRefPubMed
40.
Zurück zum Zitat Tashman S, Collon D, Anderson K, Kolowich P, Anderst W. Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32:975–983.CrossRefPubMed Tashman S, Collon D, Anderson K, Kolowich P, Anderst W. Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med. 2004;32:975–983.CrossRefPubMed
41.
Zurück zum Zitat Van Dyck P, Clockaerts S, Vanhoenacker FM, Lambrecht V, Wouters K, De Smet E, Gielen JL, Parizel PM. Anterolateral ligament abnormalities in patients with acute anterior cruciate ligament rupture are associated with lateral meniscal and osseous injuries. Eur Radiol. 2016;26:3383–3391.CrossRefPubMed Van Dyck P, Clockaerts S, Vanhoenacker FM, Lambrecht V, Wouters K, De Smet E, Gielen JL, Parizel PM. Anterolateral ligament abnormalities in patients with acute anterior cruciate ligament rupture are associated with lateral meniscal and osseous injuries. Eur Radiol. 2016;26:3383–3391.CrossRefPubMed
42.
Zurück zum Zitat Vedi V, Williams A, Tennant SJ, Spouse E, Hunt DM, Gedroyc WM. Meniscal movement. An in-vivo study using dynamic MRI. J Bone Joint Surg Br. 1999;81:37–41.CrossRefPubMed Vedi V, Williams A, Tennant SJ, Spouse E, Hunt DM, Gedroyc WM. Meniscal movement. An in-vivo study using dynamic MRI. J Bone Joint Surg Br. 1999;81:37–41.CrossRefPubMed
43.
Zurück zum Zitat Vincent J-P, Magnussen RA, Gezmez F, Uguen A, Jacobi M, Weppe F, Al-Saati MF, Lustig S, Demey G, Servien E, Neyret P. The anterolateral ligament of the human knee: an anatomic and histologic study. Knee Surg Sports Traumatol Arthrosc. 2011;20:147–152.CrossRefPubMed Vincent J-P, Magnussen RA, Gezmez F, Uguen A, Jacobi M, Weppe F, Al-Saati MF, Lustig S, Demey G, Servien E, Neyret P. The anterolateral ligament of the human knee: an anatomic and histologic study. Knee Surg Sports Traumatol Arthrosc. 2011;20:147–152.CrossRefPubMed
44.
Zurück zum Zitat West RV, Kim JG, Armfield D, Harner CD. Lateral meniscal root tears associated with anterior cruciate ligament injury: classification and management (SS-70). Arthroscopy. 2004;20:e32–e33.CrossRef West RV, Kim JG, Armfield D, Harner CD. Lateral meniscal root tears associated with anterior cruciate ligament injury: classification and management (SS-70). Arthroscopy. 2004;20:e32–e33.CrossRef
45.
Zurück zum Zitat Wroble RR, Grood ES, Cummings JS, Henderson JM, Noyes FR. The role of the lateral extraarticular restraints in the anterior cruciate ligament-deficient knee. Am J Sports Med. 1993;21:257–263.CrossRefPubMed Wroble RR, Grood ES, Cummings JS, Henderson JM, Noyes FR. The role of the lateral extraarticular restraints in the anterior cruciate ligament-deficient knee. Am J Sports Med. 1993;21:257–263.CrossRefPubMed
46.
Zurück zum Zitat Zens M, Niemeyer P, Ruhhammer J, Bernstein A, Woias P, Mayr HO, Sudkamp NP, Feucht MJ. Length changes of the anterolateral ligament during passive knee motion: a human cadaveric study. Am J Sports Med. 2015;43:2545–2552.CrossRefPubMed Zens M, Niemeyer P, Ruhhammer J, Bernstein A, Woias P, Mayr HO, Sudkamp NP, Feucht MJ. Length changes of the anterolateral ligament during passive knee motion: a human cadaveric study. Am J Sports Med. 2015;43:2545–2552.CrossRefPubMed
Metadaten
Titel
Rotational Laxity Control by the Anterolateral Ligament and the Lateral Meniscus Is Dependent on Knee Flexion Angle: A Cadaveric Biomechanical Study
verfasst von
Timothy Lording, FRACS
Gillian Corbo, BSc
Dianne Bryant, PhD
Timothy A. Burkhart, PhD
Alan Getgood, MD
Publikationsdatum
23.05.2017
Verlag
Springer US
Erschienen in
Clinical Orthopaedics and Related Research® / Ausgabe 10/2017
Print ISSN: 0009-921X
Elektronische ISSN: 1528-1132
DOI
https://doi.org/10.1007/s11999-017-5364-z

Weitere Artikel der Ausgabe 10/2017

Clinical Orthopaedics and Related Research® 10/2017 Zur Ausgabe

Symposium: Improving Care for Patients With ACL Injuries: A Team Approach

Editorial Comment: Improving Care for Patients with ACL Injuries: A Team Approach

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie erweitert durch Fallbeispiele, Videos und Abbildungen. Zur Fortbildung und Wissenserweiterung, verfasst und geprüft von Expertinnen und Experten der Gesellschaft für Arthroskopie und Gelenkchirurgie (AGA).


Jetzt entdecken!

Neu im Fachgebiet Orthopädie und Unfallchirurgie

Neue Osteoporose-Leitlinie: Frakturinzidenz senken, Versorgung verbessern

Das sind – zusammen mit dem Erhalt bzw. der Verbesserung der Funktionsfähigkeit und Lebensqualität der Patientinnen und Patienten – die Ziele der 2023er Leitlinie der Osteologischen Fachgesellschaften e.V. (DVO). Noch fremdeln viele Ärztinnen und Ärzte mit den neuen Konzepten und Risikotabellen. 

Myositiden – Fortschritte bei der Risikostratifizierung und Diagnostik

Bei der Myositis hat sich viel getan, was für den klinischen Alltag relevant ist – so Prof. Dr. Britta Maurer, Universitätsspital Bern, beim Deutschen Rheumatologiekongress 2024. Morbidität und Mortalität könnten zurückgehen.

Mesenchymale Stammzellen praktisch nutzlos gegen Gonarthrose

Die Idee, mit mesenchymalen Stammzellen arthrotische Kniegelenke zu regenerieren, klingt vielversprechend. Entsprechend zahlreich sind die Angebote dafür. Die Therapie ist allerdings nicht ganz billig – und vermutlich ohne großen Effekt, wie eine Metaanalyse einschlägiger Studien zeigt.

Unterarmfraktur: Tipps für ein zielgerichtetes Vorgehen

Bei Verdacht auf eine Unterarmfraktur seien 1000 Entscheidungen in 15 Minuten zu treffen, so der Kinderchirurg Dr. Stephan Rohleder auf dem Kongress für Kinder- und Jugendmedizin. Seine Tipps für ein zielgerichtetes Vorgehen erleichtern die adäquate Versorgung.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.