Skip to main content
Erschienen in: BMC Medical Genetics 1/2018

Open Access 01.12.2018 | Research article

S100B polymorphisms are associated with age of onset of Parkinson’s disease

verfasst von: Camilla Fardell, Anna Zettergren, Caroline Ran, Andrea Carmine Belin, Agneta Ekman, Olof Sydow, Lars Bäckman, Björn Holmberg, Nil Dizdar, Peter Söderkvist, Hans Nissbrandt

Erschienen in: BMC Medical Genetics | Ausgabe 1/2018

Abstract

Background

In this study we investigated the association between SNPs in the S100B gene and Parkinson’s disease (PD) in two independent Swedish cohorts. The SNP rs9722 has previously been shown to be associated with higher S100B concentrations in serum and frontal cortex in humans. S100B is widely expressed in the central nervous system and has many functions such as regulating calcium homeostasis, inflammatory processes, cytoskeleton assembly/disassembly, protein phosphorylation and degradation, and cell proliferation and differentiation. Several of these functions have been suggested to be of importance for the pathophysiology of PD.

Methods

The SNPs rs9722, rs2239574, rs881827, rs9984765, and rs1051169 of the S100B gene were genotyped using the KASPar® PCR SNP genotyping system in a case-control study of two populations (431 PD patients and 465 controls, 195 PD patients and 378 controls, respectively). The association between the genotype and allelic distributions and PD risk was evaluated using Chi-Square and Cox proportional hazards test, as well as logistic regression. Linear regression and Cox proportional hazards tests were applied to assess the effect of the rs9722 genotypes on age of disease onset.

Results

The S100B SNPs tested were not associated with the risk of PD. However, in both cohorts, the T allele of rs9722 was significantly more common in early onset PD patients compared to late onset PD patients. The SNP rs9722 was significantly related to age of onset, and each T allele lowered disease onset with 4.9 years. In addition, allelic variants of rs881827, rs9984765, and rs1051169, were significantly more common in early-onset PD compared to late-onset PD in the pooled population.

Conclusions

rs9722, a functional SNP in the 3’-UTR of the S100B gene, was strongly associated with age of onset of PD.
Abkürzungen
GWAS
Genome-wide Association Study
PD
Parkinson’s disease
RAGE
Glycation End Products
SNP
Single Nucleotide Polymorphism

Background

Sporadic Parkinson’s disease (PD) or idiopathic PD is the far most common form of PD and accounts for at least 90% of all cases. Among the suggested pathophysiological mechanisms of neurodegeneration in PD are increased generation of reactive oxygen species, mitochondrial pathology, and increase in intracellular calcium [13]. There is also evidence that immune and inflammatory mechanisms as well as impaired protein degradation are involved in the pathogenesis [46]. Recently, it was suggested that sporadic PD could be due to misfolded alpha-synuclein that spreads and by change reaction induce misfolding and pathological aggregation of native alpha-synuclein [79]. Conceivably, these mechanisms may operate simultaneously or in time sequence.
Regarding sporadic PD, a number of genetic polymorphism-based studies has been performed on a variety of candidate genes (see http://​www.​pdgene.​org) [10]. In a recently performed meta-analysis of genome-wide association studies (GWAS) significance was obtained for 28 gene loci [11]. However, according to genome-wide complex trait analysis there are substantially more risk loci to be identified [12].
S100B is a highly conserved protein and a member of the S100 calcium-binding protein superfamily. It is expressed in various cell types in the central nervous system, such as astrocytes, neural progenitor cells, and various neuronal populations [13, 14], as well as in the enteric nervous system in glial cells important for the regulation of inflammation in the gut [15]. Being both intracellularly and extracellularly active, S100B has a wide range of functions. Within cells, the protein regulates calcium homeostasis, cytoskeleton assembly/disassembly, protein phosphorylation and degradation, and cell proliferation and differentiation [16]. Secreted S100B have paracrine, autocrine, and endocrine properties, modulating the activity of neurons, astrocytes, microglia, monocytes, and endothelial cells [16].
Elevated serum concentrations of S100B have been detected in several pathological conditions, such as acute brain injuries [17], schizophrenia [18, 19], and Alzheimer’s disease [20]. Regarding PD, conflicting results have been obtained. In one study S100B serum concentrations were not significantly different between PD patients and controls [21]. In another study, however, antibodies against S100B were detected in the blood of PD patients, but not in the control group [22]. Sathe et al. [23] recently showed significantly higher S100B concentrations post-mortem in substantia nigra of PD patients.
Animal studies suggest S100B to be involved in motor and memory functions. Transgenic mice overexpressing S100B showed symptoms similar to PD, exhibiting impaired motor coordination [24], whereas S100B knock-out mice have exhibited enhanced spatial ability and synaptic plasticity [25].
Considering these previous findings we performed a case-control study in two independent Swedish populations to evaluate the possible association between single nucleotide polymorphisms (SNPs) in the gene coding for S100B and PD. Since age of onset of PD seems to have a relatively high heritability, in one study estimated to be 40–60% [26], and previously have been reported to be associated with some gene polymorphisms [27], we also examined whether these SNPs affect age of onset of PD. We genotyped rs9722 and rs1051169 together with three other SNPs in the S100B gene, which were selected as Tag-SNPs (see Fig. 1).

Methods

Study populations

The discovery cohort consisted of 431 PD patients and 465 control subjects. The PD patients were recruited from four hospitals in Sweden (Gothenburg, Falköping, Skövde and Stockholm). Control subjects comprised unrelated outpatients in primary care in Gothenburg and participants in the Kungsholmen project, a community-based cohort in Stockholm of people aged 75 years and older [28]. Participants in the Kungsholmen project has been confirmed not to have PD. The validation cohort consisted of 195 PD patients and 378 control subjects. The PD patients were recruited from the hospitals in Linköping and Jönköping and control subjects were randomly collected from the population registry in the same recruitment area as for the hospitals. The patient and control groups in the validation cohort were frequency-matched by age and sex. All PD patients had been examined by neurologists and/or movement disorders specialists and fulfilled the Parkinson Disease Society Brain Bank criteria for idiopathic PD [29], except that the presence of more than one relative with the disease was not regarded as an exclusion criterion. Thirteen cases (3%) in the discovery cohort and 11 cases (5.6%) in the validation cohort had more than one affected relative. In the discovery cohort, 25% of the patients reported to have a first-, second- or third-degree relative with PD, and in the validation cohort, 21% of the patients report about having a first- or second degree relative with the disorder. Nearly all subjects (> 99%) were of Caucasian origin. All subjects had provided informed consent and the study were approved by the ethical committees at University of Gothenburg, Karolinska Institute and Linköping University.
Age of disease onset was defined as the time when the patients first noticed PD symptoms. The commonly used definition of having an “early age of onset” of PD if the disease begins at or before 50 years of age was used [6, 30, 31]. By using this definition, 87 patients (20%) in the discovery cohort and 25 patients (13%) in the validation cohort were categorized as having early-onset PD. The majority of the 87 early onset patients in the discovery cohort have previously been screened for mutations in the DJ-1, parkin, and PINK1 genes, and were not found be carriers of any of these [32, 33].

Genotyping and statistical analysis

DNA from blood samples were genotyped using the KASPar® PCR SNP genotyping system (KBiosciences, Herts, UK). The three tag-SNPs were chosen by pair wise tagging (r2 ≥ 0.80) from the International HapMap Project database (release 27, Phase II + III, February 2009, on NCBI B36 assembly, dbSNP b126). Thirty-eight individuals in the discovery cohort and four individuals in the validation cohort were excluded due to poor DNA quality. Success rates for the investigated SNPs were between 96.6–99.6%. Differences in allelic distributions were analysed using a Chi-square test in Haploview 4.0 (Broad Institute, Cambridge, MA, USA) and logistic regression in SPSS 19.0 (IBM Corporation, Armonk, NY, USA) and multiple testing correction was carried out on the pooled data by Bonferroni procedures (analyses of 5 SNPs and 3 comparisons: controls versus all PD patients, controls versus early onset PD and early onset versus late onset PD; 15 tests, corrected significance level: p = 0.0033). Cox proportional hazard tests were performed in SPSS 19.0 on the whole population including controls, as well as on patients only. Age at disease onset was used for patients and age at examination was used for controls. The association between the SNPs and age at disease onset was also evaluated using linear regression in SPSS. For both Cox proportional hazards analysis and linear regression analysis, gender and sample group (discovery cohort or validation cohort) were used as covariates. The significance level was set at p = 0.05.

Results

Demographic data of the populations are presented in Table 1. The genotype distributions of all five polymorphisms were in Hardy-Weinberg equilibrium in both control populations (p-value cut-off = 0.01). Three individuals were excluded in the statistical analysis of age of onset due to missing information about onset age. The allele and genotype distributions of the SNPs in Population 1 are displayed in Table 2.
Table 1
Demographic data describing the study populations
 
Discovery cohort
Validation cohort
All
N
896
573
1469
Controls
465
378
843
 Mean age
74.1
67.5
70.8
 Males (%)
134 (28.8)
187 (49.5)
321 (38.1)
PD Patients
431
195
626
 Mean age
67.6
71.4
69.5
 Males (%)
258 (59.9)
121 (62.1)
379 (60.5)
Mean age of onset
59.3
63.6
61.5
Onset ≤50 y. of age (%)
87 (20.2)
25 (12.8)
112 (17.9)
Table 2
Allele and genotype frequencies of S100B SNPs in the discovery cohort
 
Controls
 
Early onset PD
Late onset PD
p-Valuea
p-Valueb
ORc
 
n
Frequency
n
Frequency
n
Frequency
   
rs9722
C
782
0.929
147
0.865
626
0.946
2.0 × 10 −4
0.006
2.7 (1.6–4.7)
T
60
0.071
23
0.135
36
0.054
   
CC
365
0.867
64
0.753
296
0.894
0.001
0.026
 
TC
52
0.124
19
0.224
34
0.103
   
TT
4
0.010
2
0.024
1
0.003
   
rs2239574
C
559
0.661
118
0.686
463
0.704
0.654
0.522
1.1 (0.8–1.6)
T
287
0.339
54
0.314
195
0.296
   
CC
188
0.444
38
0.442
168
0.511
0.202
0.320
 
TC
183
0.433
42
0.488
127
0.386
   
TT
52
0.123
6
0.070
34
0.103
   
rs881827
C
629
0.740
130
0.756
464
0.714
0.274
0.665
1.2 (0.8–1.8)
T
221
0.260
42
0.244
186
0.286
   
CC
236
0.555
48
0.558
166
0.511
0.468
0.615
 
TC
157
0.369
34
0.395
132
0.406
   
TT
32
0.075
4
0.047
27
0.083
   
rs9984765
T
649
0.774
116
0.674
508
0.772
0.008
0.005
1.6 (1.1–2.4)
C
189
0.226
56
0.326
150
0.228
   
TT
263
0.628
38
0.442
197
0.599
0.028
0.004
 
CT
123
0.294
40
0.465
114
0.347
   
CC
33
0.079
8
0.093
18
0.055
   
rs1051169
C
568
0.688
104
0.605
453
0.688
0.037
0.035
1.4 (1.0–2.0)
G
258
0.312
68
0.395
205
0.312
   
CC
206
0.499
34
0.395
157
0.477
0.073
0.138
 
GC
156
0.378
36
0.419
139
0.422
   
GG
51
0.123
16
0.186
33
0.100
   
Significant (p < 0.05) results are shown in bold. aEarly onset PD (≤50 years) compared to late onset PD (> 50 years). bEarly onset PD compared to controls. cOR (95% confidence interval) for early onset PD compared to controls. P-values were calculated from Chis-square test and ORs were calculated using logistic regression
In the discovery cohort, no significant differences in allelic or genotype frequencies were observed for any of the SNPs when comparing PD patients and controls, using Chi-square test and logistic regression analysis (results not shown). However, there were significant differences in allelic and genotype frequencies for several SNPs in the S100B gene when comparing PD patients with an early age of onset (≤50 years) to PD patients with a late disease onset as well as when comparing to controls. The T allele of rs9722, the C allele of rs9984765, and the G allele of rs1051169 were significantly more common in early-onset PD patients compared to late-onset PD patients (p = 0.0002, p = 0.008, and p = 0.037, respectively) and when compared to controls (p = 0.006, p = 0.005, and p = 0.035, respectively). Furthermore, the genotype frequencies of rs9722 and rs9984765 differed significantly when comparing early-onset PD patients and late-onset PD patients (p = 0.001 and p = 0.028, respectively) as well as when comparing early-onset PD patients and controls (p = 0.026 and p = 0.004, respectively).
To replicate these findings, we genotyped the S100B SNPs in an independent validation cohort (see Table 3). No significant differences in allele or genotype frequencies were observed for any of the SNPs when comparing all PD patients with controls in the validation cohort. However, the T allele of rs9722, and the C allele of rs881827 were significantly more common in early-onset than late-onset PD (p = 0.005 and p = 0.014, respectively) and the C allele of rs881827 was significantly more common in early-onset PD than in controls (p = 0.035). The genotype frequencies of rs9722 differed significantly when comparing early-onset to late onset PD patients (p = 0.021).
Table 3
Allele and genotype frequencies of S100B SNPs in the validation cohort
 
Controls
 
Early onset PD
Late onset PD
p-Valuea
p-Valueb
OR
 
n
Frequency
n
Frequency
n
Frequency
   
rs9722
C
679
0.913
37
0.841
325
0.950
0.005
0.109
3.6 (1.4–9.3)
T
65
0.087
7
0.159
17
0.050
   
CC
312
0.839
16
0.727
157
0.918
0.021
0.277
 
TC
55
0.148
5
0.227
11
0.064
   
TT
5
0.013
1
0.045
3
0.018
   
rs2239574
C
515
0.689
27
0.643
238
0.704
0.415
0.535
1.3 (0.7–2.6)
T
233
0.311
15
0.357
100
0.296
   
CC
172
0.460
9
0.429
86
0.509
0.731
0.635
 
TC
171
0.457
9
0.429
66
0.391
   
TT
31
0.083
3
0.143
17
0.101
   
rs881827
C
537
0.718
38
0.864
240
0.702
0.024
0.035
2.7 (1.1–6.6)
T
211
0.282
6
0.136
102
0.298
   
CC
200
0.535
17
0.773
85
0.497
0.051
0.093
 
TC
137
0.366
4
0.182
70
0.409
   
TT
37
0.099
1
0.045
16
0.094
   
rs9984765
T
549
0.736
31
0.705
260
0.760
0.420
0.647
1.3 (0.7–2.7)
C
197
0.264
13
0.295
82
0.240
   
TT
202
0.539
11
0.500
104
0.608
0.587
0.883
 
CT
148
0.395
9
0.409
52
0.304
   
CC
25
0.067
2
0.091
15
0.088
   
rs1051169
C
475
0.656
26
0.591
224
0.663
0.346
0.378
1.4 (0.7–2.6)
G
249
0.344
18
0.409
114
0.337
   
CC
156
0.430
9
0.409
77
0.456
0.469
0.284
 
GC
165
0.455
8
0.364
70
0.414
   
GG
42
0.116
5
0.227
22
0.130
   
Significant (p < 0.05) results are shown in bold. aEarly onset PD (≤50 years) compared to late onset PD (> 50 years). bEarly onset PD compared to controls. cOR (95% confidence interval) for early onset PD compared to controls. P-values were calculated from Chis-square test and ORs were calculated using logistic regression
The allelic frequencies for the pooled populations are presented in Table 4, showing significant differences for all SNPs, except rs2239574. Notable is the highly significant allelic and genotype frequency difference of the rs9722 SNP in early-onset and late-onset PD (p = 0.0000041 and p = 0.00005, respectively (Bonferroni corrected p-values: p = 0.0000615 and p = 0.00075, respectively)). In line with these results, a Cox regression analysis comprising all PD patients in the pooled population (see Fig. 2) confirmed that the T-allele of rs9722 is associated with an earlier age of onset (HR = 1.49; 95% C.I = 1.17–1.90, p = 0.001). The Cox proportional hazards tests were insignificant when analyzing the whole population including controls (results not shown). Furthermore, when analyzing the data for the pooled population, linear regression showed that disease onset was significantly lower with more T alleles of the rs9722 polymorphism (p = 0.00004) and that each T allele lowered disease onset with 4.9 years. In addition, the haplotype TCCCG of the five genotyped SNPs (rs9722, rs2239574, rs881827, rs9984765, rs1051169) was also significantly more common in early- onset compared to late-onset PD in both populations (p = 0.01 for the discovery cohort, p = 0.035 for the validation cohort, and p = 0.000019 for both combined) as well as in early onset PD as compared to controls (p = 0.0099 for the discovery cohort, p = 0.064 for the validation cohort, and p = 0.0031 for both combined).
Table 4
P-values of comparisons of S100B SNPs on allele and genotype level in the pooled population
 
rs9722
rs2239574
rs881827
rs9984765
rs1051169
p-Valuea allele
*4.1 × 10 −6
0.448
0.043
0.007
0.028
p-Valuea genotype
*5.0 × 10 −5
0.233
0.131
0.018
0.049
p-Valueb allele
*0.003
0.912
0.132
0.016
0.038
p-Valueb genotype
0.015
0.731
0.289
0.034
0.079
ORc
2.9 (1.8–4.7)
1.1 (0.8–1.6)
1.4 (1.0–2.0)
1.6 (1.1–2.1)
1.4 (1.0–1.9)
aEarly onset PD (≤50 years) compared to late onset PD (> 50 years). bEarly onset PD compared to controls. cOR (95% confidence interval) for early onset PD compared to controls. Significant (p < 0.05) results are shown in bold. With Bonferroni correction for multiple testing (analyses of 5 SNPs and 3 comparisons; controls versus all PD patients, controls versus early onset PD and early onset versus late onset PD) significant (p < 0.0033) results are shown by *. P-values were calculated from Chis-square test and ORs were calculated using logistic regression

Discussion

In the present study rs9722, rs9984765 and rs10511669 in the S100B gene were associated with age of onset of PD in Population 1 and rs9722 and rs881827 were associated with age of onset in Population 2. In both populations, the T allele of rs9722 was strongly associated with early-onset PD. Furthermore, in both populations, the haplotype TCCCG of the five genotyped SNPs was more frequent in early-onset than in late-onset PD.
Several of the large GWAS studying PD [10] include SNPs in the S100B gene, although only one study genotyped the SNPs investigated in the present study [34]. However, other GWAS include SNPs in high LD with the ones genotyped in our study, which makes it possible to impute the genotypes of our SNPs. None of these studies report significant associations regarding PD and SNPs in the S100B gene, which is in line with the findings in the present study.
Noteworthy, only two GWAS so far have investigated age at onset of PD [35, 36]. In both studies, not rs9722 itself, but SNPs in high LD with rs9722, were genotyped and no significant association with age of onset were found. However, to be able to compare the results from different association studies it is important that the inclusion criteria for patients and controls used in the studies are similar, especially when searching for genetic risk variants of low impact in a complex disorder like PD. In the GWAS studying onset age in PD by Latourelle et al. [35], two of three of the PD populations investigated include samples recruited to study familial PD which means that all of the patients in those populations have a family history of the disease, making their sample different from ours where at least 80% of the patients are sporadic cases. Furthermore, in the GWAS by Spencer et al. [36], there is a quite large difference in mean age of onset (65.8 years) compared to our study (61.5 years). These dissimilarities might be part of the explanation to the deviation in results when comparing these two studies with the present one. Furthermore, the diversity of ethnicity might also be of importance and the populations studied in the present paper are very homogenous in that regard.
The S100B gene was investigated in a study of PD patients by Guo et al. [37]. The authors screened a Chinese PD-population for mutations in the coding parts of the gene, and consequently only one of the SNPs investigated in the present study, rs1051169, was possible to detect. The frequency found for this SNP was quite similar to the frequencies of it in our Caucasian PD patients.
It has been proposed that S100B has neurotrophic or neurotoxic properties depending on the extracellular concentration [16]. In normal conditions, S100B in nanomolar concentrations seems to protect neurons against oxidative stress [38, 39]. However, at higher extracellular concentrations, it may act as a pro-inflammatory substance activating astrocytes and microglia and inducing apoptosis [4042]. Alternatively, S100B at high concentrations merely is a secondary reactive phenomena or marker of inflammation intensity rather than promoting inflammation (for discussion see Lam et al. [43]).
Parts of the effects of S100B appear to be mediated by the receptor for advanced glycation end products (RAGE) [44, 45]. In neurons, nanomolar concentrations of S100B promote cell survival by RAGE-mediated NF-KB activation, leading to upregulation of the anti-apoptotic factor Bcl-2 [39, 46, 47]. However, in micromolar concentrations, the RAGE-mediated S100B toxic effects are due to overproduction of reactive oxygen species (ROS) [44], leading to apoptosis.
The findings that high concentrations of S100B could have neurotoxic effects are especially interesting, because the rs9722 SNP, located in the 3′ untranslated region (3´-UTR), appears to be functional in that healthy individuals with the T allele variant, the variant we found to be more common in PD with early onset, have been reported to have higher serum and frontal cortex concentrations of S100B [48]. Furthermore, functional studies of peripheral blood mononuclear cells from healthy volunteers show that cells with the CT genotype of rs9722 express more than twice the amount of S100B mRNA as well as S100B protein as compared to cells with the CC genotype [49].
The allelic and genotype frequencies of the S100B polymorphisms were similar in late-onset PD and controls, but early-onset patients differed to both late-onset patients and controls. Interestingly, a newly published study analyzing data from a meta-analysis of GWAS found support for that an individual’s polygenic risk score were higher in PD patients with early onset as compared to those with late onset [50]. This pattern suggests that early-onset patients may have a different pathophysiology compared late-onset patients, with the S100B allelic variants conferring a risk only for early-onset patients. Support for this view comes from the observation that the incidence and prevalence of PD after the age of 50 increases almost exponentially in contrast to early onset PD [51], which besides is the basis for using this age as a cut-off while defining early age of onset PD.
However, another interpretation is that the functional activity of S100B does not influence the risk to be affected of neither PD with a late onset nor PD with an early onset but rather modulates the age of onset of PD, a notion that is further supported by the linear regression analysis and Cox proportional hazards tests performed in the present paper regarding the rs9722 SNP. Moreover, the observation that the genetic influence on the risk for sporadic PD, as judged by the very low concordance rate in monozygotic twins [52, 53], suggests that environmental factors are most important for causing the disease.
The distinction between gene variants influencing the risk to be affected by PD and variants that modify age of onset might be biologically significant; risk variants point to the initial cause, whereas onset modifiers implicate the processes that begin after the initial insult affecting the threshold for developing clinical signs [54]. Interestingly, segregation analyses of PD suggest stronger evidence for major genes influencing age of onset than for genes influencing susceptibility to disease [55, 56].

Conclusions

Even though the population sizes used in the current study are quite small, the results suggest that S100B activity could influence age of onset of sporadic PD. By resulting in higher S100B levels, the minor allele of the SNP rs9722 might modulate age of onset, potentially by activation of inflammatory processes or by increasing intracellular calcium.

Acknowledgements

We would like to thank Professor Laura Fratiglioni for providing us with control samples from the Swedish National Study on Aging and Care in Kungsholmen (SNAC-K).

Funding

The study was supported by the Swedish Research Council, Swedish Brain Power, The LUA-ALF Foundation at the Sahlgrenska University Hospital, Swedish Parkinson Foundation, Karolinska Institutet Funds, Åke Wibergs Stiftelse, and Foundation for Parkinson Research in Linköping.

Availability of data and materials

The datasets used during the current study are available from the corresponding author on reasonable request.
All subjects provided written informed consent and the study were approved by the ethical committees at University of Gothenburg, Karolinska Institute and Linköping University.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
2.
Zurück zum Zitat Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev. 2011;91:1161–218.CrossRefPubMed Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev. 2011;91:1161–218.CrossRefPubMed
3.
Zurück zum Zitat Schapira AH. Mitochondrial pathology in Parkinson’s disease. Mount Sinai J Med. 2011;78:872–81.CrossRef Schapira AH. Mitochondrial pathology in Parkinson’s disease. Mount Sinai J Med. 2011;78:872–81.CrossRef
4.
Zurück zum Zitat Barnum CJ, Tansey MG. Modeling neuroinflammatory pathogenesis of Parkinson's disease. Prog Brain Res. 2010;184:113–32.CrossRefPubMed Barnum CJ, Tansey MG. Modeling neuroinflammatory pathogenesis of Parkinson's disease. Prog Brain Res. 2010;184:113–32.CrossRefPubMed
5.
Zurück zum Zitat Håkansson A, Westberg L, Nilsson S, Buervenich S, Carmine A, Holmberg B, et al. Investigation of genes coding for inflammatory components in Parkinson's disease. Mov Disord. 2005;20:569–73.CrossRefPubMed Håkansson A, Westberg L, Nilsson S, Buervenich S, Carmine A, Holmberg B, et al. Investigation of genes coding for inflammatory components in Parkinson's disease. Mov Disord. 2005;20:569–73.CrossRefPubMed
6.
Zurück zum Zitat Håkansson A, Westberg L, Nilsson S, Buervenich S, Carmine A, Holmberg B, et al. Interaction of polymorphisms in the genes encoding interleukin-6 and estrogen receptor beta on the susceptibility to Parkinson's disease. Am J Med Genet B Neuropsychiatr Genet. 2005;133B:88–92.CrossRefPubMed Håkansson A, Westberg L, Nilsson S, Buervenich S, Carmine A, Holmberg B, et al. Interaction of polymorphisms in the genes encoding interleukin-6 and estrogen receptor beta on the susceptibility to Parkinson's disease. Am J Med Genet B Neuropsychiatr Genet. 2005;133B:88–92.CrossRefPubMed
7.
Zurück zum Zitat Lerner A, Bagic A. Olfactory pathogenesis of idiopathic Parkinson disease revisited. Mov Disord. 2008;23:1076–84.CrossRefPubMed Lerner A, Bagic A. Olfactory pathogenesis of idiopathic Parkinson disease revisited. Mov Disord. 2008;23:1076–84.CrossRefPubMed
8.
Zurück zum Zitat Dunning CJ, Reyes JF, Steiner JA, Brundin P. Can Parkinson’s disease pathology be propagated from one neuron to another? Prog Neurobiol. 2012;97:205–19.CrossRefPubMed Dunning CJ, Reyes JF, Steiner JA, Brundin P. Can Parkinson’s disease pathology be propagated from one neuron to another? Prog Neurobiol. 2012;97:205–19.CrossRefPubMed
11.
Zurück zum Zitat Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genet. 2014;46:989–93.CrossRefPubMedPubMedCentral Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genet. 2014;46:989–93.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Keller MF, Saad M, Bras J, Bettella F, Nicolaou N, Simón-Sánchez J, et al. Using genome-wide complex trait analysis to quantify ‘missing heritability’ in Parkinson's disease. Hum Mol Genet. 2012;21:4996–5009.CrossRefPubMedPubMedCentral Keller MF, Saad M, Bras J, Bettella F, Nicolaou N, Simón-Sánchez J, et al. Using genome-wide complex trait analysis to quantify ‘missing heritability’ in Parkinson's disease. Hum Mol Genet. 2012;21:4996–5009.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Rickmann M, Wolff JR. S100 protein expression in subpopulations of neurons of rat brain. Neurosci. 1995;67:977–91.CrossRef Rickmann M, Wolff JR. S100 protein expression in subpopulations of neurons of rat brain. Neurosci. 1995;67:977–91.CrossRef
14.
Zurück zum Zitat Vives V, Alonso G, Solal AC, Joubert D, Legraverend C. Visualization of S100B-positive neurons and glia in the central nervous system of EGFP transgenic mice. J Comp Neurol. 2003;457:404–19.CrossRefPubMed Vives V, Alonso G, Solal AC, Joubert D, Legraverend C. Visualization of S100B-positive neurons and glia in the central nervous system of EGFP transgenic mice. J Comp Neurol. 2003;457:404–19.CrossRefPubMed
15.
Zurück zum Zitat Cirillo C, Sarnelli G, Esposito G, Turco F, Steardo L, Cuomo R. S100B protein in the gut: the evidence for enteroglial-sustained intestinal inflammation. World J Gastroenterol. 2011;17:1261–6.CrossRefPubMedPubMedCentral Cirillo C, Sarnelli G, Esposito G, Turco F, Steardo L, Cuomo R. S100B protein in the gut: the evidence for enteroglial-sustained intestinal inflammation. World J Gastroenterol. 2011;17:1261–6.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009;1793:1008–22.CrossRefPubMed Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009;1793:1008–22.CrossRefPubMed
17.
Zurück zum Zitat Rothoerl RD, Woertgen C, Holzschuh M, Metz C, Brawanski A. S-100 serum levels after minor and major head injury. J Trauma. 1998;45:765–7.CrossRefPubMed Rothoerl RD, Woertgen C, Holzschuh M, Metz C, Brawanski A. S-100 serum levels after minor and major head injury. J Trauma. 1998;45:765–7.CrossRefPubMed
18.
Zurück zum Zitat Rothermundt M, Ponath G, Glaser T, Hetzel G, Arolt V. S100B serum levels and long-term improvement of negative symptoms in patients with schizophrenia. Neuropsychopharmacology. 2004;29:1004–11.CrossRefPubMed Rothermundt M, Ponath G, Glaser T, Hetzel G, Arolt V. S100B serum levels and long-term improvement of negative symptoms in patients with schizophrenia. Neuropsychopharmacology. 2004;29:1004–11.CrossRefPubMed
19.
Zurück zum Zitat Schmitt A, Bertsch T, Henning U, Tost H, Klimke A, Henn FA, et al. Increased serum S100B in elderly, chronic schizophrenic patients: negative correlation with deficit symptoms. Schizophr Res. 2005;80:305–13.CrossRefPubMed Schmitt A, Bertsch T, Henning U, Tost H, Klimke A, Henn FA, et al. Increased serum S100B in elderly, chronic schizophrenic patients: negative correlation with deficit symptoms. Schizophr Res. 2005;80:305–13.CrossRefPubMed
20.
Zurück zum Zitat Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989;86:7611–5.CrossRefPubMedPubMedCentral Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989;86:7611–5.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Schaf DV, Tort AB, Fricke D, Schestatsky P, Portela LV, Souza DO, et al. S100B and NSE serum levels in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2005;11:39–43.CrossRefPubMed Schaf DV, Tort AB, Fricke D, Schestatsky P, Portela LV, Souza DO, et al. S100B and NSE serum levels in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2005;11:39–43.CrossRefPubMed
22.
Zurück zum Zitat Wilhelm KR, Yanamandra K, Gruden MA, Zamotin V, Malisauskas M, Casaite V, et al. Immune reactivity towards insulin, its amyloid and protein S100B in blood sera of Parkinson's disease patients. Eur J Neurol. 2007;14:327–34.PubMed Wilhelm KR, Yanamandra K, Gruden MA, Zamotin V, Malisauskas M, Casaite V, et al. Immune reactivity towards insulin, its amyloid and protein S100B in blood sera of Parkinson's disease patients. Eur J Neurol. 2007;14:327–34.PubMed
23.
Zurück zum Zitat Sathe K, Maetzler W, Lang JD, Mounsey RB, Fleckenstein C, Martin HL, et al. S100B is increased in Parkinson's disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-alpha pathway. Brain. 2012;135:3336–47.CrossRefPubMedPubMedCentral Sathe K, Maetzler W, Lang JD, Mounsey RB, Fleckenstein C, Martin HL, et al. S100B is increased in Parkinson's disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-alpha pathway. Brain. 2012;135:3336–47.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Liu J, Wang H, Zhang L, Xu Y, Deng W, Zhu H, et al. S100B transgenic mice develop features of Parkinson's disease. Arch Med Res. 2011;42:1–7.CrossRefPubMed Liu J, Wang H, Zhang L, Xu Y, Deng W, Zhu H, et al. S100B transgenic mice develop features of Parkinson's disease. Arch Med Res. 2011;42:1–7.CrossRefPubMed
25.
Zurück zum Zitat Nishiyama H, Knopfel T, Endo S, Itohara S. Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci U S A. 2002;99:4037–42.CrossRefPubMedPubMedCentral Nishiyama H, Knopfel T, Endo S, Itohara S. Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci U S A. 2002;99:4037–42.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Li Y-J, Scott WK, Hedges DJ, Zhang F, Gaskell PC, Nance MA, et al. Age at onset in two common neurodegenerative diseases is genetically controlled. Am J Hum Gen. 2002;70:985–93.CrossRef Li Y-J, Scott WK, Hedges DJ, Zhang F, Gaskell PC, Nance MA, et al. Age at onset in two common neurodegenerative diseases is genetically controlled. Am J Hum Gen. 2002;70:985–93.CrossRef
27.
Zurück zum Zitat Searles Nielsen S, Bammler TK, Gallagher LG, Farin FM, Longstreth W Jr, Franklin GM, et al. Genotype and age at Parkinson disease diagnosis. Int J Mol Epidemiol Genet. 2013;4:61–9.PubMedPubMedCentral Searles Nielsen S, Bammler TK, Gallagher LG, Farin FM, Longstreth W Jr, Franklin GM, et al. Genotype and age at Parkinson disease diagnosis. Int J Mol Epidemiol Genet. 2013;4:61–9.PubMedPubMedCentral
28.
Zurück zum Zitat Fratiglioni L, Viitanen M, Backman L, Sandman PO, Winblad B. Occurrence of dementia in advanced age: the study design of the Kungsholmen project. Neuroepidemiology. 1992;11(Suppl 1):29–36.CrossRefPubMed Fratiglioni L, Viitanen M, Backman L, Sandman PO, Winblad B. Occurrence of dementia in advanced age: the study design of the Kungsholmen project. Neuroepidemiology. 1992;11(Suppl 1):29–36.CrossRefPubMed
29.
Zurück zum Zitat Daniel SE, Lees AJ. Parkinson's disease society brain Bank, London: overview and research. J Neural Transm Suppl. 1993;39:165–72.PubMed Daniel SE, Lees AJ. Parkinson's disease society brain Bank, London: overview and research. J Neural Transm Suppl. 1993;39:165–72.PubMed
30.
Zurück zum Zitat Mizuta I, Nishimura M, Mizuta E, Yamasaki S, Ohta M, Kuno S, et al. Relation between the high production related allele of the interferon-gamma (IFN-gamma) gene and age at onset of idiopathic Parkinson's disease in Japan. J Neurol Neurosurg Psychiatry. 2001;71:818–9.CrossRefPubMedPubMedCentral Mizuta I, Nishimura M, Mizuta E, Yamasaki S, Ohta M, Kuno S, et al. Relation between the high production related allele of the interferon-gamma (IFN-gamma) gene and age at onset of idiopathic Parkinson's disease in Japan. J Neurol Neurosurg Psychiatry. 2001;71:818–9.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Wang J, Zhao CY, Si YM, Liu ZL, Chen B, Yu L. ACT and UCH-L1 polymorphisms in Parkinson's disease and age of onset. Mov Disord. 2002;17:767–71.CrossRefPubMed Wang J, Zhao CY, Si YM, Liu ZL, Chen B, Yu L. ACT and UCH-L1 polymorphisms in Parkinson's disease and age of onset. Mov Disord. 2002;17:767–71.CrossRefPubMed
32.
Zurück zum Zitat Håkansson A, Belin AC, Stiller C, Sydow O, Johnels B, Olson L, et al. Investigation of genes related to familial forms of Parkinson’s disease – with focus on the Parkin gene. Parkinsonism Relat Disord. 2008;14:520–2.CrossRefPubMed Håkansson A, Belin AC, Stiller C, Sydow O, Johnels B, Olson L, et al. Investigation of genes related to familial forms of Parkinson’s disease – with focus on the Parkin gene. Parkinsonism Relat Disord. 2008;14:520–2.CrossRefPubMed
33.
Zurück zum Zitat Anvret A, Blackinton JG, Westerlund M, Ran C, Sydow O, Willows T, et al. DJ-1 mutations are rare in a Swedish Parkinson cohort. Open Neurol J. 2011;5:8–11.CrossRefPubMedPubMedCentral Anvret A, Blackinton JG, Westerlund M, Ran C, Sydow O, Willows T, et al. DJ-1 mutations are rare in a Swedish Parkinson cohort. Open Neurol J. 2011;5:8–11.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease. Nat Genet. 2010;42:781–5.CrossRefPubMedPubMedCentral Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, et al. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease. Nat Genet. 2010;42:781–5.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Consortium, U. K. P. S. D., Wellcome Trust Case Control, C, Spencer CC, Plagnol V, Strange A, Gardner M, Paisan-Ruiz C, Band G, et al. Dissection of the genetics of Parkinson's disease identifies an additional association 5′ of SNCA and multiple associated haplotypes at 17q21. Hum Mol Genet. 2011;20:345–53.CrossRef Consortium, U. K. P. S. D., Wellcome Trust Case Control, C, Spencer CC, Plagnol V, Strange A, Gardner M, Paisan-Ruiz C, Band G, et al. Dissection of the genetics of Parkinson's disease identifies an additional association 5′ of SNCA and multiple associated haplotypes at 17q21. Hum Mol Genet. 2011;20:345–53.CrossRef
37.
Zurück zum Zitat Guo Y, Yang H, Deng X, Song Z, Yang Z, Xiong W, et al. Genetic analysis of the S100B gene in Chinese patients with Parkinson disease. Neurosci Lett. 2013;555:134–6.CrossRefPubMed Guo Y, Yang H, Deng X, Song Z, Yang Z, Xiong W, et al. Genetic analysis of the S100B gene in Chinese patients with Parkinson disease. Neurosci Lett. 2013;555:134–6.CrossRefPubMed
38.
Zurück zum Zitat Winningham-Major F, Staecker JL, Barger SW, Coats S, Van Eldik LJ. Neurite extension and neuronal survival activities of recombinant S100 beta proteins that differ in the content and position of cysteine residues. J Cell Biol. 1989;109:3063–71.CrossRefPubMed Winningham-Major F, Staecker JL, Barger SW, Coats S, Van Eldik LJ. Neurite extension and neuronal survival activities of recombinant S100 beta proteins that differ in the content and position of cysteine residues. J Cell Biol. 1989;109:3063–71.CrossRefPubMed
39.
Zurück zum Zitat Haglid KG, Yang Q, Hamberger A, Bergman S, Widerberg A, Danielsen N. S-100beta stimulates neurite outgrowth in the rat sciatic nerve grafted with acellular muscle transplants. Brain Res. 1997;753:196–201.CrossRefPubMed Haglid KG, Yang Q, Hamberger A, Bergman S, Widerberg A, Danielsen N. S-100beta stimulates neurite outgrowth in the rat sciatic nerve grafted with acellular muscle transplants. Brain Res. 1997;753:196–201.CrossRefPubMed
40.
Zurück zum Zitat Li Y, Barger SW, Liu L, Mrak RE, Griffin WS. S100beta induction of the proinflammatory cytokine interleukin-6 in neurons. J Neurochem. 2000;74:143–50.PubMedPubMedCentral Li Y, Barger SW, Liu L, Mrak RE, Griffin WS. S100beta induction of the proinflammatory cytokine interleukin-6 in neurons. J Neurochem. 2000;74:143–50.PubMedPubMedCentral
41.
Zurück zum Zitat Adami C, Sorci G, Blasi E, Agneletti AL, Bistoni F, Donato R. S100B expression in and effects on microglia. Glia. 2001;33:131–42.CrossRefPubMed Adami C, Sorci G, Blasi E, Agneletti AL, Bistoni F, Donato R. S100B expression in and effects on microglia. Glia. 2001;33:131–42.CrossRefPubMed
42.
Zurück zum Zitat Bianchi R, Kastrisianaki E, Giambanco I, Donato R. S100B protein stimulates migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem. 2011;286:7214–26.CrossRefPubMedPubMedCentral Bianchi R, Kastrisianaki E, Giambanco I, Donato R. S100B protein stimulates migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem. 2011;286:7214–26.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Lam V, Albrecht MA, Takechi R, Giles C, James AP, Foster JK, et al. The serum concentration of the calcium binding protein S100B is positively associated with cognitive performance in older adults. Front Aging Neurosci. 2013;5:61.CrossRefPubMedPubMedCentral Lam V, Albrecht MA, Takechi R, Giles C, James AP, Foster JK, et al. The serum concentration of the calcium binding protein S100B is positively associated with cognitive performance in older adults. Front Aging Neurosci. 2013;5:61.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem. 2000;275:40096–105.CrossRefPubMed Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem. 2000;275:40096–105.CrossRefPubMed
45.
Zurück zum Zitat Villarreal A, Aviles Reyes RX, Angelo MF, Reines AG, Ramos AJ. S100B alters neuronal survival and dendrite extension via RAGE-mediated NF-kappaB signaling. J Neurochem. 2011;117:321–32.CrossRefPubMed Villarreal A, Aviles Reyes RX, Angelo MF, Reines AG, Ramos AJ. S100B alters neuronal survival and dendrite extension via RAGE-mediated NF-kappaB signaling. J Neurochem. 2011;117:321–32.CrossRefPubMed
46.
Zurück zum Zitat Ahlemeyer B, Beier H, Semkova I, Schaper C, Krieglstein J. S-100beta protects cultured neurons against glutamate- and staurosporininduced damage and is involved in the anti-apoptotic action of the 5 HT(1A)-receptor agonist, bay x 3702. Brain Res. 2000;858:121–8.CrossRefPubMed Ahlemeyer B, Beier H, Semkova I, Schaper C, Krieglstein J. S-100beta protects cultured neurons against glutamate- and staurosporininduced damage and is involved in the anti-apoptotic action of the 5 HT(1A)-receptor agonist, bay x 3702. Brain Res. 2000;858:121–8.CrossRefPubMed
47.
Zurück zum Zitat Businaro R, Leone S, Fabrizi C, Sorci G, Donato R, Lauro GM, et al. S100B protects LAN-5 neuroblastoma cells against Abeta amyloid-induced nheurotoxicity via RAGE engagement at low doses but increases Abeta amyloid neurotoxicity at high doses. J Neurosci Res. 2006;83:897–906.CrossRefPubMed Businaro R, Leone S, Fabrizi C, Sorci G, Donato R, Lauro GM, et al. S100B protects LAN-5 neuroblastoma cells against Abeta amyloid-induced nheurotoxicity via RAGE engagement at low doses but increases Abeta amyloid neurotoxicity at high doses. J Neurosci Res. 2006;83:897–906.CrossRefPubMed
48.
Zurück zum Zitat Hohoff C, Ponath G, Freitag CM, Kästner F, Krakowitzky P, Domschke K, et al. Risk variants in the S100B gene predict elevated S100B serum concentrations in healthy individuals. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:291–7.PubMed Hohoff C, Ponath G, Freitag CM, Kästner F, Krakowitzky P, Domschke K, et al. Risk variants in the S100B gene predict elevated S100B serum concentrations in healthy individuals. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:291–7.PubMed
49.
Zurück zum Zitat Cunha C, Giovannini G, Pierini A, Bell AS, Sorci G, Riuzzi F, et al. Genetically-determined hyperfunction of the S100B/RAGE axis is a risk factor for aspergillosis in stem cell transplant recipients. PLoS One. 2011;6:e27962.CrossRefPubMedPubMedCentral Cunha C, Giovannini G, Pierini A, Bell AS, Sorci G, Riuzzi F, et al. Genetically-determined hyperfunction of the S100B/RAGE axis is a risk factor for aspergillosis in stem cell transplant recipients. PLoS One. 2011;6:e27962.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Escott-Price V, Nalls MA, Morris HR, Lubbe S, Brice A, Gasser T, et al. Polygenic risk of Parkinson disease is correlated with disease age at onset. Ann Neurol. 2015;77:582–91.CrossRefPubMedPubMedCentral Escott-Price V, Nalls MA, Morris HR, Lubbe S, Brice A, Gasser T, et al. Polygenic risk of Parkinson disease is correlated with disease age at onset. Ann Neurol. 2015;77:582–91.CrossRefPubMedPubMedCentral
51.
52.
Zurück zum Zitat Wirdefeldt K, Gatz M, Schalling M, Pedersen NL. No evidence for heritability of Parkinson disease in Swedish twins. Neurol. 2004;6:305–11.CrossRef Wirdefeldt K, Gatz M, Schalling M, Pedersen NL. No evidence for heritability of Parkinson disease in Swedish twins. Neurol. 2004;6:305–11.CrossRef
53.
Zurück zum Zitat Wirdefeldt K, Gatz M, Reynolds CA, Prescott CA, Pedersen NL. Heritability of Parkinson disease in Swedish twins: a longitudinal study. Neurobiol Aging. 2011;32:1923e1–8.CrossRef Wirdefeldt K, Gatz M, Reynolds CA, Prescott CA, Pedersen NL. Heritability of Parkinson disease in Swedish twins: a longitudinal study. Neurobiol Aging. 2011;32:1923e1–8.CrossRef
54.
Zurück zum Zitat Payami H, Kay DM, Zabetian CP, Schellenberg GD, Factor SA, McCulloch CC. Visualizing disease associations: graphic analysis of frequency distributions as a function of age using moving average plots (MAP) with application to Alzheimer's and Parkinson's disease. Genet Epidemiol. 2010;34:92–9.PubMedPubMedCentral Payami H, Kay DM, Zabetian CP, Schellenberg GD, Factor SA, McCulloch CC. Visualizing disease associations: graphic analysis of frequency distributions as a function of age using moving average plots (MAP) with application to Alzheimer's and Parkinson's disease. Genet Epidemiol. 2010;34:92–9.PubMedPubMedCentral
55.
Zurück zum Zitat Zareparsi S, Taylor TD, Harris EL, Payami H. Segregation analysis of Parkinson disease. Am J Med Genet. 1998;80:410–7.CrossRefPubMed Zareparsi S, Taylor TD, Harris EL, Payami H. Segregation analysis of Parkinson disease. Am J Med Genet. 1998;80:410–7.CrossRefPubMed
56.
Zurück zum Zitat Maher NE, Currie LJ, Lazzarini AM, Wilk JB, Taylor CA, Saint-Hilaire MH, et al. Segregation analysis of Parkinson disease revealing evidence for a major causative gene. Am J Med Genet. 2002;109:191–7.CrossRefPubMed Maher NE, Currie LJ, Lazzarini AM, Wilk JB, Taylor CA, Saint-Hilaire MH, et al. Segregation analysis of Parkinson disease revealing evidence for a major causative gene. Am J Med Genet. 2002;109:191–7.CrossRefPubMed
Metadaten
Titel
S100B polymorphisms are associated with age of onset of Parkinson’s disease
verfasst von
Camilla Fardell
Anna Zettergren
Caroline Ran
Andrea Carmine Belin
Agneta Ekman
Olof Sydow
Lars Bäckman
Björn Holmberg
Nil Dizdar
Peter Söderkvist
Hans Nissbrandt
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Medical Genetics / Ausgabe 1/2018
Elektronische ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-018-0547-3

Weitere Artikel der Ausgabe 1/2018

BMC Medical Genetics 1/2018 Zur Ausgabe