Skip to main content
Erschienen in: Inflammation 4/2017

06.05.2017 | ORIGINAL ARTICLE

Salidroside Inhibits Inflammation Through PI3K/Akt/HIF Signaling After Focal Cerebral Ischemia in Rats

verfasst von: Yicong Wei, Haimian Hong, Xiaoqin Zhang, Wenfang Lai, Yingzheng Wang, Kedan Chu, John Brown, Guizhu Hong, Lidian Chen

Erschienen in: Inflammation | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Salidroside is being investigated for its therapeutic potential in stroke because it is neuroprotective over an extended therapeutic window of time. In the present study, we investigated the mechanisms underlying the anti-inflammatory effects of salidroside (50 mg/kg intraperitoneally) in rats, given 1 h after reperfusion of a middle cerebral artery that had been occluded for 2 h. After 24 h, we found that salidroside increased the neuronal nuclear protein NeuN and reduced the marker of microglia and macrophages CD11b in the peri-infarct area of the brain. Salidroside also decreased IL-6, IL-1β, TNF-α, CD14, CD44, and iNOs mRNAs. At the same time, salidroside increased the ratio of phosphorylated protein kinase B (p-Akt) to total Akt. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 prevented this increase in p-Akt and reversed the inhibitory effects of salidroside on CD11b and inflammatory mediators. Salidroside also elevated the protein levels of hypoxia-inducible factor (HIF) subunits HIF1α, HIF2α, HIF3α, and of erythropoietin (EPO). The stimulatory effects of salidroside on HIFα subunits were blocked by LY294002. Moreover, YC-1, a HIF inhibitor, abolished salidroside-mediated increase of HIF1α and prevented the inhibitory effects of salidroside on CD11b and inflammatory mediators. Taken together, our results provide evidence for the first time that all three HIFα subunits and EPO can be regulated by PI3K/Akt in cerebral tissue, and that salidroside entrains this signaling pathway to induce production of HIFα subunits and EPO, one or more of which mediate the anti-inflammatory effects of salidroside after cerebral IRI.
Literatur
1.
Zurück zum Zitat Jin, R., G. Yang, and G. Li. 2010. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. Journal of Leukocyte Biology 87: 779–789.CrossRefPubMedPubMedCentral Jin, R., G. Yang, and G. Li. 2010. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. Journal of Leukocyte Biology 87: 779–789.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Hallenbeck, J.M. 1997. Cytokines, macrophages, and leukocytes in brain ischemia. Neurology 49: S5–S9.CrossRefPubMed Hallenbeck, J.M. 1997. Cytokines, macrophages, and leukocytes in brain ischemia. Neurology 49: S5–S9.CrossRefPubMed
3.
Zurück zum Zitat Han, H.S., Y. Qiao, M. Karabiyikoglu, R.G. Giffard, and M.A. Yenari. 2002. Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. Journal of Neuroscience 22: 3921–3928.PubMed Han, H.S., Y. Qiao, M. Karabiyikoglu, R.G. Giffard, and M.A. Yenari. 2002. Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. Journal of Neuroscience 22: 3921–3928.PubMed
4.
Zurück zum Zitat Wang, X., L. Xu, H. Wang, Y. Zhan, E. Pure, and G.Z. Feuerstein. 2002. CD44 deficiency in mice protects brain from cerebral ischemia injury. Journal of Neurochemistry 83: 1172–1179.CrossRefPubMed Wang, X., L. Xu, H. Wang, Y. Zhan, E. Pure, and G.Z. Feuerstein. 2002. CD44 deficiency in mice protects brain from cerebral ischemia injury. Journal of Neurochemistry 83: 1172–1179.CrossRefPubMed
5.
Zurück zum Zitat Muresanu, D.F., A. Buzoianu, S.I. Florian, and T. von Wild. 2012. Towards a roadmap in brain protection and recovery. Journal of Cellular and Molecular Medicine 16: 2861–2871.CrossRefPubMedPubMedCentral Muresanu, D.F., A. Buzoianu, S.I. Florian, and T. von Wild. 2012. Towards a roadmap in brain protection and recovery. Journal of Cellular and Molecular Medicine 16: 2861–2871.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Zhang, W. and D. Stanimirovic. 2002. Current and future therapeutic strategies to target inflammation in stroke. Current Drug Targets. Inflammation and Allergy 1: 151–166. Zhang, W. and D. Stanimirovic. 2002. Current and future therapeutic strategies to target inflammation in stroke. Current Drug Targets. Inflammation and Allergy 1: 151–166.
8.
Zurück zum Zitat Weidemann, A., and R.S. Johnson. 2008. Biology of HIF-1alpha. Cell Death and Differentiation 15: 621–627.CrossRefPubMed Weidemann, A., and R.S. Johnson. 2008. Biology of HIF-1alpha. Cell Death and Differentiation 15: 621–627.CrossRefPubMed
9.
Zurück zum Zitat Maxwell, P.H., M.S. Wiesener, G.W. Chang, S.C. Clifford, E.C. Vaux, M.E. Cockman, C.C. Wykoff, C.W. Pugh, E.R. Maher, and P.J. Ratcliffe. 1999. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275.CrossRefPubMed Maxwell, P.H., M.S. Wiesener, G.W. Chang, S.C. Clifford, E.C. Vaux, M.E. Cockman, C.C. Wykoff, C.W. Pugh, E.R. Maher, and P.J. Ratcliffe. 1999. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275.CrossRefPubMed
10.
Zurück zum Zitat Joshi, S., A.R. Singh, M. Zulcic, and D.L. Durden. 2014. A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1 and HIF2 stability and tumor growth, angiogenesis, and metastasis. Molecular Cancer Research 12: 1520–1531.CrossRefPubMed Joshi, S., A.R. Singh, M. Zulcic, and D.L. Durden. 2014. A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1 and HIF2 stability and tumor growth, angiogenesis, and metastasis. Molecular Cancer Research 12: 1520–1531.CrossRefPubMed
11.
Zurück zum Zitat Zhou, J., T. Schmid, R. Frank, and B. Brune. 2004. PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1alpha from pVHL-independent degradation. Journal of Biological Chemistry 279: 13506–13513.CrossRefPubMed Zhou, J., T. Schmid, R. Frank, and B. Brune. 2004. PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1alpha from pVHL-independent degradation. Journal of Biological Chemistry 279: 13506–13513.CrossRefPubMed
12.
Zurück zum Zitat Treins, C., S. Giorgetti-Peraldi, J. Murdaca, G.L. Semenza, and E. Van Obberghen. 2002. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. Journal of Biological Chemistry 277: 27975–27981.CrossRefPubMed Treins, C., S. Giorgetti-Peraldi, J. Murdaca, G.L. Semenza, and E. Van Obberghen. 2002. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. Journal of Biological Chemistry 277: 27975–27981.CrossRefPubMed
13.
Zurück zum Zitat Ye, Z., Q. Guo, P. Xia, N. Wang, E. Wang, and Y. Yuan. 2012. Sevoflurane postconditioning involves an up-regulation of HIF-1alpha and HO-1 expression via PI3K/Akt pathway in a rat model of focal cerebral ischemia. Brain Research 1463: 63–74.CrossRefPubMed Ye, Z., Q. Guo, P. Xia, N. Wang, E. Wang, and Y. Yuan. 2012. Sevoflurane postconditioning involves an up-regulation of HIF-1alpha and HO-1 expression via PI3K/Akt pathway in a rat model of focal cerebral ischemia. Brain Research 1463: 63–74.CrossRefPubMed
14.
Zurück zum Zitat Eltzschig, H.K., D.L. Bratton, and S.P. Colgan. 2014. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nature Reviews Drug Discovery 13: 852–869.CrossRefPubMedPubMedCentral Eltzschig, H.K., D.L. Bratton, and S.P. Colgan. 2014. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nature Reviews Drug Discovery 13: 852–869.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Baranova, O., L.F. Miranda, P. Pichiule, I. Dragatsis, R.S. Johnson, and J.C. Chavez. 2007. Neuron-specific inactivation of the hypoxia inducible factor 1 increases brain injury in a mouse model of transient focal cerebral ischemia. Journal of Neuroscience 27: 6320–6332.CrossRefPubMed Baranova, O., L.F. Miranda, P. Pichiule, I. Dragatsis, R.S. Johnson, and J.C. Chavez. 2007. Neuron-specific inactivation of the hypoxia inducible factor 1 increases brain injury in a mouse model of transient focal cerebral ischemia. Journal of Neuroscience 27: 6320–6332.CrossRefPubMed
17.
Zurück zum Zitat Wang, C., Z. Wang, X. Zhang, X. Zhang, L. Dong, Y. Xing, Y. Li, Z. Liu, L. Chen, H. Qiao, L. Wang, and C. Zhu. 2012. Protection by silibinin against experimental ischemic stroke: up-regulated pAkt, pmTOR, HIF-1α and Bcl-2, down-regulated Bax, NF-κB expression. Neuroscience Letters 529: 45–50.CrossRefPubMed Wang, C., Z. Wang, X. Zhang, X. Zhang, L. Dong, Y. Xing, Y. Li, Z. Liu, L. Chen, H. Qiao, L. Wang, and C. Zhu. 2012. Protection by silibinin against experimental ischemic stroke: up-regulated pAkt, pmTOR, HIF-1α and Bcl-2, down-regulated Bax, NF-κB expression. Neuroscience Letters 529: 45–50.CrossRefPubMed
18.
Zurück zum Zitat Lai, W.F., Z.W. Zheng, X.Q. Zhang, Y.C. Wei, K.D. Chu, J. Brown, G.Z. Hong, and L.D. Chen. 2015. Salidroside-mediated neuroprotection is associated with induction of early growth response genes (Egrs) across a wide therapeutic window. Neurotoxicity Research 28: 108–121.CrossRefPubMed Lai, W.F., Z.W. Zheng, X.Q. Zhang, Y.C. Wei, K.D. Chu, J. Brown, G.Z. Hong, and L.D. Chen. 2015. Salidroside-mediated neuroprotection is associated with induction of early growth response genes (Egrs) across a wide therapeutic window. Neurotoxicity Research 28: 108–121.CrossRefPubMed
19.
Zurück zum Zitat Shi, T.Y., S.F. Feng, J.H. Xing, Y.M. Wu, X.Q. Li, N. Zhang, Z. Tian, S.B. Liu, and M.G. Zhao. 2012. Neuroprotective effects of salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro. Neurotoxicity Research 21: 358–367.CrossRefPubMed Shi, T.Y., S.F. Feng, J.H. Xing, Y.M. Wu, X.Q. Li, N. Zhang, Z. Tian, S.B. Liu, and M.G. Zhao. 2012. Neuroprotective effects of salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro. Neurotoxicity Research 21: 358–367.CrossRefPubMed
20.
Zurück zum Zitat Zhu, L., T. Wei, X. Chang, H. He, J. Gao, Z. Wen, and T. Yan. 2015. Effects of salidroside on myocardial injury in vivo in vitro via regulation of Nox/NF-kappaB/AP1 pathway. Inflammation 38: 1589–1598.CrossRefPubMed Zhu, L., T. Wei, X. Chang, H. He, J. Gao, Z. Wen, and T. Yan. 2015. Effects of salidroside on myocardial injury in vivo in vitro via regulation of Nox/NF-kappaB/AP1 pathway. Inflammation 38: 1589–1598.CrossRefPubMed
21.
Zurück zum Zitat Hu, H., Z. Li, X. Zhu, R. Lin, and L. Chen. 2014. Salidroside reduces cell mobility via NF-κB and MAPK signaling in LPS-induced BV2 microglial cells. Evidence-based Complementary and Alternative Medicine 2014: 383821.PubMedPubMedCentral Hu, H., Z. Li, X. Zhu, R. Lin, and L. Chen. 2014. Salidroside reduces cell mobility via NF-κB and MAPK signaling in LPS-induced BV2 microglial cells. Evidence-based Complementary and Alternative Medicine 2014: 383821.PubMedPubMedCentral
22.
Zurück zum Zitat Gao, J., R. Zhou, X. You, F. Luo, H. He, X. Chang, L. Zhu, X. Ding, and T. Yan. 2016. Salidroside suppresses inflammation in a D-galactose-induced rat model of Alzheimer’s disease via SIRT1/NF-kappaB pathway. Metabolic Brain Disease 31: 771–778.CrossRefPubMed Gao, J., R. Zhou, X. You, F. Luo, H. He, X. Chang, L. Zhu, X. Ding, and T. Yan. 2016. Salidroside suppresses inflammation in a D-galactose-induced rat model of Alzheimer’s disease via SIRT1/NF-kappaB pathway. Metabolic Brain Disease 31: 771–778.CrossRefPubMed
23.
Zurück zum Zitat Zheng, K.Y., Z.X. Zhang, A.J. Guo, C.W. Bi, K.Y. Zhu, S.L. Xu, J.Y. Zhan, D.T. Lau, T.T. Dong, R.C. Choi, and K.W. Tsim. 2012. Salidroside stimulates the accumulation of HIF-1alpha protein resulted in the induction of EPO expression: a signaling via blocking the degradation pathway in kidney and liver cells. European Journal of Pharmacology 679: 34–39.CrossRefPubMed Zheng, K.Y., Z.X. Zhang, A.J. Guo, C.W. Bi, K.Y. Zhu, S.L. Xu, J.Y. Zhan, D.T. Lau, T.T. Dong, R.C. Choi, and K.W. Tsim. 2012. Salidroside stimulates the accumulation of HIF-1alpha protein resulted in the induction of EPO expression: a signaling via blocking the degradation pathway in kidney and liver cells. European Journal of Pharmacology 679: 34–39.CrossRefPubMed
24.
Zurück zum Zitat Longa, E.Z., P.R. Weinstein, S. Carlson, and R. Cummins. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84–91.CrossRefPubMed Longa, E.Z., P.R. Weinstein, S. Carlson, and R. Cummins. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84–91.CrossRefPubMed
25.
Zurück zum Zitat Nakayama, H., M.D. Ginsberg, and W.D. Dietrich. 1988. (S)-emopamil, a novel calcium channel blocker and serotonin S2 antagonist, markedly reduces infarct size following middle cerebral artery occlusion in the rat. Neurology 38: 1667–1673.CrossRefPubMed Nakayama, H., M.D. Ginsberg, and W.D. Dietrich. 1988. (S)-emopamil, a novel calcium channel blocker and serotonin S2 antagonist, markedly reduces infarct size following middle cerebral artery occlusion in the rat. Neurology 38: 1667–1673.CrossRefPubMed
26.
Zurück zum Zitat Belayev, L., O.F. Alonso, R. Busto, W. Zhao, and M.D. Ginsberg. 1996. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 27 (1616–1622): 1623. Belayev, L., O.F. Alonso, R. Busto, W. Zhao, and M.D. Ginsberg. 1996. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 27 (1616–1622): 1623.
27.
Zurück zum Zitat Zhao, H., T. Shimohata, J.Q. Wang, G. Sun, D.W. Schaal, R.M. Sapolsky, and G.K. Steinberg. 2005. Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats. Journal of Neuroscience 25: 9794–9806.CrossRefPubMed Zhao, H., T. Shimohata, J.Q. Wang, G. Sun, D.W. Schaal, R.M. Sapolsky, and G.K. Steinberg. 2005. Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats. Journal of Neuroscience 25: 9794–9806.CrossRefPubMed
28.
Zurück zum Zitat Zhang, Z., J. Yan, S. Taheri, K.J. Liu, and H. Shi. 2014. Hypoxia-inducible factor 1 contributes to N-acetylcysteine’s protection in stroke. Free Radical Biology and Medicine 68: 8–21.CrossRefPubMed Zhang, Z., J. Yan, S. Taheri, K.J. Liu, and H. Shi. 2014. Hypoxia-inducible factor 1 contributes to N-acetylcysteine’s protection in stroke. Free Radical Biology and Medicine 68: 8–21.CrossRefPubMed
29.
Zurück zum Zitat Sun, M., B. Deng, X. Zhao, C. Gao, L. Yang, H. Zhao, D. Yu, F. Zhang, L. Xu, L. Chen, and X. Sun. 2015. Isoflurane preconditioning provides neuroprotection against stroke by regulating the expression of the TLR4 signalling pathway to alleviate microglial activation. Scientific Reports 5: 11445.CrossRefPubMedPubMedCentral Sun, M., B. Deng, X. Zhao, C. Gao, L. Yang, H. Zhao, D. Yu, F. Zhang, L. Xu, L. Chen, and X. Sun. 2015. Isoflurane preconditioning provides neuroprotection against stroke by regulating the expression of the TLR4 signalling pathway to alleviate microglial activation. Scientific Reports 5: 11445.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Perego, C., S. Fumagalli, and M.G. De Simoni. 2011. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. Journal of Neuroinflammation 8: 174.CrossRefPubMedPubMedCentral Perego, C., S. Fumagalli, and M.G. De Simoni. 2011. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. Journal of Neuroinflammation 8: 174.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Guha, M., and N. Mackman. 2002. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. Journal of Biological Chemistry 277: 32124–32132.CrossRefPubMed Guha, M., and N. Mackman. 2002. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. Journal of Biological Chemistry 277: 32124–32132.CrossRefPubMed
32.
Zurück zum Zitat Jin, R., Z. Song, S. Yu, A. Piazza, A. Nanda, J.M. Penninger, D.N. Granger, and G. Li. 2011. Phosphatidylinositol-3-kinase gamma plays a central role in blood-brain barrier dysfunction in acute experimental stroke. Stroke 42: 2033–2044.CrossRefPubMedPubMedCentral Jin, R., Z. Song, S. Yu, A. Piazza, A. Nanda, J.M. Penninger, D.N. Granger, and G. Li. 2011. Phosphatidylinositol-3-kinase gamma plays a central role in blood-brain barrier dysfunction in acute experimental stroke. Stroke 42: 2033–2044.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Lai, W.F., X. Tian, Q. Xiang, K.D. Chu, Y. Wei, J.T. Deng, S.P. Zhang, J. Brown, and G.Z. Hong. 2015. 11β-HSD1 modulates LPS-induced innate immune responses in adipocytes by altering expression of PTEN. Molecular Endocrinology 29: 558–570.CrossRefPubMedPubMedCentral Lai, W.F., X. Tian, Q. Xiang, K.D. Chu, Y. Wei, J.T. Deng, S.P. Zhang, J. Brown, and G.Z. Hong. 2015. 11β-HSD1 modulates LPS-induced innate immune responses in adipocytes by altering expression of PTEN. Molecular Endocrinology 29: 558–570.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Li, L., D.W. McBride, D. Doycheva, B.J. Dixon, P.R. Krafft, J.H. Zhang, and J.P. Tang. 2015. G-CSF attenuates neuroinflammation and stabilizes the blood–brain barrier via the PI3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Experimental Neurology 272: 135–144.CrossRefPubMedPubMedCentral Li, L., D.W. McBride, D. Doycheva, B.J. Dixon, P.R. Krafft, J.H. Zhang, and J.P. Tang. 2015. G-CSF attenuates neuroinflammation and stabilizes the blood–brain barrier via the PI3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Experimental Neurology 272: 135–144.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Chun, Y.S., E.J. Yeo, E. Choi, C.M. Teng, J.M. Bae, M.S. Kim, and J.W. Park. 2001. Inhibitory effect of YC-1 on the hypoxic induction of erythropoietin and vascular endothelial growth factor in Hep3B cells. Biochemical Pharmacology 61: 947–954.CrossRefPubMed Chun, Y.S., E.J. Yeo, E. Choi, C.M. Teng, J.M. Bae, M.S. Kim, and J.W. Park. 2001. Inhibitory effect of YC-1 on the hypoxic induction of erythropoietin and vascular endothelial growth factor in Hep3B cells. Biochemical Pharmacology 61: 947–954.CrossRefPubMed
36.
Zurück zum Zitat Li, S.H., D.H. Shin, Y.S. Chun, M.K. Lee, M.S. Kim, and J.W. Park. 2008. A novel mode of action of YC-1 in HIF inhibition: stimulation of FIH-dependent p300 dissociation from HIF-1. Molecular Cancer Therapeutics 7: 3729–3738.CrossRefPubMed Li, S.H., D.H. Shin, Y.S. Chun, M.K. Lee, M.S. Kim, and J.W. Park. 2008. A novel mode of action of YC-1 in HIF inhibition: stimulation of FIH-dependent p300 dissociation from HIF-1. Molecular Cancer Therapeutics 7: 3729–3738.CrossRefPubMed
37.
Zurück zum Zitat Zhang, L., W. Ding, H. Sun, Q. Zhou, J. Huang, X. Li, Y. Xie, and J. Chen. 2012. Salidroside protects PC12 cells from MPP(+)-induced apoptosis via activation of the PI3K/Akt pathway. Food and Chemical Toxicology 50: 2591–2597.CrossRefPubMed Zhang, L., W. Ding, H. Sun, Q. Zhou, J. Huang, X. Li, Y. Xie, and J. Chen. 2012. Salidroside protects PC12 cells from MPP(+)-induced apoptosis via activation of the PI3K/Akt pathway. Food and Chemical Toxicology 50: 2591–2597.CrossRefPubMed
38.
Zurück zum Zitat Zhang, B., Y. Wang, H. Li, R. Xiong, Z. Zhao, X. Chu, Q. Li, S. Sun, and S. Chen. 2016. Neuroprotective effects of salidroside through PI3K/Akt pathway activation in Alzheimer’s disease models. Drug Design, Development and Therapy 10: 1335–1343.PubMedPubMedCentral Zhang, B., Y. Wang, H. Li, R. Xiong, Z. Zhao, X. Chu, Q. Li, S. Sun, and S. Chen. 2016. Neuroprotective effects of salidroside through PI3K/Akt pathway activation in Alzheimer’s disease models. Drug Design, Development and Therapy 10: 1335–1343.PubMedPubMedCentral
39.
Zurück zum Zitat Chen, S.F., H.J. Tsai, T.H. Hung, C.C. Chen, C.Y. Lee, C.H. Wu, P.Y. Wang, and N.C. Liao. 2012. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PloS One 7: e45763.CrossRefPubMedPubMedCentral Chen, S.F., H.J. Tsai, T.H. Hung, C.C. Chen, C.Y. Lee, C.H. Wu, P.Y. Wang, and N.C. Liao. 2012. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PloS One 7: e45763.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Zhang, W., H. He, H. Song, J. Zhao, T. Li, L. Wu, X. Zhang, and J. Chen. 2016. Neuroprotective effects of salidroside in the MPTP mouse model of Parkinson’s disease: involvement of the PI3K/Akt/GSK3beta pathway. Parkinson's Disease 2016: 9450137.CrossRefPubMedPubMedCentral Zhang, W., H. He, H. Song, J. Zhao, T. Li, L. Wu, X. Zhang, and J. Chen. 2016. Neuroprotective effects of salidroside in the MPTP mouse model of Parkinson’s disease: involvement of the PI3K/Akt/GSK3beta pathway. Parkinson's Disease 2016: 9450137.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Guan, S., H. Feng, B. Song, W. Guo, Y. Xiong, G. Huang, W. Zhong, M. Huo, N. Chen, J. Lu, and X. Deng. 2011. Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia. International Immunopharmacology 11: 2194–2199.CrossRefPubMed Guan, S., H. Feng, B. Song, W. Guo, Y. Xiong, G. Huang, W. Zhong, M. Huo, N. Chen, J. Lu, and X. Deng. 2011. Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia. International Immunopharmacology 11: 2194–2199.CrossRefPubMed
42.
Zurück zum Zitat Zhu, L., T. Wei, J. Gao, X. Chang, H. He, M. Miao, and T. Yan. 2015. Salidroside attenuates lipopolysaccharide (LPS) induced serum cytokines and depressive-like behavior in mice. Neuroscience Letters 606: 1–6.CrossRefPubMed Zhu, L., T. Wei, J. Gao, X. Chang, H. He, M. Miao, and T. Yan. 2015. Salidroside attenuates lipopolysaccharide (LPS) induced serum cytokines and depressive-like behavior in mice. Neuroscience Letters 606: 1–6.CrossRefPubMed
43.
Zurück zum Zitat Wu, D., P. Yuan, C. Ke, H. Xiong, J. Chen, J. Guo, M. Lu, Y. Ding, X. Fan, Q. Duan, F. Shi, and F. Zhu. 2016. Salidroside suppresses solar ultraviolet-induced skin inflammation by targeting cyclooxygenase-2. Oncotarget 7: 25971–25982.PubMedPubMedCentral Wu, D., P. Yuan, C. Ke, H. Xiong, J. Chen, J. Guo, M. Lu, Y. Ding, X. Fan, Q. Duan, F. Shi, and F. Zhu. 2016. Salidroside suppresses solar ultraviolet-induced skin inflammation by targeting cyclooxygenase-2. Oncotarget 7: 25971–25982.PubMedPubMedCentral
44.
Zurück zum Zitat Sun, P., S.Z. Song, S. Jiang, X. Li, Y.L. Yao, Y.L. Wu, L.H. Lian, J.X. Nan. 2016. Salidroside regulates inflammatory response in Raw 264.7 macrophages via TLR4/TAK1 and ameliorates inflammation in alcohol binge drinking-induced liver injury. Molecules 21:E 1490. Sun, P., S.Z. Song, S. Jiang, X. Li, Y.L. Yao, Y.L. Wu, L.H. Lian, J.X. Nan. 2016. Salidroside regulates inflammatory response in Raw 264.7 macrophages via TLR4/TAK1 and ameliorates inflammation in alcohol binge drinking-induced liver injury. Molecules 21:E 1490.
45.
Zurück zum Zitat Sun, H.L., Y.N. Liu, Y.T. Huang, S.L. Pan, D.Y. Huang, J.H. Guh, F.Y. Lee, S.C. Kuo, and C.M. Teng. 2007. YC-1 inhibits HIF-1 expression in prostate cancer cells: contribution of Akt/NF-kappaB signaling to HIF-1alpha accumulation during hypoxia. Oncogene 26: 3941–3951.CrossRefPubMed Sun, H.L., Y.N. Liu, Y.T. Huang, S.L. Pan, D.Y. Huang, J.H. Guh, F.Y. Lee, S.C. Kuo, and C.M. Teng. 2007. YC-1 inhibits HIF-1 expression in prostate cancer cells: contribution of Akt/NF-kappaB signaling to HIF-1alpha accumulation during hypoxia. Oncogene 26: 3941–3951.CrossRefPubMed
46.
Zurück zum Zitat Ivan, M., K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J.M. Asara, W.S. Lane, and W.J. Kaelin. 2001. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464–468.CrossRefPubMed Ivan, M., K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J.M. Asara, W.S. Lane, and W.J. Kaelin. 2001. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464–468.CrossRefPubMed
47.
Zurück zum Zitat Heidbreder, M., F. Frohlich, O. Johren, A. Dendorfer, F. Qadri, and P. Dominiak. 2003. Hypoxia rapidly activates HIF-3alpha mRNA expression. FASEB Journal 17: 1541–1543.PubMed Heidbreder, M., F. Frohlich, O. Johren, A. Dendorfer, F. Qadri, and P. Dominiak. 2003. Hypoxia rapidly activates HIF-3alpha mRNA expression. FASEB Journal 17: 1541–1543.PubMed
48.
Zurück zum Zitat Zhang, P., Q. Yao, L. Lu, Y. Li, P.J. Chen, and C. Duan. 2014. Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Reports 6: 1110–1121.CrossRefPubMed Zhang, P., Q. Yao, L. Lu, Y. Li, P.J. Chen, and C. Duan. 2014. Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Reports 6: 1110–1121.CrossRefPubMed
49.
Zurück zum Zitat Sarada, S., M. Titto, P. Himadri, S. Saumya, and V. Vijayalakshmi. 2015. Curcumin prophylaxis mitigates the incidence of hypobaric hypoxia-induced altered ion channels expression and impaired tight junction proteins integrity in rat brain. Journal of Neuroinflammation 12: 113.CrossRefPubMedPubMedCentral Sarada, S., M. Titto, P. Himadri, S. Saumya, and V. Vijayalakshmi. 2015. Curcumin prophylaxis mitigates the incidence of hypobaric hypoxia-induced altered ion channels expression and impaired tight junction proteins integrity in rat brain. Journal of Neuroinflammation 12: 113.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Koh, H.S., C.Y. Chang, S. Jeon, H.J. Yoon, Y. Ahn, H. Kim, I. Kim, S.H. Jeon, R.S. Johnson, and E.J. Park. 2015. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nature Communications 6: 6340.CrossRefPubMedPubMedCentral Koh, H.S., C.Y. Chang, S. Jeon, H.J. Yoon, Y. Ahn, H. Kim, I. Kim, S.H. Jeon, R.S. Johnson, and E.J. Park. 2015. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nature Communications 6: 6340.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Villa, P., P. Bigini, T. Mennini, D. Agnello, T. Laragione, A. Cagnotto, B. Viviani, M. Marinovich, A. Cerami, T.R. Coleman, M. Brines, and P. Ghezzi. 2003. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. Journal of Experimental Medicine 198: 971–975.CrossRefPubMedPubMedCentral Villa, P., P. Bigini, T. Mennini, D. Agnello, T. Laragione, A. Cagnotto, B. Viviani, M. Marinovich, A. Cerami, T.R. Coleman, M. Brines, and P. Ghezzi. 2003. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. Journal of Experimental Medicine 198: 971–975.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Marti, H.H., R.H. Wenger, L.A. Rivas, U. Straumann, M. Digicaylioglu, V. Henn, Y. Yonekawa, C. Bauer, and M. Gassmann. 1996. Erythropoietin gene expression in human, monkey and murine brain. European Journal of Neuroscience 8: 666–676.CrossRefPubMed Marti, H.H., R.H. Wenger, L.A. Rivas, U. Straumann, M. Digicaylioglu, V. Henn, Y. Yonekawa, C. Bauer, and M. Gassmann. 1996. Erythropoietin gene expression in human, monkey and murine brain. European Journal of Neuroscience 8: 666–676.CrossRefPubMed
53.
Zurück zum Zitat Masuda, S., M. Okano, K. Yamagishi, M. Nagao, M. Ueda, R. Sasaki. 1994. A novel site of erythropoietin production. Oxygen-dependent production in cultured rat astrocytes. Journal of Biological Chemistry 269: 19488–19493. Masuda, S., M. Okano, K. Yamagishi, M. Nagao, M. Ueda, R. Sasaki. 1994. A novel site of erythropoietin production. Oxygen-dependent production in cultured rat astrocytes. Journal of Biological Chemistry 269: 19488–19493.
54.
Zurück zum Zitat Rabie, T., and H.H. Marti. 2008. Brain protection by erythropoietin: a manifold task. Physiology 23: 263–274.CrossRefPubMed Rabie, T., and H.H. Marti. 2008. Brain protection by erythropoietin: a manifold task. Physiology 23: 263–274.CrossRefPubMed
Metadaten
Titel
Salidroside Inhibits Inflammation Through PI3K/Akt/HIF Signaling After Focal Cerebral Ischemia in Rats
verfasst von
Yicong Wei
Haimian Hong
Xiaoqin Zhang
Wenfang Lai
Yingzheng Wang
Kedan Chu
John Brown
Guizhu Hong
Lidian Chen
Publikationsdatum
06.05.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0573-x

Weitere Artikel der Ausgabe 4/2017

Inflammation 4/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.