Skip to main content
Erschienen in: Inflammation 1/2020

07.11.2019 | Original Article

Salidroside Restores an Anti-inflammatory Endothelial Phenotype by Selectively Inhibiting Endothelial Complement After Oxidative Stress

verfasst von: Y Wang, Y Su, W Lai, X Huang, K Chu, J Brown, G Hong

Erschienen in: Inflammation | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Abstract

Salidroside, an active component of Rhodiola rosea, reduces inflammation and neuronal damage after middle cerebral artery occlusion (MCAO) with reperfusion, partly by inhibiting cerebral complement C3 activation. However, the mechanisms of this inhibition are not fully understood. In this study, we investigated which cerebral cells might contribute to the inhibition of complement by salidroside and the consequences of this inhibition. We used human umbilical endothelial cells (HUVEC) as a model of cerebral endothelium and found that salidroside prevented the increases of C3 and its active fragment C3a, and the associated increases in C1q and C2, otherwise caused by oxygen-glucose deprivation followed by restoration (OGD/R). However, salidroside did not affect C1q, C2 or C3 in astrocytes and microglial BV2 cells after OGD/R. Salidroside also prevented the decreases in CD46 and CD59, and the increases in VCAM-1, ICAM-1, P-selectin and E-selectin caused by OGD/R in HUVEC, which were associated with decreasing LDH release and increasing Bcl-2/Bax ratio. None of these effects of salidroside occurred in the absence of oxygen-glucose restoration. Moreover, salidroside and C3a receptor antagonist reduced the markers of endothelial activation and neutrophil adhesion to HUVEC after OGD/R to similar extents, and their effects were not additive. Correspondingly, salidroside reduced the markers of endothelial activation and neutrophilic infiltration in the rat brains after MCAO with reperfusion. These results suggest endothelium is an important locus of inhibition of complement by salidroside, restoring an anti-inflammatory endothelial phenotype after oxidative stress, partly by inhibiting classical complement activation and partly by increasing CD46 and CD59, in association with anti-apoptotic effects. These endothelial effects may contribute to the protection afforded by salidroside in cerebral ischemia-reperfusion injury.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Alawieh, A., A. Elvington, and S. Tomlinson. 2015. Complement in the homeostatic and ischemic brain. Frontiers in Immunology 6: 417.PubMedCentralPubMed Alawieh, A., A. Elvington, and S. Tomlinson. 2015. Complement in the homeostatic and ischemic brain. Frontiers in Immunology 6: 417.PubMedCentralPubMed
2.
Zurück zum Zitat Walker, D.G., S.U. Kim, and P.L. McGeer. 1995. Complement and cytokine gene expression in cultured microglial derived from postmortem human brains. Journal of Neuroscience Research 40 (4): 478–493.PubMed Walker, D.G., S.U. Kim, and P.L. McGeer. 1995. Complement and cytokine gene expression in cultured microglial derived from postmortem human brains. Journal of Neuroscience Research 40 (4): 478–493.PubMed
3.
Zurück zum Zitat Maranto, J., J. Rappaport, and P.K. Datta. 2008. Regulation of complement component C3 in astrocytes by IL-1beta and morphine. Journal of Neuroimmune Pharmacology 3 (1): 43–51.PubMed Maranto, J., J. Rappaport, and P.K. Datta. 2008. Regulation of complement component C3 in astrocytes by IL-1beta and morphine. Journal of Neuroimmune Pharmacology 3 (1): 43–51.PubMed
4.
Zurück zum Zitat Hosokawa, M., A. Klegeris, J. Maguire, and P. McGeer. 2003. Expression of complement messenger RNAs and proteins by human oligodendroglial cells. Glia 42 (4): 417–423.PubMed Hosokawa, M., A. Klegeris, J. Maguire, and P. McGeer. 2003. Expression of complement messenger RNAs and proteins by human oligodendroglial cells. Glia 42 (4): 417–423.PubMed
5.
Zurück zum Zitat Janssen, B.J., E.G. Huizinga, H.C. Raaijmakers, A. Roos, M.R. Daha, K. Nilsson-Ekdahl, B. Nilsson, and P. Gros. 2005. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437 (7058): 505–511.PubMed Janssen, B.J., E.G. Huizinga, H.C. Raaijmakers, A. Roos, M.R. Daha, K. Nilsson-Ekdahl, B. Nilsson, and P. Gros. 2005. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437 (7058): 505–511.PubMed
6.
Zurück zum Zitat Thiel, S., T. Vorup-Jensen, C.M. Stover, W. Schwaeble, S.B. Laursen, K. Poulsen, A.C. Willis, P. Eggleton, S. Hansen, U. Holmskov, K.B. Reid, and J.C. Jensenius. 1997. A second serine protease associated with mannan-binding lectin that activates complement. Nature 386 (6624): 506–510.PubMed Thiel, S., T. Vorup-Jensen, C.M. Stover, W. Schwaeble, S.B. Laursen, K. Poulsen, A.C. Willis, P. Eggleton, S. Hansen, U. Holmskov, K.B. Reid, and J.C. Jensenius. 1997. A second serine protease associated with mannan-binding lectin that activates complement. Nature 386 (6624): 506–510.PubMed
7.
Zurück zum Zitat Elvington, A., et al. 2012. Pathogenic natural antibodies propagate cerebral injury following ischemic stroke in mice. Journal of Immunology 188 (3): 1460–1468. Elvington, A., et al. 2012. Pathogenic natural antibodies propagate cerebral injury following ischemic stroke in mice. Journal of Immunology 188 (3): 1460–1468.
8.
Zurück zum Zitat Brennan, F.H., J.D. Lee, M.J. Ruitenberg, and T.M. Woodruff. 2016. Therapeutic targeting of complement to modify disease course and improve outcomes in neurological conditions. Seminars in Immunology 28 (3): 292–308.PubMed Brennan, F.H., J.D. Lee, M.J. Ruitenberg, and T.M. Woodruff. 2016. Therapeutic targeting of complement to modify disease course and improve outcomes in neurological conditions. Seminars in Immunology 28 (3): 292–308.PubMed
9.
Zurück zum Zitat Arumugam, T.V., T.M. Woodruff, J.D. Lathia, P.K. Selvaraj, M.P. Mattson, and S.M. Taylor. 2009. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience 158 (3): 1074–1089.PubMed Arumugam, T.V., T.M. Woodruff, J.D. Lathia, P.K. Selvaraj, M.P. Mattson, and S.M. Taylor. 2009. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience 158 (3): 1074–1089.PubMed
10.
Zurück zum Zitat Lai, W., Z. Zheng, X. Zhang, Y. Wei, K. Chu, J. Brown, G. Hong, and L. Chen. 2015. Salidroside-mediated neuroprotection is associated with induction of early growth response genes (Egrs) across a wide therapeutic window. Neurotoxicity Research 28 (2): 108–121.PubMed Lai, W., Z. Zheng, X. Zhang, Y. Wei, K. Chu, J. Brown, G. Hong, and L. Chen. 2015. Salidroside-mediated neuroprotection is associated with induction of early growth response genes (Egrs) across a wide therapeutic window. Neurotoxicity Research 28 (2): 108–121.PubMed
11.
Zurück zum Zitat Wei, Y., H. Hong, X. Zhang, W. Lai, Y. Wang, K. Chu, J. Brown, G. Hong, and L. Chen. 2017. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40 (4): 1297–1309.PubMed Wei, Y., H. Hong, X. Zhang, W. Lai, Y. Wang, K. Chu, J. Brown, G. Hong, and L. Chen. 2017. Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation 40 (4): 1297–1309.PubMed
12.
Zurück zum Zitat Lai, W., X. Xie, X. Zhang, Y. Wang, K. Chu, J. Brown, L. Chen, and G. Hong. 2018. Inhibition of complement drives increase in early growth response proteins and neuroprotection mediated by salidroside after cerebral ischemia. Inflammation 41 (2): 449–463.PubMed Lai, W., X. Xie, X. Zhang, Y. Wang, K. Chu, J. Brown, L. Chen, and G. Hong. 2018. Inhibition of complement drives increase in early growth response proteins and neuroprotection mediated by salidroside after cerebral ischemia. Inflammation 41 (2): 449–463.PubMed
13.
Zurück zum Zitat Zhang, X., W. Lai, X. Ying, L. Xu, K. Chu, J. Brown, L. Chen, and G. Hong. 2019. Salidroside reduces inflammation and brain injury after permanent middle cerebral artery occlusion in rats by regulating PI3K/PKB/Nrf2/NFkappaB signaling rather than complement C3 activity. Inflammation 42: 1830–1842. https://doi.org/10.1007/s10753-019-01045-7.CrossRefPubMed Zhang, X., W. Lai, X. Ying, L. Xu, K. Chu, J. Brown, L. Chen, and G. Hong. 2019. Salidroside reduces inflammation and brain injury after permanent middle cerebral artery occlusion in rats by regulating PI3K/PKB/Nrf2/NFkappaB signaling rather than complement C3 activity. Inflammation 42: 1830–1842. https://​doi.​org/​10.​1007/​s10753-019-01045-7.CrossRefPubMed
14.
Zurück zum Zitat Dimpfel, W., L. Schombert, and A.G. Panossian. 2018. Assessing the quality and potential efficacy of commercial extracts of rhodiola rosea l. By analysing the salidroside and rosavin content and the electrophysiological activity in hippocampal long-term potentiation, a synaptic model of memory. Frontiers in Pharmacology 9: 425.PubMedCentralPubMed Dimpfel, W., L. Schombert, and A.G. Panossian. 2018. Assessing the quality and potential efficacy of commercial extracts of rhodiola rosea l. By analysing the salidroside and rosavin content and the electrophysiological activity in hippocampal long-term potentiation, a synaptic model of memory. Frontiers in Pharmacology 9: 425.PubMedCentralPubMed
15.
Zurück zum Zitat Shi, T.Y., et al. 2012. Neuroprotective effects of salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro. Neurotoxicity Research 21 (4): 358–367.PubMed Shi, T.Y., et al. 2012. Neuroprotective effects of salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro. Neurotoxicity Research 21 (4): 358–367.PubMed
16.
Zurück zum Zitat Crotti, A., C. Benner, B.E. Kerman, D. Gosselin, C. Lagier-Tourenne, C. Zuccato, E. Cattaneo, F.H. Gage, D.W. Cleveland, and C.K. Glass. 2014. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nature Neuroscience 17 (4): 513–521.PubMedCentralPubMed Crotti, A., C. Benner, B.E. Kerman, D. Gosselin, C. Lagier-Tourenne, C. Zuccato, E. Cattaneo, F.H. Gage, D.W. Cleveland, and C.K. Glass. 2014. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nature Neuroscience 17 (4): 513–521.PubMedCentralPubMed
17.
Zurück zum Zitat Horvath, R.J., N. Nutile-McMenemy, M.S. Alkaitis, and J.A. Deleo. 2008. Differential migration, LPS-induced cytokine, chemokine, and NO expression in immortalized BV-2 and HAPI cell lines and primary microglial cultures. Journal of Neurochemistry 107 (2): 557–569.PubMedCentralPubMed Horvath, R.J., N. Nutile-McMenemy, M.S. Alkaitis, and J.A. Deleo. 2008. Differential migration, LPS-induced cytokine, chemokine, and NO expression in immortalized BV-2 and HAPI cell lines and primary microglial cultures. Journal of Neurochemistry 107 (2): 557–569.PubMedCentralPubMed
18.
Zurück zum Zitat Stansley, B., J. Post, and K. Hensley. 2012. A comparative review of cell culture systems for the study of microglial biology in Alzheimer's disease. Journal of Neuroinflammation 9: 115.PubMedCentralPubMed Stansley, B., J. Post, and K. Hensley. 2012. A comparative review of cell culture systems for the study of microglial biology in Alzheimer's disease. Journal of Neuroinflammation 9: 115.PubMedCentralPubMed
19.
Zurück zum Zitat Henn, A., et al. 2009. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 26 (2): 83–94.PubMed Henn, A., et al. 2009. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 26 (2): 83–94.PubMed
20.
Zurück zum Zitat Klegeris, A., C.J. Bissonnette, K. Dorovini-Zis, and P. McGeer. 2000. Expression of complement messenger RNAs by human endothelial cells. Brain Research 871 (1): 1–6.PubMed Klegeris, A., C.J. Bissonnette, K. Dorovini-Zis, and P. McGeer. 2000. Expression of complement messenger RNAs by human endothelial cells. Brain Research 871 (1): 1–6.PubMed
21.
Zurück zum Zitat Rikitake, Y., and J.K. Liao. 2005. Rho-kinase mediates hyperglycemia-induced plasminogen activator inhibitor-1 expression in vascular endothelial cells. Circulation 111 (24): 3261–3268.PubMedCentralPubMed Rikitake, Y., and J.K. Liao. 2005. Rho-kinase mediates hyperglycemia-induced plasminogen activator inhibitor-1 expression in vascular endothelial cells. Circulation 111 (24): 3261–3268.PubMedCentralPubMed
22.
Zurück zum Zitat Defazio, G., M. Gelati, E. Corsini, B. Nico, A. Dufour, G. Massa, and A. Salmaggi. 2001. In vitro modulation of adhesion molecules, adhesion phenomena, and fluid phase endocytosis on human umbilical vein endothelial cells and brain-derived microvascular endothelium by IFN-beta 1a. Journal of Interferon & Cytokine Research 21 (5): 267–272. Defazio, G., M. Gelati, E. Corsini, B. Nico, A. Dufour, G. Massa, and A. Salmaggi. 2001. In vitro modulation of adhesion molecules, adhesion phenomena, and fluid phase endocytosis on human umbilical vein endothelial cells and brain-derived microvascular endothelium by IFN-beta 1a. Journal of Interferon & Cytokine Research 21 (5): 267–272.
23.
Zurück zum Zitat Ichikawa, H., S. Flores, P.R. Kvietys, R.E. Wolf, T. Yoshikawa, D.N. Granger, and T.Y. Aw. 1997. Molecular mechanisms of anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Circulation Research 81 (6): 922–931.PubMed Ichikawa, H., S. Flores, P.R. Kvietys, R.E. Wolf, T. Yoshikawa, D.N. Granger, and T.Y. Aw. 1997. Molecular mechanisms of anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Circulation Research 81 (6): 922–931.PubMed
24.
Zurück zum Zitat Collard, C.D., et al. 1999. Endothelial nuclear factor-kappaB translocation and vascular cell adhesion molecule-1 induction by complement: Inhibition with anti-human C5 therapy or cGMP analogues. Arteriosclerosis, Thrombosis, and Vascular Biology 19 (11): 2623–2629.PubMed Collard, C.D., et al. 1999. Endothelial nuclear factor-kappaB translocation and vascular cell adhesion molecule-1 induction by complement: Inhibition with anti-human C5 therapy or cGMP analogues. Arteriosclerosis, Thrombosis, and Vascular Biology 19 (11): 2623–2629.PubMed
25.
Zurück zum Zitat Hess, D.C., W. Zhao, J. Carroll, M. McEachin, and K. Buchanan. 1994. Increased expression of ICAM-1 during reoxygenation in brain endothelial cells. Stroke 25 (7): 1463–1467 discussion 1468.PubMed Hess, D.C., W. Zhao, J. Carroll, M. McEachin, and K. Buchanan. 1994. Increased expression of ICAM-1 during reoxygenation in brain endothelial cells. Stroke 25 (7): 1463–1467 discussion 1468.PubMed
26.
Zurück zum Zitat Howard, E.F., Q. Chen, C. Cheng, J.E. Carroll, and D. Hess. 1998. NF-kappa B is activated and ICAM-1 gene expression is upregulated during reoxygenation of human brain endothelial cells. Neuroscience Letters 248 (3): 199–203.PubMed Howard, E.F., Q. Chen, C. Cheng, J.E. Carroll, and D. Hess. 1998. NF-kappa B is activated and ICAM-1 gene expression is upregulated during reoxygenation of human brain endothelial cells. Neuroscience Letters 248 (3): 199–203.PubMed
27.
Zurück zum Zitat Stanimirovic, D.B., J. Wong, A. Shapiro, and J.P. Durkin. 1997. Increase in surface expression of ICAM-1, VCAM-1 and E-selectin in human cerebromicrovascular endothelial cells subjected to ischemia-like insults. Acta Neurochirurgica. Supplement 70: 12–16.PubMed Stanimirovic, D.B., J. Wong, A. Shapiro, and J.P. Durkin. 1997. Increase in surface expression of ICAM-1, VCAM-1 and E-selectin in human cerebromicrovascular endothelial cells subjected to ischemia-like insults. Acta Neurochirurgica. Supplement 70: 12–16.PubMed
28.
Zurück zum Zitat Collard, C.D., A. Väkevä, C. Büküsoglu, G. Zünd, C.J. Sperati, S.P. Colgan, and G.L. Stahl. 1997. Reoxygenation of hypoxic human umbilical vein endothelial cells activates the classic complement pathway. Circulation 96 (1): 326–333.PubMed Collard, C.D., A. Väkevä, C. Büküsoglu, G. Zünd, C.J. Sperati, S.P. Colgan, and G.L. Stahl. 1997. Reoxygenation of hypoxic human umbilical vein endothelial cells activates the classic complement pathway. Circulation 96 (1): 326–333.PubMed
29.
Zurück zum Zitat McCarthy, K.D., and J. de Vellis. 1980. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. The Journal of Cell Biology 85 (3): 890–902.PubMed McCarthy, K.D., and J. de Vellis. 1980. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. The Journal of Cell Biology 85 (3): 890–902.PubMed
30.
Zurück zum Zitat Ducruet, A.F., B.G. Hassid, W.J. Mack, S.A. Sosunov, M.L. Otten, D.J. Fusco, Z.L. Hickman, G.H. Kim, R.J. Komotar, J. Mocco, and E.S. Connolly. 2008. C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. Journal of Cerebral Blood Flow and Metabolism 28 (5): 1048–1058.PubMed Ducruet, A.F., B.G. Hassid, W.J. Mack, S.A. Sosunov, M.L. Otten, D.J. Fusco, Z.L. Hickman, G.H. Kim, R.J. Komotar, J. Mocco, and E.S. Connolly. 2008. C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. Journal of Cerebral Blood Flow and Metabolism 28 (5): 1048–1058.PubMed
31.
Zurück zum Zitat Longa, E.Z., P.R. Weinstein, S. Carlson, and R. Cummins. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20 (1): 84–91.PubMed Longa, E.Z., P.R. Weinstein, S. Carlson, and R. Cummins. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20 (1): 84–91.PubMed
32.
Zurück zum Zitat Oh, H., B. Siano, and S. Diamond. 2008. Neutrophil isolation protocol. Journal of Visualized Experiments 17: 745. Oh, H., B. Siano, and S. Diamond. 2008. Neutrophil isolation protocol. Journal of Visualized Experiments 17: 745.
33.
Zurück zum Zitat Jiao, J., et al. 2014. Central role of conventional dendritic cells in regulation of bone marrow release and survival of neutrophils. Journal of Immunology 192 (7): 3374–3382. Jiao, J., et al. 2014. Central role of conventional dendritic cells in regulation of bone marrow release and survival of neutrophils. Journal of Immunology 192 (7): 3374–3382.
34.
Zurück zum Zitat Noris, M., and G. Remuzzi. 2013. Overview of complement activation and regulation. Seminars in Nephrology 33 (6): 479–492.PubMedCentralPubMed Noris, M., and G. Remuzzi. 2013. Overview of complement activation and regulation. Seminars in Nephrology 33 (6): 479–492.PubMedCentralPubMed
35.
Zurück zum Zitat Collard, C.D., A. Agah, and G.L. Stahl. 1998. Complement activation following reoxygenation of hypoxic human endothelial cells: Role of intracellular reactive oxygen species, NF-kappaB and new protein synthesis. Immunopharmacology 39 (1): 39–50.PubMed Collard, C.D., A. Agah, and G.L. Stahl. 1998. Complement activation following reoxygenation of hypoxic human endothelial cells: Role of intracellular reactive oxygen species, NF-kappaB and new protein synthesis. Immunopharmacology 39 (1): 39–50.PubMed
36.
Zurück zum Zitat Oglesby, T.J., C.J. Allen, M.K. Liszewski, D.J. White, and J.P. Atkinson. 1992. Membrane cofactor protein (CD46) protects cells from complement-mediated attack by an intrinsic mechanism. The Journal of Experimental Medicine 175 (6): 1547–1551.PubMed Oglesby, T.J., C.J. Allen, M.K. Liszewski, D.J. White, and J.P. Atkinson. 1992. Membrane cofactor protein (CD46) protects cells from complement-mediated attack by an intrinsic mechanism. The Journal of Experimental Medicine 175 (6): 1547–1551.PubMed
37.
Zurück zum Zitat Schmidt, C.Q., J.D. Lambris, and D. Ricklin. 2016. Protection of host cells by complement regulators. Immunological Reviews 274 (1): 152–171.PubMedCentralPubMed Schmidt, C.Q., J.D. Lambris, and D. Ricklin. 2016. Protection of host cells by complement regulators. Immunological Reviews 274 (1): 152–171.PubMedCentralPubMed
38.
Zurück zum Zitat Harhausen, D., et al. 2010. Membrane attack complex inhibitor CD59a protects against focal cerebral ischemia in mice. Journal of Neuroinflammation 7: 15.PubMedCentralPubMed Harhausen, D., et al. 2010. Membrane attack complex inhibitor CD59a protects against focal cerebral ischemia in mice. Journal of Neuroinflammation 7: 15.PubMedCentralPubMed
39.
Zurück zum Zitat Zhu, Y., et al. 2016. Salidroside suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. Molecules 21 (8): 1033.PubMedCentral Zhu, Y., et al. 2016. Salidroside suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. Molecules 21 (8): 1033.PubMedCentral
40.
Zurück zum Zitat Zhu, Z., J. Li, and X. Zhang. 2019. Salidroside protects against ox-LDL-induced endothelial injury by enhancing autophagy mediated by SIRT1-FoxO1 pathway. BMC Complementary and Alternative Medicine 19 (1): 111.PubMedCentralPubMed Zhu, Z., J. Li, and X. Zhang. 2019. Salidroside protects against ox-LDL-induced endothelial injury by enhancing autophagy mediated by SIRT1-FoxO1 pathway. BMC Complementary and Alternative Medicine 19 (1): 111.PubMedCentralPubMed
41.
Zurück zum Zitat Wang, C.Y., Z.N. Sun, and M.X. Wang. 2018. SIRT1 mediates salidroside-elicited protective effects against MPP+ -induced apoptosis and oxidative stress in SH-SY5Y cells: Involvement in suppressing MAPK pathways. Cell Biology International 42 (1): 84–94.PubMed Wang, C.Y., Z.N. Sun, and M.X. Wang. 2018. SIRT1 mediates salidroside-elicited protective effects against MPP+ -induced apoptosis and oxidative stress in SH-SY5Y cells: Involvement in suppressing MAPK pathways. Cell Biology International 42 (1): 84–94.PubMed
42.
Zurück zum Zitat Zhao, D., X. Sun, S. Lv, M. Sun, H. Guo, Y. Zhai, Z. Wang, P. Dai, L. Zheng, M. Ye, and X. Wang. 2019. Salidroside attenuates oxidized low-density lipoprotein-induced endothelial cell injury via promotion of the AMPK/SIRT1 pathway. International Journal of Molecular Medicine 43 (6): 2279–2290.PubMedCentralPubMed Zhao, D., X. Sun, S. Lv, M. Sun, H. Guo, Y. Zhai, Z. Wang, P. Dai, L. Zheng, M. Ye, and X. Wang. 2019. Salidroside attenuates oxidized low-density lipoprotein-induced endothelial cell injury via promotion of the AMPK/SIRT1 pathway. International Journal of Molecular Medicine 43 (6): 2279–2290.PubMedCentralPubMed
43.
Zurück zum Zitat Xu, F., J. Xu, and X. Xiong. 2019. Salidroside inhibits MAPK, NF-κB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation. Redox Report 24 (1): 70–74.PubMedPubMedCentral Xu, F., J. Xu, and X. Xiong. 2019. Salidroside inhibits MAPK, NF-κB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation. Redox Report 24 (1): 70–74.PubMedPubMedCentral
44.
Zurück zum Zitat Duvall, M.R., H.Y. Hwang, and R.J. Boackle. 2010. Specific inhibition of the classical complement pathway with an engineered single-chain Fv to C1q globular heads decreases complement activation by apoptotic cells. Immunobiology 215 (5): 395–405.PubMed Duvall, M.R., H.Y. Hwang, and R.J. Boackle. 2010. Specific inhibition of the classical complement pathway with an engineered single-chain Fv to C1q globular heads decreases complement activation by apoptotic cells. Immunobiology 215 (5): 395–405.PubMed
45.
Zurück zum Zitat Tsuji, S., K. Kaji, and S. Nagasawa. 1994. Activation of the alternative pathway of human complement by apoptotic human umbilical vein endothelial cells. Journal of Biochemistry 116 (4): 794–800.PubMed Tsuji, S., K. Kaji, and S. Nagasawa. 1994. Activation of the alternative pathway of human complement by apoptotic human umbilical vein endothelial cells. Journal of Biochemistry 116 (4): 794–800.PubMed
46.
Zurück zum Zitat Zhang, R., M. Chopp, Z. Zhang, N. Jiang, and C. Powers. 1998. The expression of P- and E-selectins in three models of middle cerebral artery occlusion. Brain Research 785 (2): 207–214.PubMed Zhang, R., M. Chopp, Z. Zhang, N. Jiang, and C. Powers. 1998. The expression of P- and E-selectins in three models of middle cerebral artery occlusion. Brain Research 785 (2): 207–214.PubMed
47.
Zurück zum Zitat Zhang, R.L., M. Chopp, C. Zaloga, Z.G. Zhang, N. Jiang, S.C. Gautam, W.X. Tang, W. Tsang, D.C. Anderson, and A.M. Manning. 1995. The temporal profiles of ICAM-1 protein and mRNA expression after transient MCA occlusion in the rat. Brain Research 682 (1-2): 182–188.PubMed Zhang, R.L., M. Chopp, C. Zaloga, Z.G. Zhang, N. Jiang, S.C. Gautam, W.X. Tang, W. Tsang, D.C. Anderson, and A.M. Manning. 1995. The temporal profiles of ICAM-1 protein and mRNA expression after transient MCA occlusion in the rat. Brain Research 682 (1-2): 182–188.PubMed
48.
Zurück zum Zitat Atkinson, C., et al. 2006. Complement-dependent P-selectin expression and injury following ischemic stroke. Journal of Immunology 177 (10): 7266–7274. Atkinson, C., et al. 2006. Complement-dependent P-selectin expression and injury following ischemic stroke. Journal of Immunology 177 (10): 7266–7274.
49.
Zurück zum Zitat Yilmaz, G., and D.N. Granger. 2008. Cell adhesion molecules and ischemic stroke. Neurological Research 30 (8): 783–793.PubMedCentralPubMed Yilmaz, G., and D.N. Granger. 2008. Cell adhesion molecules and ischemic stroke. Neurological Research 30 (8): 783–793.PubMedCentralPubMed
Metadaten
Titel
Salidroside Restores an Anti-inflammatory Endothelial Phenotype by Selectively Inhibiting Endothelial Complement After Oxidative Stress
verfasst von
Y Wang
Y Su
W Lai
X Huang
K Chu
J Brown
G Hong
Publikationsdatum
07.11.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01121-y

Weitere Artikel der Ausgabe 1/2020

Inflammation 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.