Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2016

10.06.2015

Salusin β Within the Nucleus Tractus Solitarii Suppresses Blood Pressure Via Inhibiting the Activities of Presympathetic Neurons in the Rostral Ventrolateral Medulla in Spontaneously Hypertensive Rats

verfasst von: Hong-Bao Li, Yan Lu, Jin-Jun Liu, Yu-Wang Miao, Tian-Zhen Zheng, Qing Su, Jie Qi, Hong Tan, Zu-Yi Yuan, Guo-Qing Zhu, Yu-Ming Kang

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Salusin β is a newly identified bioactive peptide, which shows peripheral hypotensive, mitogenic and proatherosclerotic effects. The present study was undertaken to investigate the role of salusin β within the nucleus tractus solitarii (NTS) and the underlying mechanism in regulating blood pressure and heart rate (HR) in spontaneously hypertensive rats (SHR). Our results showed that bilateral or unilateral microinjection of salusin β (0.4–40 pmol) into the NTS in SHR decreased mean arterial pressure and HR in a dose-dependent manner. Bilateral microinjection of salusin β (4 pmol) within NTS improved baroreflex sensitivity functions in SHR. Pretreatment with glutamate receptors antagonist kynurenic acid (5 nmol) into the NTS in SHR did not alter the salusin β (4 pmol) induced hypotension and bradycardia. Likewise, bilateral vagotomy also did not alter the salusin β (4 pmol) induced hypotension and bradycardia. However, pretreatment with GABAA receptors agonist muscimol (100 pmol) within the rostral ventrolateral medulla (RVLM) in SHR almost completely abolished the hypotension and bradycardia evoked by intra-NTS salusin β (4 pmol). Our findings suggested that microinjection of salusin β into the NTS produced hypotension and bradycardia, as well as improved baroreflex sensitivity functions, via inhibiting the activities of presympathetic neurons in the RVLM in SHR.
Literatur
1.
Zurück zum Zitat Shichiri, M., Ishimaru, S., Ota, T., Nishikawa, T., Isogai, T., & Hirata, Y. (2003). Salusins: newly identified bioactive peptides with hemodynamic and mitogenic activities. Nature Medicine, 9, 1166–1172.CrossRefPubMed Shichiri, M., Ishimaru, S., Ota, T., Nishikawa, T., Isogai, T., & Hirata, Y. (2003). Salusins: newly identified bioactive peptides with hemodynamic and mitogenic activities. Nature Medicine, 9, 1166–1172.CrossRefPubMed
2.
Zurück zum Zitat Nakayama, C., Shichiri, M., Sato, K., & Hirata, Y. (2009). Expression of prosalusin in human neuroblastoma cells. Peptides, 30, 1362–1367.CrossRefPubMed Nakayama, C., Shichiri, M., Sato, K., & Hirata, Y. (2009). Expression of prosalusin in human neuroblastoma cells. Peptides, 30, 1362–1367.CrossRefPubMed
3.
Zurück zum Zitat Suzuki, N., Shichiri, M., Akashi, T., Sato, K., Sakurada, M., Hirono, Y., et al. (2007). Systemic distribution of salusin expression in the rat. Hypertension Research, 30, 1255–1262.CrossRefPubMed Suzuki, N., Shichiri, M., Akashi, T., Sato, K., Sakurada, M., Hirono, Y., et al. (2007). Systemic distribution of salusin expression in the rat. Hypertension Research, 30, 1255–1262.CrossRefPubMed
4.
Zurück zum Zitat Takenoya, F., Hori, T., Kageyama, H., Funahashi, H., Takeuchi, M., Kitamura, Y., et al. (2005). Coexistence of salusin and vasopressin in the rat hypothalamo–hypophyseal system. Neuroscience Letters, 385, 110–113.CrossRefPubMed Takenoya, F., Hori, T., Kageyama, H., Funahashi, H., Takeuchi, M., Kitamura, Y., et al. (2005). Coexistence of salusin and vasopressin in the rat hypothalamo–hypophyseal system. Neuroscience Letters, 385, 110–113.CrossRefPubMed
5.
Zurück zum Zitat Watanabe, T., Nishio, K., Kanome, T., Matsuyama, T. A., Koba, S., Sakai, T., et al. (2008). Impact of salusin-alpha and -beta on human macrophage foam cell formation and coronary atherosclerosis. Circulation, 117, 638–648.CrossRefPubMed Watanabe, T., Nishio, K., Kanome, T., Matsuyama, T. A., Koba, S., Sakai, T., et al. (2008). Impact of salusin-alpha and -beta on human macrophage foam cell formation and coronary atherosclerosis. Circulation, 117, 638–648.CrossRefPubMed
6.
Zurück zum Zitat Watanabe, T., Suguro, T., Sato, K., Koyama, T., Nagashima, M., Kodate, S., et al. (2008). Serum salusin-alpha levels are decreased and correlated negatively with carotid atherosclerosis in essential hypertensive patients. Hypertension Research, 31, 463–468.CrossRefPubMed Watanabe, T., Suguro, T., Sato, K., Koyama, T., Nagashima, M., Kodate, S., et al. (2008). Serum salusin-alpha levels are decreased and correlated negatively with carotid atherosclerosis in essential hypertensive patients. Hypertension Research, 31, 463–468.CrossRefPubMed
7.
Zurück zum Zitat Izumiyama, H., Tanaka, H., Egi, K., Sunamori, M., Hirata, Y., & Shichiri, M. (2005). Synthetic salusins as cardiac depressors in rat. Hypertension, 45, 419–425.CrossRefPubMed Izumiyama, H., Tanaka, H., Egi, K., Sunamori, M., Hirata, Y., & Shichiri, M. (2005). Synthetic salusins as cardiac depressors in rat. Hypertension, 45, 419–425.CrossRefPubMed
8.
Zurück zum Zitat Xiao-Hong, Y., Li, L., Yan-Xia, P., Hong, L., Wei-Fang, R., Yan, L., et al. (2006). Salusins protect neonatal rat cardiomyocytes from serum deprivation-induced cell death through upregulation of GRP78. Journal of Cardiovascular Pharmacology, 48, 41–46.CrossRefPubMed Xiao-Hong, Y., Li, L., Yan-Xia, P., Hong, L., Wei-Fang, R., Yan, L., et al. (2006). Salusins protect neonatal rat cardiomyocytes from serum deprivation-induced cell death through upregulation of GRP78. Journal of Cardiovascular Pharmacology, 48, 41–46.CrossRefPubMed
9.
Zurück zum Zitat Sato, K., Watanabe, R., Itoh, F., Shichiri, M., & Watanabe, T. (2013). Salusins: potential use as a biomarker for atherosclerotic cardiovascular diseases. International Journal of Hypertension, 2013, 965140.CrossRefPubMedPubMedCentral Sato, K., Watanabe, R., Itoh, F., Shichiri, M., & Watanabe, T. (2013). Salusins: potential use as a biomarker for atherosclerotic cardiovascular diseases. International Journal of Hypertension, 2013, 965140.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Chen, W. W., Sun, H. J., Zhang, F., Zhou, Y. B., Xiong, X. Q., Wang, J. J., et al. (2013). Salusin-beta in paraventricular nucleus increases blood pressure and sympathetic outflow via vasopressin in hypertensive rats. Cardiovascular Research, 98, 344–351.CrossRefPubMed Chen, W. W., Sun, H. J., Zhang, F., Zhou, Y. B., Xiong, X. Q., Wang, J. J., et al. (2013). Salusin-beta in paraventricular nucleus increases blood pressure and sympathetic outflow via vasopressin in hypertensive rats. Cardiovascular Research, 98, 344–351.CrossRefPubMed
11.
Zurück zum Zitat Saito, T., Dayanithi, G., Saito, J., Onaka, T., Urabe, T., Watanabe, T. X., et al. (2008). Chronic osmotic stimuli increase salusin-beta-like immunoreactivity in the rat hypothalamo-neurohypophyseal system: possible involvement of salusin-beta on [Ca2+]i increase and neurohypophyseal hormone release from the axon terminals. Journal of Neuroendocrinology, 20, 207–219.CrossRefPubMed Saito, T., Dayanithi, G., Saito, J., Onaka, T., Urabe, T., Watanabe, T. X., et al. (2008). Chronic osmotic stimuli increase salusin-beta-like immunoreactivity in the rat hypothalamo-neurohypophyseal system: possible involvement of salusin-beta on [Ca2+]i increase and neurohypophyseal hormone release from the axon terminals. Journal of Neuroendocrinology, 20, 207–219.CrossRefPubMed
12.
Zurück zum Zitat Malpas, S. C. (2010). Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiological Reviews, 90, 513–557.CrossRefPubMed Malpas, S. C. (2010). Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiological Reviews, 90, 513–557.CrossRefPubMed
13.
Zurück zum Zitat Guyenet, P. G. (2006). The sympathetic control of blood pressure. Nature Reviews Neuroscience, 7, 335–346.CrossRefPubMed Guyenet, P. G. (2006). The sympathetic control of blood pressure. Nature Reviews Neuroscience, 7, 335–346.CrossRefPubMed
14.
Zurück zum Zitat Seagard, J. L., Dean, C., & Hopp, F. A. (2000). Neurochemical transmission of baroreceptor input in the nucleus tractus solitarius. Brain Research Bulletin, 51, 111–118.CrossRefPubMed Seagard, J. L., Dean, C., & Hopp, F. A. (2000). Neurochemical transmission of baroreceptor input in the nucleus tractus solitarius. Brain Research Bulletin, 51, 111–118.CrossRefPubMed
15.
Zurück zum Zitat Lawrence, A. J., & Jarrott, B. (1996). Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Progress in Neurobiology, 48, 21–53.CrossRefPubMed Lawrence, A. J., & Jarrott, B. (1996). Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Progress in Neurobiology, 48, 21–53.CrossRefPubMed
16.
Zurück zum Zitat Sapru, H. N. (1996). Carotid chemoreflex. Neural pathways and transmitters. Advances in Experimental Medicine and Biology, 410, 357–364.CrossRefPubMed Sapru, H. N. (1996). Carotid chemoreflex. Neural pathways and transmitters. Advances in Experimental Medicine and Biology, 410, 357–364.CrossRefPubMed
17.
Zurück zum Zitat Schreihofer, A. M., Stornetta, R. L., & Guyenet, P. G. (2000). Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat. Journal of Physiology, 529(Pt 1), 221–236.CrossRefPubMedPubMedCentral Schreihofer, A. M., Stornetta, R. L., & Guyenet, P. G. (2000). Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat. Journal of Physiology, 529(Pt 1), 221–236.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Aicher, S. A., Hermes, S. M., Whittier, K. L., & Hegarty, D. M. (2012). Descending projections from the rostral ventromedial medulla (RVM) to trigeminal and spinal dorsal horns are morphologically and neurochemically distinct. Journal of Chemical Neuroanatomy, 43, 103–111.CrossRefPubMed Aicher, S. A., Hermes, S. M., Whittier, K. L., & Hegarty, D. M. (2012). Descending projections from the rostral ventromedial medulla (RVM) to trigeminal and spinal dorsal horns are morphologically and neurochemically distinct. Journal of Chemical Neuroanatomy, 43, 103–111.CrossRefPubMed
19.
Zurück zum Zitat Suzuki, N., Shichiri, M., Akashi, T., Sato, K., Sakurada, M., Hirono, Y., et al. (2007). Systemic distribution of salusin expression in the rat. Hypertension Research, 30, 1255–1262.CrossRefPubMed Suzuki, N., Shichiri, M., Akashi, T., Sato, K., Sakurada, M., Hirono, Y., et al. (2007). Systemic distribution of salusin expression in the rat. Hypertension Research, 30, 1255–1262.CrossRefPubMed
20.
Zurück zum Zitat Kang, Y. M., Ma, Y., Zheng, J. P., Elks, C., Sriramula, S., Yang, Z. M., et al. (2009). Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovascular Research, 82, 503–512.CrossRefPubMedPubMedCentral Kang, Y. M., Ma, Y., Zheng, J. P., Elks, C., Sriramula, S., Yang, Z. M., et al. (2009). Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovascular Research, 82, 503–512.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Kang, Y. M., Zhang, Z. H., Johnson, R. F., Yu, Y., Beltz, T., Johnson, A. K., et al. (2006). Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circulation Research, 99, 758–766.CrossRefPubMed Kang, Y. M., Zhang, Z. H., Johnson, R. F., Yu, Y., Beltz, T., Johnson, A. K., et al. (2006). Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circulation Research, 99, 758–766.CrossRefPubMed
22.
Zurück zum Zitat Kang, Y. M., Zhang, A. Q., Zhao, X. F., Cardinale, J. P., Elks, C., Cao, X. M., et al. (2011). Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure. Basic Research in Cardiology, 106, 473–483.CrossRefPubMedPubMedCentral Kang, Y. M., Zhang, A. Q., Zhao, X. F., Cardinale, J. P., Elks, C., Cao, X. M., et al. (2011). Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure. Basic Research in Cardiology, 106, 473–483.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Zha, Y. P., Wang, Y. K., Deng, Y., Zhang, R. W., Tan, X., Yuan, W. J., et al. (2013). Exercise training lowers the enhanced tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats. CNS Neuroscience & Therapeutics, 19, 244–251.CrossRef Zha, Y. P., Wang, Y. K., Deng, Y., Zhang, R. W., Tan, X., Yuan, W. J., et al. (2013). Exercise training lowers the enhanced tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats. CNS Neuroscience & Therapeutics, 19, 244–251.CrossRef
24.
Zurück zum Zitat Kang, Y. M., Gao, F., Li, H. H., Cardinale, J. P., Elks, C., Zang, W. J., et al. (2011). NF-kappaB in the paraventricular nucleus modulates neurotransmitters and contributes to sympathoexcitation in heart failure. Basic Research in Cardiology, 106, 1087–1097.CrossRefPubMedPubMedCentral Kang, Y. M., Gao, F., Li, H. H., Cardinale, J. P., Elks, C., Zang, W. J., et al. (2011). NF-kappaB in the paraventricular nucleus modulates neurotransmitters and contributes to sympathoexcitation in heart failure. Basic Research in Cardiology, 106, 1087–1097.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Lu, Y., Wang, W. Z., Liao, Z., Yan, X. H., Tang, C. S., & Yuan, W. J. (2005). Blood pressure responses of endothelin-1 1-31 within the rostral ventrolateral medulla through conversion to endothelin-1 1-21. Journal of Cardiovascular Pharmacology, 46, 823–829.CrossRefPubMed Lu, Y., Wang, W. Z., Liao, Z., Yan, X. H., Tang, C. S., & Yuan, W. J. (2005). Blood pressure responses of endothelin-1 1-31 within the rostral ventrolateral medulla through conversion to endothelin-1 1-21. Journal of Cardiovascular Pharmacology, 46, 823–829.CrossRefPubMed
26.
Zurück zum Zitat Fu, Y. J., Wang, W. Z., Cai, G. J., Wang, M. W., & Su, D. F. (2006). Action site of ketanserin enhancing baroreflex function is within the rostral ventrolateral medulla in anesthetized rats. Autonomic Neuroscience : Basic & Clinical, 124, 31–37.CrossRef Fu, Y. J., Wang, W. Z., Cai, G. J., Wang, M. W., & Su, D. F. (2006). Action site of ketanserin enhancing baroreflex function is within the rostral ventrolateral medulla in anesthetized rats. Autonomic Neuroscience : Basic & Clinical, 124, 31–37.CrossRef
27.
Zurück zum Zitat Mandel, D. A., & Schreihofer, A. M. (2009). Modulation of the sympathetic response to acute hypoxia by the caudal ventrolateral medulla in rats. Journal of Physiology, 587, 461–475.CrossRefPubMed Mandel, D. A., & Schreihofer, A. M. (2009). Modulation of the sympathetic response to acute hypoxia by the caudal ventrolateral medulla in rats. Journal of Physiology, 587, 461–475.CrossRefPubMed
28.
Zurück zum Zitat Pitzalis, M. V. (2001). Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Italian Heart Journal Supplement, 2, 810–811. Pitzalis, M. V. (2001). Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Italian Heart Journal Supplement, 2, 810–811.
29.
Zurück zum Zitat Sato, K., Koyama, T., Tateno, T., Hirata, Y., & Shichiri, M. (2006). Presence of immunoreactive salusin-alpha in human serum and urine. Peptides, 27, 2561–2566.CrossRefPubMed Sato, K., Koyama, T., Tateno, T., Hirata, Y., & Shichiri, M. (2006). Presence of immunoreactive salusin-alpha in human serum and urine. Peptides, 27, 2561–2566.CrossRefPubMed
30.
Zurück zum Zitat Sato, K., Sato, T., Susumu, T., Koyama, T., & Shichiri, M. (2009). Presence of immunoreactive salusin-beta in human plasma and urine. Regulatory Peptides, 158, 63–67.CrossRefPubMed Sato, K., Sato, T., Susumu, T., Koyama, T., & Shichiri, M. (2009). Presence of immunoreactive salusin-beta in human plasma and urine. Regulatory Peptides, 158, 63–67.CrossRefPubMed
31.
Zurück zum Zitat La Rovere, M. T., Pinna, G. D., Hohnloser, S. H., Marcus, F. I., Mortara, A., Nohara, R., et al. (2001). Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation, 103, 2072–2077.CrossRefPubMed La Rovere, M. T., Pinna, G. D., Hohnloser, S. H., Marcus, F. I., Mortara, A., Nohara, R., et al. (2001). Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation, 103, 2072–2077.CrossRefPubMed
32.
Zurück zum Zitat Sapru, H. N. (2002). Glutamate circuits in selected medullo-spinal areas regulating cardiovascular function. Clinical and Experimental Pharmacology and Physiology, 29, 491–496.CrossRefPubMed Sapru, H. N. (2002). Glutamate circuits in selected medullo-spinal areas regulating cardiovascular function. Clinical and Experimental Pharmacology and Physiology, 29, 491–496.CrossRefPubMed
33.
Zurück zum Zitat Lu, Y., Wu, Y. S., Chen, D. S., Wang, W. Z. and Yuan, W. J. (2014). Microinjection of salusin-beta into the nucleus tractus solitarii inhibits cardiovascular function by suppressing presympathetic neurons in rostral ventrolateral medullar in rats. Physiological Research, 64, 161–171.PubMed Lu, Y., Wu, Y. S., Chen, D. S., Wang, W. Z. and Yuan, W. J. (2014). Microinjection of salusin-beta into the nucleus tractus solitarii inhibits cardiovascular function by suppressing presympathetic neurons in rostral ventrolateral medullar in rats. Physiological Research, 64, 161–171.PubMed
34.
Zurück zum Zitat Wang, Z., Takahashi, T., Saito, Y., Nagasaki, H., Ly, N. K., Nothacker, H. P., et al. (2006). Salusin beta is a surrogate ligand of the mas-like G protein-coupled receptor MrgA1. European Journal of Pharmacology, 539, 145–150.CrossRefPubMed Wang, Z., Takahashi, T., Saito, Y., Nagasaki, H., Ly, N. K., Nothacker, H. P., et al. (2006). Salusin beta is a surrogate ligand of the mas-like G protein-coupled receptor MrgA1. European Journal of Pharmacology, 539, 145–150.CrossRefPubMed
35.
Zurück zum Zitat Kubo, T., & Kihara, M. (1990). Modulation of the aortic baroreceptor reflex by neuropeptide Y, neurotensin and vasopressin microinjected into the nucleus tractus solitarii of the rat. Naunyn-Schmiedeberg’s archives of pharmacology, 342, 182–188.CrossRefPubMed Kubo, T., & Kihara, M. (1990). Modulation of the aortic baroreceptor reflex by neuropeptide Y, neurotensin and vasopressin microinjected into the nucleus tractus solitarii of the rat. Naunyn-Schmiedeberg’s archives of pharmacology, 342, 182–188.CrossRefPubMed
36.
Zurück zum Zitat Miyashita, T., & Williams, C. L. (2002). Glutamatergic transmission in the nucleus of the solitary tract modulates memory through influences on amygdala noradrenergic systems. Behavioral Neuroscience, 116, 13–21.CrossRefPubMed Miyashita, T., & Williams, C. L. (2002). Glutamatergic transmission in the nucleus of the solitary tract modulates memory through influences on amygdala noradrenergic systems. Behavioral Neuroscience, 116, 13–21.CrossRefPubMed
37.
Zurück zum Zitat Pilowsky, P. M., & Goodchild, A. K. (2002). Baroreceptor reflex pathways and neurotransmitters: 10 years on. Journal of Hypertension, 20, 1675–1688.CrossRefPubMed Pilowsky, P. M., & Goodchild, A. K. (2002). Baroreceptor reflex pathways and neurotransmitters: 10 years on. Journal of Hypertension, 20, 1675–1688.CrossRefPubMed
38.
Zurück zum Zitat Kumagai, H., Oshima, N., Matsuura, T., Iigaya, K., Imai, M., Onimaru, H., et al. (2012). Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertension Research, 35, 132–141.CrossRefPubMed Kumagai, H., Oshima, N., Matsuura, T., Iigaya, K., Imai, M., Onimaru, H., et al. (2012). Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertension Research, 35, 132–141.CrossRefPubMed
39.
Zurück zum Zitat Zhang, Z. H., Yu, Y., Kang, Y. M., Wei, S. G., & Felder, R. B. (2008). Aldosterone acts centrally to increase brain renin–angiotensin system activity and oxidative stress in normal rats. American Journal of Physiology Heart and Circulatory Physiology, 294, H1067–H1074.CrossRefPubMed Zhang, Z. H., Yu, Y., Kang, Y. M., Wei, S. G., & Felder, R. B. (2008). Aldosterone acts centrally to increase brain renin–angiotensin system activity and oxidative stress in normal rats. American Journal of Physiology Heart and Circulatory Physiology, 294, H1067–H1074.CrossRefPubMed
40.
Zurück zum Zitat Schreihofer, A. M., Ito, S., & Sved, A. F. (2005). Brain stem control of arterial pressure in chronic arterial baroreceptor-denervated rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 289, R1746–R1755.PubMed Schreihofer, A. M., Ito, S., & Sved, A. F. (2005). Brain stem control of arterial pressure in chronic arterial baroreceptor-denervated rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 289, R1746–R1755.PubMed
Metadaten
Titel
Salusin β Within the Nucleus Tractus Solitarii Suppresses Blood Pressure Via Inhibiting the Activities of Presympathetic Neurons in the Rostral Ventrolateral Medulla in Spontaneously Hypertensive Rats
verfasst von
Hong-Bao Li
Yan Lu
Jin-Jun Liu
Yu-Wang Miao
Tian-Zhen Zheng
Qing Su
Jie Qi
Hong Tan
Zu-Yi Yuan
Guo-Qing Zhu
Yu-Ming Kang
Publikationsdatum
10.06.2015
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2016
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-015-9330-2

Weitere Artikel der Ausgabe 3/2016

Cardiovascular Toxicology 3/2016 Zur Ausgabe