Skip to main content
Erschienen in:

22.10.2016 | Original Article

Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans

verfasst von: Pierre-Henri Conze, Vincent Noblet, François Rousseau, Fabrice Heitz, Vito de Blasi, Riccardo Memeo, Patrick Pessaux

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Toward an efficient clinical management of hepatocellular carcinoma (HCC), we propose a classification framework dedicated to tumor necrosis rate estimation from dynamic contrast-enhanced CT scans. Based on machine learning, it requires weak interaction efforts to segment healthy, active and necrotic liver tissues.

Methods

Our contributions are two-fold. First, we apply random forest (RF) on supervoxels using multi-phase supervoxel-based features that discriminate tissues based on their dynamic in response to contrast agent injection. Second, we extend this technique in a hierarchical multi-scale fashion to deal with multiple spatial extents and appearance heterogeneity. It translates in an adaptive data sampling scheme combining RF and hierarchical multi-scale tree resulting from recursive supervoxel decomposition. By concatenating multi-phase features across the hierarchical multi-scale tree to describe leaf supervoxels, we enable RF to automatically infer the most informative scales without defining any explicit rules on how to combine them.

Results

Assessment on clinical data confirms the benefits of multi-phase information embedded in a multi-scale supervoxel representation for HCC tumor segmentation.

Conclusion

Dedicated but not limited only to HCC management, both contributions reach further steps toward more accurate multi-label tissue classification.
Fußnoten
1
scikit-image implementation, http://​scikit-image.​org.
 
2
scikit-learn implementation, http://​scikit-learn.​org/​.
 
Literatur
1.
Zurück zum Zitat Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34:2274–2282CrossRefPubMed Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34:2274–2282CrossRefPubMed
2.
Zurück zum Zitat Akselrod-Ballin A, Galun M, Gomori JM, Filippi M, Valsasina P, Basri R, Brandt A (2009) Automatic segmentation and classification of multiple sclerosis in multichannel mri. IEEE Trans Biomed Eng 56(10):2461–2469CrossRefPubMed Akselrod-Ballin A, Galun M, Gomori JM, Filippi M, Valsasina P, Basri R, Brandt A (2009) Automatic segmentation and classification of multiple sclerosis in multichannel mri. IEEE Trans Biomed Eng 56(10):2461–2469CrossRefPubMed
3.
Zurück zum Zitat Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41CrossRefPubMed Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41CrossRefPubMed
4.
Zurück zum Zitat Bauer S, Nolte LP, Reyes M (2011) Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Medical image computing and computer-assisted intervention, pp 354–361 Bauer S, Nolte LP, Reyes M (2011) Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Medical image computing and computer-assisted intervention, pp 354–361
5.
Zurück zum Zitat Beg MF, Miller MI, Trouvé A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vis 61:139–157CrossRef Beg MF, Miller MI, Trouvé A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vis 61:139–157CrossRef
7.
Zurück zum Zitat Cantu M, Piardi T, Sommacale D, Ellero B, Woehl-Jaegle ML, Audet M, Ntourakis D, Wolf P, Pessaux P (2013) Pathologic response to non-surgical locoregional therapies as potential selection criteria for liver transplantation for hepatocellular carcinoma. Med Sci Monit Basic Res 18:273–284 Cantu M, Piardi T, Sommacale D, Ellero B, Woehl-Jaegle ML, Audet M, Ntourakis D, Wolf P, Pessaux P (2013) Pathologic response to non-surgical locoregional therapies as potential selection criteria for liver transplantation for hepatocellular carcinoma. Med Sci Monit Basic Res 18:273–284
8.
Zurück zum Zitat Conze PH, Rousseau F, Noblet V, Heitz F, Memeo R, Pessaux P (2015) Semi-automatic liver tumor segmentation in dynamic contrast-enhanced CT scans using random forests and supervoxels. Mach Learn Med Imaging 9352:212–219CrossRef Conze PH, Rousseau F, Noblet V, Heitz F, Memeo R, Pessaux P (2015) Semi-automatic liver tumor segmentation in dynamic contrast-enhanced CT scans using random forests and supervoxels. Mach Learn Med Imaging 9352:212–219CrossRef
9.
Zurück zum Zitat Conze PH, Noblet V, Rousseau F, Heitz F, Memeo R, Pessaux P (2016) Random forests on hierarchical multi-scale supervoxels for liver tumor segmentation in dynamic contrast-enhanced CT scans. In: IEEE international symposium on biomedical imaging, pp 416–419 Conze PH, Noblet V, Rousseau F, Heitz F, Memeo R, Pessaux P (2016) Random forests on hierarchical multi-scale supervoxels for liver tumor segmentation in dynamic contrast-enhanced CT scans. In: IEEE international symposium on biomedical imaging, pp 416–419
10.
Zurück zum Zitat Criminisi A, Shotton J, Konukoglu E (2012) Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found Trends Comput Graph Vis 7(2–3):81–227 Criminisi A, Shotton J, Konukoglu E (2012) Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found Trends Comput Graph Vis 7(2–3):81–227
11.
Zurück zum Zitat Fang R, Zabih R, Raj A, Chen T (2012) Segmentation of liver tumor using efficient global optimal tree metrics graph cuts. In: Abdominal imaging. Computational and clinical applications, pp 51–59 Fang R, Zabih R, Raj A, Chen T (2012) Segmentation of liver tumor using efficient global optimal tree metrics graph cuts. In: Abdominal imaging. Computational and clinical applications, pp 51–59
12.
13.
Zurück zum Zitat Geremia E, Clatz O, Menze BH, Konukoglu E, Criminisi A, Ayache N (2011) Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. NeuroImage 57(2):378–390CrossRefPubMed Geremia E, Clatz O, Menze BH, Konukoglu E, Criminisi A, Ayache N (2011) Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. NeuroImage 57(2):378–390CrossRefPubMed
14.
Zurück zum Zitat Geremia E, Menze BH, Ayache N (2013) Spatially adaptive random forests. In: IEEE international symposium on biomedical imaging, pp 1344–1347 Geremia E, Menze BH, Ayache N (2013) Spatially adaptive random forests. In: IEEE international symposium on biomedical imaging, pp 1344–1347
15.
Zurück zum Zitat Ho MH, Yu CY, Chung KP, Chen TW, Chu HC, Lin CK, Hsieh CB (2011) Locoregional therapy-induced tumor necrosis as a predictor of recurrence after liver transplant in patients with HCC. Ann Surg Oncol 18(13):3632–3639CrossRefPubMed Ho MH, Yu CY, Chung KP, Chen TW, Chu HC, Lin CK, Hsieh CB (2011) Locoregional therapy-induced tumor necrosis as a predictor of recurrence after liver transplant in patients with HCC. Ann Surg Oncol 18(13):3632–3639CrossRefPubMed
16.
Zurück zum Zitat Irving B, Cifor A, Papie BW, Franklin J, Anderson EM, Brady M, Schnabel JA (2014) Automated colorectal tumour segmentation in DCE-MRI using supervoxel neighbourhood contrast characteristics. Med Image Comput Comput Assist Interv 8673:609–616 Irving B, Cifor A, Papie BW, Franklin J, Anderson EM, Brady M, Schnabel JA (2014) Automated colorectal tumour segmentation in DCE-MRI using supervoxel neighbourhood contrast characteristics. Med Image Comput Comput Assist Interv 8673:609–616
17.
Zurück zum Zitat Irving B, Franklin JM, Papie BW, Anderson EM, Sharma RA, Gleeson FV, Brady M, Schnabel JA (2016) Pieces-of-parts for supervoxel segmentation with global context: application to DCE-MRI tumour delineation. Med Image Anal 32:69–83CrossRefPubMedPubMedCentral Irving B, Franklin JM, Papie BW, Anderson EM, Sharma RA, Gleeson FV, Brady M, Schnabel JA (2016) Pieces-of-parts for supervoxel segmentation with global context: application to DCE-MRI tumour delineation. Med Image Anal 32:69–83CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Lee J, Cai W, Singh A, Yoshida H (2010) Estimation of necrosis volumes in focal liver lesions based on multi-phase hepatic CT images. In: Virtual colonoscopy & abdominal imaging. Computational challenges & clinical opportunities, pp 60–67 Lee J, Cai W, Singh A, Yoshida H (2010) Estimation of necrosis volumes in focal liver lesions based on multi-phase hepatic CT images. In: Virtual colonoscopy & abdominal imaging. Computational challenges & clinical opportunities, pp 60–67
19.
Zurück zum Zitat Machairas V, Baldeweck T, Walter T, Decencière E (2016) New general features based on superpixels for image segmentation learning. In: IEEE international symposium on biomedical imaging, pp 1409–1413 Machairas V, Baldeweck T, Walter T, Decencière E (2016) New general features based on superpixels for image segmentation learning. In: IEEE international symposium on biomedical imaging, pp 1409–1413
20.
Zurück zum Zitat Memeo R, de Blasi V, Cherkaoui Z, Dehlawi A, de Angelis N, Piardi T, Sommacale D, Marescaux J, Mutter D, Pessaux P (2016) New approaches in locoregional therapies for hepatocellular carcinoma. J Gastrointest Cancer 47:239–246CrossRefPubMed Memeo R, de Blasi V, Cherkaoui Z, Dehlawi A, de Angelis N, Piardi T, Sommacale D, Marescaux J, Mutter D, Pessaux P (2016) New approaches in locoregional therapies for hepatocellular carcinoma. J Gastrointest Cancer 47:239–246CrossRefPubMed
21.
Zurück zum Zitat Montillo A, Shotton J, Winn J, Iglesias JE, Metaxas D, Criminisi A (2011) Entangled decision forests and their application for semantic segmentation of CT images. In: Information processing in medical imaging, pp 184–196 Montillo A, Shotton J, Winn J, Iglesias JE, Metaxas D, Criminisi A (2011) Entangled decision forests and their application for semantic segmentation of CT images. In: Information processing in medical imaging, pp 184–196
22.
Zurück zum Zitat Peter L, Pauly O, Chatelain P, Mateus D, Navab N (2015) Scale-adaptive forest training via an efficient feature sampling scheme. In: Medical image computing and computer-assisted intervention, pp 637–644 Peter L, Pauly O, Chatelain P, Mateus D, Navab N (2015) Scale-adaptive forest training via an efficient feature sampling scheme. In: Medical image computing and computer-assisted intervention, pp 637–644
23.
Zurück zum Zitat Popovic A, de la Fuente M, Engelhardt M, Radermacher K (2007) Statistical validation metric for accuracy assessment in medical image segmentation. Int J Comput Assist Radiol Surg 2(3–4):169–181CrossRef Popovic A, de la Fuente M, Engelhardt M, Radermacher K (2007) Statistical validation metric for accuracy assessment in medical image segmentation. Int J Comput Assist Radiol Surg 2(3–4):169–181CrossRef
24.
Zurück zum Zitat Raj A, Juluru K (2009) Visualization and segmentation of liver tumors using dynamic contrast MRI. In: IEEE conference of engineering in medicine and biology, pp 6985–6989 Raj A, Juluru K (2009) Visualization and segmentation of liver tumors using dynamic contrast MRI. In: IEEE conference of engineering in medicine and biology, pp 6985–6989
25.
Zurück zum Zitat Ronot M, Vilgrain V (2014) Hepatocellular carcinoma: diagnostic criteria by imaging techniques. Best Pract Res Clin Gastro-enterol 28(5):795–812CrossRef Ronot M, Vilgrain V (2014) Hepatocellular carcinoma: diagnostic criteria by imaging techniques. Best Pract Res Clin Gastro-enterol 28(5):795–812CrossRef
26.
Zurück zum Zitat Ronot M, Bouattour M, Wassermann J, Bruno O, Dreyer C, Larroque B, Castera L, Vilgrain V, Belghiti J, Raymond E, Faivre S (2014) Alternative response criteria (Choi, EASL and mRECIST) versus RECIST1.1 in patients with advanced hepatocellular carcinoma treated with Sorafenib. Oncologist 19:394–402CrossRefPubMedPubMedCentral Ronot M, Bouattour M, Wassermann J, Bruno O, Dreyer C, Larroque B, Castera L, Vilgrain V, Belghiti J, Raymond E, Faivre S (2014) Alternative response criteria (Choi, EASL and mRECIST) versus RECIST1.1 in patients with advanced hepatocellular carcinoma treated with Sorafenib. Oncologist 19:394–402CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Shim JH, Kim KM, Lee YJ, Ko GY, Yoon HK, Sung KB, Park KM, Lee SG, Lim YS, Lee HC, Chung YH, Lee YS, Suh DJ (2010) Complete necrosis after transarterial chemoembolization could predict prolonged survival in patients with recurrent intrahepatic HCC after curative resection. Ann Surg Oncol 17(3):869–877CrossRefPubMed Shim JH, Kim KM, Lee YJ, Ko GY, Yoon HK, Sung KB, Park KM, Lee SG, Lim YS, Lee HC, Chung YH, Lee YS, Suh DJ (2010) Complete necrosis after transarterial chemoembolization could predict prolonged survival in patients with recurrent intrahepatic HCC after curative resection. Ann Surg Oncol 17(3):869–877CrossRefPubMed
28.
Zurück zum Zitat Shimizu A, Narihira T, Furukawa D, Kobatake H, Nawano S, Shinozaki K (2008) Ensemble segmentation using Adaboost with application to liver lesion extraction from a CT volume. In: Workshop on 3D segmentation in the clinic Shimizu A, Narihira T, Furukawa D, Kobatake H, Nawano S, Shinozaki K (2008) Ensemble segmentation using Adaboost with application to liver lesion extraction from a CT volume. In: Workshop on 3D segmentation in the clinic
29.
Zurück zum Zitat Tu Z, Bai X (2010) Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans Pattern Anal Mach Intell 32(10):1744–1757CrossRefPubMed Tu Z, Bai X (2010) Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans Pattern Anal Mach Intell 32(10):1744–1757CrossRefPubMed
30.
Zurück zum Zitat Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921 Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921
31.
Zurück zum Zitat Wu W, Chen AY, Zhao L, Corso JJ (2014) Brain tumor detection and segmentation in a CRF framework with pixel-pairwise affinity and superpixel-level features. Int J Comput Assist Radiol Surg 9(2):241–253 Wu W, Chen AY, Zhao L, Corso JJ (2014) Brain tumor detection and segmentation in a CRF framework with pixel-pairwise affinity and superpixel-level features. Int J Comput Assist Radiol Surg 9(2):241–253
32.
Zurück zum Zitat Yi Z, Criminisi A, Shotton J, Blake A (2009) Discriminative, semantic segmentation of brain tissue in MR images. In: Medical image computing and computer-assisted intervention, pp 558–565 Yi Z, Criminisi A, Shotton J, Blake A (2009) Discriminative, semantic segmentation of brain tissue in MR images. In: Medical image computing and computer-assisted intervention, pp 558–565
33.
Zurück zum Zitat Zikic D, Glocker B, Konukoglu E, Criminisi A, Demiralp C, Shotton J, Thomas O, Das T, Jena R, Price S (2012) Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Medical image computing and computer-assisted intervention, pp 369–376 Zikic D, Glocker B, Konukoglu E, Criminisi A, Demiralp C, Shotton J, Thomas O, Das T, Jena R, Price S (2012) Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Medical image computing and computer-assisted intervention, pp 369–376
Metadaten
Titel
Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans
verfasst von
Pierre-Henri Conze
Vincent Noblet
François Rousseau
Fabrice Heitz
Vito de Blasi
Riccardo Memeo
Patrick Pessaux
Publikationsdatum
22.10.2016
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 2/2017
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-016-1493-1

Neu im Fachgebiet Radiologie

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

PMBCL mit CMR: Radiatio kann ohne Risiko weggelassen werden

Patienten mit primär mediastinalem B-Zell-Lymphom (PMBCL), die nach der Induktionstherapie eine komplette metabolische Remission (CMR) erreichen und keine konsolidierende Bestrahlung erhalten, müssen offenbar keine Überlebensnachteile fürchten.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.