Skip to main content
Erschienen in:

09.01.2020 | Schizophrenie | Leitthema

Bildgebung bei Schizophrenie

Eine Übersicht zu aktuellen Befunden und Entwicklungen

verfasst von: Prof. Dr. Igor Nenadić, LL.M.

Erschienen in: Der Nervenarzt | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Zusammenfassung

Bildgebende Verfahren sind zentrale Methoden zur Erforschung dysfunktionaler neuronaler Netzwerke bei Schizophrenie. Die vorliegende Übersichtsarbeit stellt aktuelle Befunde zur Störung neuronaler Netzwerke auf struktureller und funktioneller Ebene dar und fasst aktuelle Entwicklungen zusammen. Neben großen multizentrischen Analysen haben vor allem methodische Neuerungen, z. B. die Magnetresonanz(MR)-Morphometrie, zu einem Erkenntnisgewinn der Differenzierung früher vs. später struktureller Alterationen geführt. Der Einsatz von „Machine-learning“-Verfahren hat zusätzlich zu Klassifikationsmodellen, etwa zur Abgrenzung der Schizophrenie von anderen Störungsbildern auf biologischer Ebene, auch die multivariate Prädiktion von Therapieansprechen erlaubt. Neuere Ansätze wie BrainAGE, ein Surrogatmarker für beschleunigte Hirnalterungsprozesse, geben zusätzlich zu Verlaufsstudien Einsicht in die Dynamik zwischen gestörter früher Hirnentwicklung und der Progression hirnstruktureller Veränderungen nach Erkrankungsbeginn.
Literatur
2.
Zurück zum Zitat Alnaes D, Kaufmann T, Van Der Meer D et al (2019) Brain heterogeneity in schizophrenia and its association with polygenic risk. Jama Psychiatry 76:739–748CrossRef Alnaes D, Kaufmann T, Van Der Meer D et al (2019) Brain heterogeneity in schizophrenia and its association with polygenic risk. Jama Psychiatry 76:739–748CrossRef
3.
Zurück zum Zitat Bartholomeusz CF, Cropley VL, Wannan C et al (2017) Structural neuroimaging across early-stage psychosis: aberrations in neurobiological trajectories and implications for the staging model. Aust N Z J Psychiatry 51:455–476CrossRef Bartholomeusz CF, Cropley VL, Wannan C et al (2017) Structural neuroimaging across early-stage psychosis: aberrations in neurobiological trajectories and implications for the staging model. Aust N Z J Psychiatry 51:455–476CrossRef
4.
Zurück zum Zitat Besteher B, Gaser C, Nenadic I (2019) Machine-learning based brain age estimation in major depression showing no evidence of accelerated aging. Psychiatry Res Neuroimaging 290:1–4CrossRef Besteher B, Gaser C, Nenadic I (2019) Machine-learning based brain age estimation in major depression showing no evidence of accelerated aging. Psychiatry Res Neuroimaging 290:1–4CrossRef
5.
Zurück zum Zitat Brandl F, Avram M, Weise B et al (2019) Specific substantial dysconnectivity in schizophrenia: a transdiagnostic multimodal meta-analysis of resting-state functional and structural magnetic resonance imaging studies. Biol Psychiatry 85:573–583CrossRef Brandl F, Avram M, Weise B et al (2019) Specific substantial dysconnectivity in schizophrenia: a transdiagnostic multimodal meta-analysis of resting-state functional and structural magnetic resonance imaging studies. Biol Psychiatry 85:573–583CrossRef
6.
Zurück zum Zitat De Filippis R, Carbone EA, Gaetano R et al (2019) Machine learning techniques in a structural and functional MRI diagnostic approach in schizophrenia: a systematic review. Neuropsychiatr Dis Treat 15:1605–1627CrossRef De Filippis R, Carbone EA, Gaetano R et al (2019) Machine learning techniques in a structural and functional MRI diagnostic approach in schizophrenia: a systematic review. Neuropsychiatr Dis Treat 15:1605–1627CrossRef
7.
Zurück zum Zitat Dietsche B, Kircher T, Falkenberg I (2017) Structural brain changes in schizophrenia at different stages of the illness: a selective review of longitudinal magnetic resonance imaging studies. Aust N Z J Psychiatry 51:500–508CrossRef Dietsche B, Kircher T, Falkenberg I (2017) Structural brain changes in schizophrenia at different stages of the illness: a selective review of longitudinal magnetic resonance imaging studies. Aust N Z J Psychiatry 51:500–508CrossRef
8.
Zurück zum Zitat Ding Y, Ou Y, Pan P et al (2019) Brain structural abnormalities as potential markers for detecting individuals with ultra-high risk for psychosis: a systematic review and meta-analysis. Schizophr Res 209:22–31CrossRef Ding Y, Ou Y, Pan P et al (2019) Brain structural abnormalities as potential markers for detecting individuals with ultra-high risk for psychosis: a systematic review and meta-analysis. Schizophr Res 209:22–31CrossRef
9.
Zurück zum Zitat Dong D, Wang Y, Chang X et al (2018) Dysfunction of large-scale brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity. Schizophr Bull 44:168–181CrossRef Dong D, Wang Y, Chang X et al (2018) Dysfunction of large-scale brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity. Schizophr Bull 44:168–181CrossRef
10.
Zurück zum Zitat Goodkind M, Eickhoff SB, Oathes DJ et al (2015) Identification of a common neurobiological substrate for mental illness. Jama Psychiatry 72:305–315CrossRef Goodkind M, Eickhoff SB, Oathes DJ et al (2015) Identification of a common neurobiological substrate for mental illness. Jama Psychiatry 72:305–315CrossRef
11.
Zurück zum Zitat Hajek T, Franke K, Kolenic M et al (2019) Brain age in early stages of bipolar disorders or schizophrenia. Schizophr Bull 45:190–198PubMed Hajek T, Franke K, Kolenic M et al (2019) Brain age in early stages of bipolar disorders or schizophrenia. Schizophr Bull 45:190–198PubMed
12.
Zurück zum Zitat Hedman AM, Van Haren NEM, Van Baal GCM et al (2016) Heritability of cortical thickness changes over time in twin pairs discordant for schizophrenia. Schizophr Res 173:192–199CrossRef Hedman AM, Van Haren NEM, Van Baal GCM et al (2016) Heritability of cortical thickness changes over time in twin pairs discordant for schizophrenia. Schizophr Res 173:192–199CrossRef
13.
Zurück zum Zitat Janssen RJ, Mourao-Miranda J, Schnack HG (2018) Making individual prognoses in psychiatry using neuroimaging and machine learning. Biol Psychiatry 3:798–808 Janssen RJ, Mourao-Miranda J, Schnack HG (2018) Making individual prognoses in psychiatry using neuroimaging and machine learning. Biol Psychiatry 3:798–808
14.
Zurück zum Zitat Kircher T, Brohl H, Meier F et al (2018) Formal thought disorders: from phenomenology to neurobiology. The Lancet Psychiatry 5:515–526CrossRef Kircher T, Brohl H, Meier F et al (2018) Formal thought disorders: from phenomenology to neurobiology. The Lancet Psychiatry 5:515–526CrossRef
15.
Zurück zum Zitat Koutsouleris N, Davatzikos C, Borgwardt S et al (2014) Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophr Bull 40:1140–1153CrossRef Koutsouleris N, Davatzikos C, Borgwardt S et al (2014) Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophr Bull 40:1140–1153CrossRef
16.
Zurück zum Zitat Koutsouleris N, Gaser C, Jager M et al (2008) Structural correlates of psychopathological symptom dimensions in schizophrenia: a voxel-based morphometric study. Neuroimage 39:1600–1612CrossRef Koutsouleris N, Gaser C, Jager M et al (2008) Structural correlates of psychopathological symptom dimensions in schizophrenia: a voxel-based morphometric study. Neuroimage 39:1600–1612CrossRef
17.
Zurück zum Zitat Koutsouleris N, Wobrock T, Guse B et al (2018) Predicting response to repetitive transcranial magnetic stimulation in patients with schizophrenia using structural magnetic resonance imaging: a multisite machine learning analysis. Schizophr Bull 44:1021–1034CrossRef Koutsouleris N, Wobrock T, Guse B et al (2018) Predicting response to repetitive transcranial magnetic stimulation in patients with schizophrenia using structural magnetic resonance imaging: a multisite machine learning analysis. Schizophr Bull 44:1021–1034CrossRef
18.
Zurück zum Zitat Kuo SS, Pogue-Geile MF (2019) Variation in fourteen brain structure volumes in schizophrenia: a comprehensive meta-analysis of 246 studies. Neurosci Biobehav Rev 98:85–94CrossRef Kuo SS, Pogue-Geile MF (2019) Variation in fourteen brain structure volumes in schizophrenia: a comprehensive meta-analysis of 246 studies. Neurosci Biobehav Rev 98:85–94CrossRef
19.
Zurück zum Zitat McGorry P, Nelson B (2016) Why we need a transdiagnostic staging approach to emerging psychopathology, early diagnosis, and treatment. Jama Psychiatry 73:191–192CrossRef McGorry P, Nelson B (2016) Why we need a transdiagnostic staging approach to emerging psychopathology, early diagnosis, and treatment. Jama Psychiatry 73:191–192CrossRef
20.
Zurück zum Zitat McGorry PD, Nelson B, Goldstone S et al (2010) Clinical staging: a heuristic and practical strategy for new research and better health and social outcomes for psychotic and related mood disorders. Can J Psychiatry 55:486–497CrossRef McGorry PD, Nelson B, Goldstone S et al (2010) Clinical staging: a heuristic and practical strategy for new research and better health and social outcomes for psychotic and related mood disorders. Can J Psychiatry 55:486–497CrossRef
21.
Zurück zum Zitat Mistry S, Harrison JR, Smith DJ et al (2018) The use of polygenic risk scores to identify phenotypes associated with genetic risk of schizophrenia: systematic review. Schizophr Res 197:2–8CrossRef Mistry S, Harrison JR, Smith DJ et al (2018) The use of polygenic risk scores to identify phenotypes associated with genetic risk of schizophrenia: systematic review. Schizophr Res 197:2–8CrossRef
22.
Zurück zum Zitat Mitelman SA (2019) Transdiagnostic neuroimaging in psychiatry: a review. Psychiatry Res 277:23–38CrossRef Mitelman SA (2019) Transdiagnostic neuroimaging in psychiatry: a review. Psychiatry Res 277:23–38CrossRef
23.
Zurück zum Zitat Modinos G, Costafreda SG, Van Tol MJ et al (2013) Neuroanatomy of auditory verbal hallucinations in schizophrenia: a quantitative meta-analysis of voxel-based morphometry studies. Cortex 49:1046–1055CrossRef Modinos G, Costafreda SG, Van Tol MJ et al (2013) Neuroanatomy of auditory verbal hallucinations in schizophrenia: a quantitative meta-analysis of voxel-based morphometry studies. Cortex 49:1046–1055CrossRef
24.
Zurück zum Zitat Mothersill D, Donohoe G (2019) Neural effects of cognitive training in schizophrenia: a systematic review and activation likelihood estimation meta-analysis. Biol Psychiatry 4:688–696 Mothersill D, Donohoe G (2019) Neural effects of cognitive training in schizophrenia: a systematic review and activation likelihood estimation meta-analysis. Biol Psychiatry 4:688–696
26.
Zurück zum Zitat Nakahara S, Matsumoto M, Van Erp TGM (2018) Hippocampal subregion abnormalities in schizophrenia: a systematic review of structural and physiological imaging studies. Neuropsychopharmacology Reports 38:156–166CrossRef Nakahara S, Matsumoto M, Van Erp TGM (2018) Hippocampal subregion abnormalities in schizophrenia: a systematic review of structural and physiological imaging studies. Neuropsychopharmacology Reports 38:156–166CrossRef
27.
Zurück zum Zitat Nenadic I, Dietzek M, Langbein K et al (2017) BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder. Psychiatry Res Neuroimaging 266:86–89CrossRef Nenadic I, Dietzek M, Langbein K et al (2017) BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder. Psychiatry Res Neuroimaging 266:86–89CrossRef
28.
Zurück zum Zitat Nenadic I, Sauer H, Gaser C (2010) Distinct pattern of brain structural deficits in subsyndromes of schizophrenia delineated by psychopathology. Neuroimage 49:1153–1160CrossRef Nenadic I, Sauer H, Gaser C (2010) Distinct pattern of brain structural deficits in subsyndromes of schizophrenia delineated by psychopathology. Neuroimage 49:1153–1160CrossRef
29.
Zurück zum Zitat Nenadic I, Yotter RA, Sauer H et al (2014) Cortical surface complexity in frontal and temporal areas varies across subgroups of schizophrenia. Hum Brain Mapp 35:1691–1699CrossRef Nenadic I, Yotter RA, Sauer H et al (2014) Cortical surface complexity in frontal and temporal areas varies across subgroups of schizophrenia. Hum Brain Mapp 35:1691–1699CrossRef
30.
Zurück zum Zitat Nenadic I, Yotter RA, Sauer H et al (2015) Patterns of cortical thinning in different subgroups of schizophrenia. Br J Psychiatry 206:479–483CrossRef Nenadic I, Yotter RA, Sauer H et al (2015) Patterns of cortical thinning in different subgroups of schizophrenia. Br J Psychiatry 206:479–483CrossRef
31.
Zurück zum Zitat Palaniyappan L, Balain V, Radua J et al (2012) Structural correlates of auditory hallucinations in schizophrenia: a meta-analysis. Schizophr Res 137:169–173CrossRef Palaniyappan L, Balain V, Radua J et al (2012) Structural correlates of auditory hallucinations in schizophrenia: a meta-analysis. Schizophr Res 137:169–173CrossRef
32.
Zurück zum Zitat Schwarz E, Doan NT, Pergola G et al (2019) Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder. Transl Psychiatry 9:12CrossRef Schwarz E, Doan NT, Pergola G et al (2019) Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder. Transl Psychiatry 9:12CrossRef
33.
Zurück zum Zitat Sheffield JM, Kandala S, Tamminga CA et al (2017) Transdiagnostic associations between functional brain network integrity and cognition. Jama Psychiatry 74:605–613CrossRef Sheffield JM, Kandala S, Tamminga CA et al (2017) Transdiagnostic associations between functional brain network integrity and cognition. Jama Psychiatry 74:605–613CrossRef
34.
Zurück zum Zitat Van Der Auwera S, Wittfeld K, Shumskaya E et al (2017) Predicting brain structure in population-based samples with biologically informed genetic scores for schizophrenia. Am J Med Genet B Neuropsychiatr Genet 174:324–332CrossRef Van Der Auwera S, Wittfeld K, Shumskaya E et al (2017) Predicting brain structure in population-based samples with biologically informed genetic scores for schizophrenia. Am J Med Genet B Neuropsychiatr Genet 174:324–332CrossRef
35.
Zurück zum Zitat Van Erp TG, Hibar DP, Rasmussen JM et al (2016) Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 21:547–553CrossRef Van Erp TG, Hibar DP, Rasmussen JM et al (2016) Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 21:547–553CrossRef
36.
Zurück zum Zitat Van Erp TGM, Walton E, Hibar DP et al (2018) Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro imaging genetics through meta analysis (ENIGMA) consortium. Biol Psychiatry 84:644–654CrossRef Van Erp TGM, Walton E, Hibar DP et al (2018) Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro imaging genetics through meta analysis (ENIGMA) consortium. Biol Psychiatry 84:644–654CrossRef
37.
Zurück zum Zitat Walton E, Hibar DP, Van Erp TG et al (2017) Positive symptoms associate with cortical thinning in the superior temporal gyrus via the ENIGMA Schizophrenia consortium. Acta Psychiatr Scand 135:439–447CrossRef Walton E, Hibar DP, Van Erp TG et al (2017) Positive symptoms associate with cortical thinning in the superior temporal gyrus via the ENIGMA Schizophrenia consortium. Acta Psychiatr Scand 135:439–447CrossRef
38.
Zurück zum Zitat Walton E, Hibar DP, Van Erp TGM et al (2018) Prefrontal cortical thinning links to negative symptoms in schizophrenia via the ENIGMA consortium. Psychol Med 48:82–94CrossRef Walton E, Hibar DP, Van Erp TGM et al (2018) Prefrontal cortical thinning links to negative symptoms in schizophrenia via the ENIGMA consortium. Psychol Med 48:82–94CrossRef
39.
Zurück zum Zitat Weinberg D, Lenroot R, Jacomb I et al (2016) Cognitive subtypes of schizophrenia characterized by differential brain volumetric reductions and cognitive decline. Jama Psychiatry 73:1251–1259CrossRef Weinberg D, Lenroot R, Jacomb I et al (2016) Cognitive subtypes of schizophrenia characterized by differential brain volumetric reductions and cognitive decline. Jama Psychiatry 73:1251–1259CrossRef
40.
Zurück zum Zitat Wensing T, Cieslik EC, Muller VI et al (2017) Neural correlates of formal thought disorder: an activation likelihood estimation meta-analysis. Hum Brain Mapp 38:4946–4965CrossRef Wensing T, Cieslik EC, Muller VI et al (2017) Neural correlates of formal thought disorder: an activation likelihood estimation meta-analysis. Hum Brain Mapp 38:4946–4965CrossRef
41.
Zurück zum Zitat Zhang T, Koutsouleris N, Meisenzahl E et al (2015) Heterogeneity of structural brain changes in subtypes of schizophrenia revealed using magnetic resonance imaging pattern analysis. Schizophr Bull 41:74–84CrossRef Zhang T, Koutsouleris N, Meisenzahl E et al (2015) Heterogeneity of structural brain changes in subtypes of schizophrenia revealed using magnetic resonance imaging pattern analysis. Schizophr Bull 41:74–84CrossRef
Metadaten
Titel
Bildgebung bei Schizophrenie
Eine Übersicht zu aktuellen Befunden und Entwicklungen
verfasst von
Prof. Dr. Igor Nenadić, LL.M.
Publikationsdatum
09.01.2020
Verlag
Springer Medizin
Erschienen in
Der Nervenarzt / Ausgabe 1/2020
Print ISSN: 0028-2804
Elektronische ISSN: 1433-0407
DOI
https://doi.org/10.1007/s00115-019-00857-0

Neu in den Fachgebieten Neurologie und Psychiatrie

Nach Hirnblutung früh mit ASS beginnen? Könnte sich lohnen!

In einer Studie waren Patienten, die nach Hirnblutung und Operation früh ASS erhalten hatten, seltener von größeren ischämischen Komplikationen betroffen. Es lohnt sich allerdings, sich die Einschränkungen genauer anzusehen.

EMA gibt Startschuss für die Zulassung von Lecanemab

Für viele kam sie überraschend: Die Empfehlung der EMA, zugunsten des gegen β-Amyloid gerichteten monoklonalen Antikörpers Lecanemab. Dass von der US-amerikanischen Alzheimer’s Disease and Related Disorders Therapeutics Work Group bereits ausführliche Empfehlungen zur angemessenen Verwendung des Medikaments formuliert wurden, dürfte die in Kürze zu erwartende Einführung in die deutsche Versorgungslandschaft erleichtern.

Maschinenlernen ermöglicht bessere Verlaufsvorhersage

Kann man bei einer hereditären neurologischen Erkrankung die Expression des defekten Gens und den zukünftigen Krankheitsverlauf anhand der Bewegungsdaten der betroffenen Person vorhersagen?

Parkinsonkrankheit als neuroinflammatorische Erkrankung?

Neuroimmunologische Fehlregulationen scheinen bei der Parkinsonkrankheit eine wichtige Rolle zu spielen. Sie sind potenzielle Kandidaten bei der Suche nach geeigneten Biomarkern und Ansatzpunkten für neue Therapien.