Skip to main content

11.09.2024

Screening Patient Misidentification Errors Using a Deep Learning Model of Chest Radiography: A Seven Reader Study

verfasst von: Kiduk Kim, Kyungjin Cho, Yujeong Eo, Jeeyoung Kim, Jihye Yun, Yura Ahn, Joon Beom Seo, Gil-Sun Hong, Namkug Kim

Erschienen in: Journal of Imaging Informatics in Medicine

Einloggen, um Zugang zu erhalten

Abstract

We aimed to evaluate the ability of deep learning (DL) models to identify patients from a paired chest radiograph (CXR) and compare their performance with that of human experts. In this retrospective study, patient identification DL models were developed using 240,004 CXRs. The models were validated using multiple datasets, namely, internal validation, CheXpert, and Chest ImaGenome (CIG), which include different populations. Model performance was analyzed in terms of disease change status. The performance of the models to identify patients from paired CXRs was compared with three junior radiology residents (group I), two senior radiology residents (group II), and two board-certified expert radiologists (group III). For the reader study, 240 patients (age, 56.617 ± 13.690 years, 113 females, 160 same pairs) were evaluated. A one-sided non-inferiority test was performed with a one-sided margin of 0.05. SimChest, our similarity-based DL model, demonstrated the best patient identification performance across multiple datasets, regardless of disease change status (internal validation [area under the receiver operating characteristic curve range: 0.992–0.999], CheXpert [0.933–0.948], and CIG [0.949–0.951]). The radiologists identified patients from the paired CXRs with a mean accuracy of 0.900 (95% confidence interval: 0.852–0.948), with performance increasing with experience (mean accuracy:group I [0.874], group II [0.904], group III [0.935], and SimChest [0.904]). SimChest achieved non-inferior performance compared to the radiologists (P for non-inferiority: 0.015). The findings of this diagnostic study indicate that DL models can screen for patient misidentification using a pair of CXRs non-inferiorly to human experts.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Rubio EI, Hogan L: Time-Out: It's Radiology's Turn—Incidence of Wrong-Patient or Wrong-Study Errors. American Journal of Roentgenology 205:941-946, 2015CrossRefPubMed Rubio EI, Hogan L: Time-Out: It's Radiology's Turn—Incidence of Wrong-Patient or Wrong-Study Errors. American Journal of Roentgenology 205:941-946, 2015CrossRefPubMed
2.
Zurück zum Zitat Sadigh G, Loehfelm T, Applegate KE, Tridandapani S: JOURNAL CLUB: Evaluation of Near-Miss Wrong-Patient Events in Radiology Reports. American Journal of Roentgenology 205:337-343, 2015CrossRefPubMed Sadigh G, Loehfelm T, Applegate KE, Tridandapani S: JOURNAL CLUB: Evaluation of Near-Miss Wrong-Patient Events in Radiology Reports. American Journal of Roentgenology 205:337-343, 2015CrossRefPubMed
3.
Zurück zum Zitat Beyea SC: Patient identification--a crucial aspect of patient safety, 2003 Beyea SC: Patient identification--a crucial aspect of patient safety, 2003
4.
Zurück zum Zitat Papadakis M, Meiwandi A, Grzybowski A: The WHO safer surgery checklist time out procedure revisited: Strategies to optimise compliance and safety. International Journal of Surgery 69, 2019 Papadakis M, Meiwandi A, Grzybowski A: The WHO safer surgery checklist time out procedure revisited: Strategies to optimise compliance and safety. International Journal of Surgery 69, 2019
5.
Zurück zum Zitat Henneman PL, Fisher DL, Henneman EA, Pham TA, Campbell MM, Nathanson BH: Patient Identification Errors Are Common in a Simulated Setting. Annals of Emergency Medicine 55:503-509, 2010CrossRefPubMed Henneman PL, Fisher DL, Henneman EA, Pham TA, Campbell MM, Nathanson BH: Patient Identification Errors Are Common in a Simulated Setting. Annals of Emergency Medicine 55:503-509, 2010CrossRefPubMed
6.
Zurück zum Zitat Jeon B, et al.: A Facial Recognition Mobile App for Patient Safety and Biometric Identification: Design, Development, and Validation. JMIR Mhealth Uhealth 7:e11472, 2019CrossRefPubMedPubMedCentral Jeon B, et al.: A Facial Recognition Mobile App for Patient Safety and Biometric Identification: Design, Development, and Validation. JMIR Mhealth Uhealth 7:e11472, 2019CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Silverstein E, Snyder M: Implementation of facial recognition with Microsoft Kinect v2 sensor for patient verification. Medical Physics 44:2391-2399, 2017CrossRefPubMed Silverstein E, Snyder M: Implementation of facial recognition with Microsoft Kinect v2 sensor for patient verification. Medical Physics 44:2391-2399, 2017CrossRefPubMed
8.
Zurück zum Zitat Ampamya S, Kitayimbwa JM, Were MC: Performance of an open source facial recognition system for unique patient matching in a resource-limited setting. International Journal of Medical Informatics 141:104180, 2020CrossRefPubMed Ampamya S, Kitayimbwa JM, Were MC: Performance of an open source facial recognition system for unique patient matching in a resource-limited setting. International Journal of Medical Informatics 141:104180, 2020CrossRefPubMed
9.
Zurück zum Zitat Morishita J, Katsuragawa S, Sasaki Y, Doi K: Potential usefulness of biological fingerprints in chest radiographs for automated patient recognition and identification1. Academic Radiology 11:309–315, 2004 Morishita J, Katsuragawa S, Sasaki Y, Doi K: Potential usefulness of biological fingerprints in chest radiographs for automated patient recognition and identification1. Academic Radiology 11:309–315, 2004
10.
Zurück zum Zitat Morishita J, Katsuragawa S, Kondo K, Doi K: An automated patient recognition method based on an image-matching technique using previous chest radiographs in the picture archiving and communication system environment. Medical Physics 28:1093–1097, 2001 Morishita J, Katsuragawa S, Kondo K, Doi K: An automated patient recognition method based on an image-matching technique using previous chest radiographs in the picture archiving and communication system environment. Medical Physics 28:1093–1097, 2001
11.
Zurück zum Zitat Kao EF, Lin W-C, Jaw T-S, Liu G-C, Wu J-S, Lee C-N: Automated Patient Identity Recognition by Analysis of Chest Radiograph Features. Academic Radiology 20:1024-1031, 2013CrossRefPubMed Kao EF, Lin W-C, Jaw T-S, Liu G-C, Wu J-S, Lee C-N: Automated Patient Identity Recognition by Analysis of Chest Radiograph Features. Academic Radiology 20:1024-1031, 2013CrossRefPubMed
12.
Zurück zum Zitat Raghu Vineet K, Weiss J, Hoffmann U, Aerts Hugo JWL, Lu Michael T: Deep Learning to Estimate Biological Age From Chest Radiographs. JACC: Cardiovascular Imaging 14:2226–2236, 2021 Raghu Vineet K, Weiss J, Hoffmann U, Aerts Hugo JWL, Lu Michael T: Deep Learning to Estimate Biological Age From Chest Radiographs. JACC: Cardiovascular Imaging 14:2226–2236, 2021
13.
Zurück zum Zitat He H, et al.: Model and predict age and sex in healthy subjects using brain white matter features: a deep learning approach. Proc. 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI): City He H, et al.: Model and predict age and sex in healthy subjects using brain white matter features: a deep learning approach. Proc. 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI): City
14.
15.
Zurück zum Zitat Packhäuser K, Gündel S, Münster N, Syben C, Christlein V, Maier A: Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data. Scientific Reports 12:14851, 2022CrossRefPubMedPubMedCentral Packhäuser K, Gündel S, Münster N, Syben C, Christlein V, Maier A: Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data. Scientific Reports 12:14851, 2022CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Donaldson MS, Corrigan JM, Kohn LT: To err is human: building a safer health system, 2000 Donaldson MS, Corrigan JM, Kohn LT: To err is human: building a safer health system, 2000
17.
Zurück zum Zitat Choe J, et al.: Content-based Image Retrieval by Using Deep Learning for Interstitial Lung Disease Diagnosis with Chest CT. Radiology 302:187-197, 2021CrossRefPubMed Choe J, et al.: Content-based Image Retrieval by Using Deep Learning for Interstitial Lung Disease Diagnosis with Chest CT. Radiology 302:187-197, 2021CrossRefPubMed
18.
Zurück zum Zitat Cho K, et al.: MuSiC-ViT: A multi-task Siamese convolutional vision transformer for differentiating change from no-change in follow-up chest radiographs. Medical Image Analysis 89:102894, 2023CrossRefPubMed Cho K, et al.: MuSiC-ViT: A multi-task Siamese convolutional vision transformer for differentiating change from no-change in follow-up chest radiographs. Medical Image Analysis 89:102894, 2023CrossRefPubMed
19.
Zurück zum Zitat Irvin J, et al.: Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. Proc. Proceedings of the AAAI conference on artificial intelligence: City Irvin J, et al.: Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. Proc. Proceedings of the AAAI conference on artificial intelligence: City
20.
Zurück zum Zitat Wu JT, et al.: Chest ImaGenome dataset for clinical reasoning. arXiv preprint, 2021 Wu JT, et al.: Chest ImaGenome dataset for clinical reasoning. arXiv preprint, 2021
21.
Zurück zum Zitat Khosla P, et al.: Supervised contrastive learning. Proc. Advances in neural information processing systems: City Khosla P, et al.: Supervised contrastive learning. Proc. Advances in neural information processing systems: City
22.
Zurück zum Zitat Kim KD, et al.: Enhancing deep learning based classifiers with inpainting anatomical side markers (L/R markers) for multi-center trials. Computer Methods and Programs in Biomedicine 220:106705, 2022CrossRefPubMed Kim KD, et al.: Enhancing deep learning based classifiers with inpainting anatomical side markers (L/R markers) for multi-center trials. Computer Methods and Programs in Biomedicine 220:106705, 2022CrossRefPubMed
23.
Zurück zum Zitat Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D: Grad-cam: Visual explanations from deep networks via gradient-based localization. Proc. Proceedings of the IEEE international conference on computer vision: City Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D: Grad-cam: Visual explanations from deep networks via gradient-based localization. Proc. Proceedings of the IEEE international conference on computer vision: City
Metadaten
Titel
Screening Patient Misidentification Errors Using a Deep Learning Model of Chest Radiography: A Seven Reader Study
verfasst von
Kiduk Kim
Kyungjin Cho
Yujeong Eo
Jeeyoung Kim
Jihye Yun
Yura Ahn
Joon Beom Seo
Gil-Sun Hong
Namkug Kim
Publikationsdatum
11.09.2024
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-024-01245-0

Neu im Fachgebiet Radiologie

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.