Skip to main content
Erschienen in: Journal of Translational Medicine 1/2019

Open Access 01.12.2019 | Research

Second line therapy with axitinib after only prior sunitinib in metastatic renal cell cancer: Italian multicenter real world SAX study final results

verfasst von: Gaetano Facchini, Sabrina Rossetti, Massimiliano Berretta, Carla Cavaliere, Sarah Scagliarini, Maria Giuseppa Vitale, Chiara Ciccarese, Giuseppe Di Lorenzo, Erica Palesandro, Vincenza Conteduca, Umberto Basso, Emanuele Naglieri, Azzurra Farnesi, Michele Aieta, Nicolò Borsellino, Leonardo La Torre, Gelsomina Iovane, Lucia Bonomi, Donatello Gasparro, Enrico Ricevuto, Michele De Tursi, Rocco De Vivo, Giovanni Lo Re, Francesco Grillone, Paolo Marchetti, Ferdinando De Vita, Claudio Scavelli, Claudio Sini, Salvatore Pisconti, Anna Crispo, Vittorio Gebbia, Antonio Maestri, Luca Galli, Ugo De Giorgi, Roberto Iacovelli, Carlo Buonerba, Giacomo Cartenì, Carmine D’Aniello

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2019

Abstract

Background

This multi-institutional retrospective real life study was conducted in 22 Italian Oncology Centers and evaluated the role of Axitinib in second line treatment in not selected mRCC patients.

Methods

148 mRCC patients were evaluated. According to Heng score 15.5%, 60.1% and 24.4% of patients were at poor risk, intermediate and favorable risk, respectively.

Results

PFS, OS, DCR and ORR were 7.14 months, 15.5 months, 70.6% and 16.6%, respectively. The duration of prior sunitinib treatment correlated with a longer significant mPFS, 8.8 vs 6.3 months, respectively. Axitinib therapy was safe, without grade 4 adverse events. The most frequent toxicities of all grades were: fatigue (50%), hypertension (26%), and hypothyroidism (18%). G3 blood pressure elevation significantly correlated with longer mPFS and mOS compared to G1-G2 or no toxicity. Dose titration (DT) to 7 mg and 10 mg bid was feasible in 24% with no statistically significant differences in mPFS and mOS. The sunitinib-axitinib sequence was safe and effective, the mOS was 41.15 months. At multivariate analysis, gender, DCR to axitinib and to previous sunitinib correlated significantly with PFS; whereas DCR to axitinib, nephrectomy and Heng score independently affected overall survival.

Conclusions

Axitinib was effective and safe in a not selected real life mRCC population.
Trial registration INT – Napoli – 11/16 oss. Registered 20 April 2016. http://​www.​istitutotumori.​na.​it
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background

The Target Therapies (TTs) have revolutionized the metastatic Renal Cell Carcinoma (mRCC) treatment with a significant advantage in Overall Survival (OS), from about 9 months in 1995, to a median of 28–29 months in 2013 [19]. Axitinib, a selective TKi of VEGFR-1, 2, 3, has been approved in Italy in second line treatment after sunitinib or cytokines failure. The phase III AXIS trials showed a significantly prolonged mPFS with axitinib, 6.7 months vs 4.7 months with sorafenib. In the subgroup of patients, pre-treated with sunitinib, median PFS was 4.8 months with axitinib vs 3.4 months with sorafenib (p = 0.011) [10]. The mOS was 20.1 months with axitinib (95% CI 16.7–23.4) vs 19.2 months with sorafenib (95% CI 17.5–22.3) (HR 0.969, 95% CI 0.800–1.174; p = 0.3744) [11]. Axitinib showed a good safety profile with diarrhea, fatigue and hypertension, as main side effects. At the time of this study analysis, the only registered drugs in this setting were: axitinib, everolimus and sorafenib. To date there are no head-to-head studies or randomized clinical trials, that provide conclusive information about the best second-line. Several ‘real world’ studies confirmed the efficacy and safety of Axitinb in a not selected population [1224].

Patients and methods

Our multi-Institutional, retrospective study evaluated the outcomes of mRCC patients all treated in second-line therapy with axitinib after first-line sunitinib failure. Eligible patients were: age ≥ 18 years; histologically confirmed RCC; axitinib for at least 2 months, started between January 2014 and May 2017; at least one radiological assessment (CT scan) of disease (RECIST 1.1 criteria) repeated every 2–3 months; only sunitinib as previous treatment in first line. Axitinib was administered at starting dose of 5 mg bid (10 mg/die). Dose titration (DT) was performed every 2 weeks up to a final step of 10 mg bid in patients without adverse events ≥ grade 2. Primary endpoints were: progression free survival (PFS), overall survival (OS), objective response rate (ORR), disease control rate (DCR), and the safety profile of Axitinib and Sunitinib–Axitinib sequence. ORR was defined as the percentage of partial response (PR) and complete response (CR) during treatment and disease control rate (DCR) as the percentage of PR, CR and stable disease (SD) upon axitinib. Progressive disease (PD) was defined as: radiological tumor progression, or clinical progression, including death. PFS was defined as the interval between the date of the first dose of Axitinib and the date of the disease progression or death from any cause. Overall survival (OS) was defined from the start of axitinib to the date of death from any cause. The secondary objectives included the evaluation of a possible relationship between patients demographic and baseline characteristics, AEs and response to treatment. AEs were graded according to Common Terminology Criteria for Adverse Events (CTCAE version 4.0). Patients demographic and baseline characteristics, treatment patterns and AEs were collected, with categorical variables being described by patients counts and percentages. Univariate analysis for median progression free survival and overall survival was performed by Kaplan–Meier estimator: PFS and OS curves were obtained and selected variables were compared using two-sided log-rank test. Hazard ratios (HR) were calculated by Cox Regression multivariable analysis, performed according to a backward elimination of factors showing a p value ≥ 0.10, and adjusted for age (continuous variable) and center. A p value ≤ 0.05 was considered statistically significant. The SPSS statistical package version 23.0 (SPSS Inc., Chicago, IL) was used for all statistical analysis.

Results

Between January 2014 and May 2017, twenty-two Italian Oncology Centers collected clinical data regarding 148 patients, after approval by the Institutional Board of National Cancer Institute “G. Pascale”–IRCCS of Napoli, Italy. All patients gave consent to participate. Patients demographic and baseline characteristics were collected in Table 1: median age was 62 years (range: 35–85 years), with good balance between males and females (50.7% vs 49.3%, respectively); 55.4% had ECOG 0 Performance Status. 134/148 (90.5%) patients had undergone prior nephrectomy and only 6% (9/148) had a histological diagnosis other than clear cell carcinoma. Lung was the most affected site of metastases (56.8%) and 22.3% (33/148) of patients had liver metastases. 11.5%, 60.8% and 27.7% patients were MSKCC high risk, intermediate and favorable, respectively otherwise, according to Heng score, 15.5%, 60.1% and 24.4% patients were poor, intermediate and favorable risk, respectively. All patients received sunitinib as first line treatment according to the Italian guidelines: 18% of patients received modified schedule of sunitinib (2 week on 1 week off). All patients started axitinib at standard dose of 5 mg bid. Dose titration to 7 and 10 mg bid was performed in 23.6% of patients. Forty-nine percentage patients received further treatment lines (Table 2).
Table 1
SAX patients characteristics
 
N = 148
%
Median age years (range)
62
(35–85)
Age
 < 75
126
85%
 ≥ 75
22
15%
Gender
 Male
75
50.7%
 Female
73
49.3%
ECOG PS
 0
82
55.4%
 1
61
41.3%
 2
5
3.3%
Nephrectomy
 Yes
134
90.5%
 No
14
9.5%
MOTZER score
 Poor
17
11.5%
 Intermediate
90
60.8%
 Favorable
41
27.7%
Heng score
 Poor
23
15.5%
 Intermediate
89
60.1%
 Favorable
36
24.3%
Principal sites of disease
 Lung
84
56.8%
 Lymph node
55
37.2%
 Bone
39
26.4%
 Liver
33
22.3%
 Adrenal glands
10
6.8%
 Brain
9
6.1%
 Local recurrence
8
5.4%
 Pancreas
7
4.7%
 Peritoneum
6
4.1%
 Contralateral kidney
5
3.4%
 Skin
3
2%
 Spleen
2
1.4%
Table 2
SAX treatments characteristics
 
N = 148
(%)
First line
 Sutent
148
100
Sutent schedule
 Modified
27
18
 Standard
121
82
Axitinib dose
 Standard
113
76.4
 Titration
35
23.6
Therapy after axitinib
73
49
Median (m) PFS was 7.14 months (95% CI 5.78–8.5 months; Fig. 1). Median (m) OS from the start of Axitinib was 15.5 months (95% CI 11–20 months; Fig. 2). The median time of axitinib treatment duration was 8.1 months. The ORR, according to RECIST criteria version 1.1 [25] was 16.6%, with 16% of PR and one patient reached a CR (Table 3) and correlated to a statistically longer (p < 0.0000001) mPFS, 15.5 months (95% CI 7.9–22.1 months) vs 3.2 months (95% CI 2.95–3.445 months), respectively. The DCR with Axitinib was 70.6% and correlated to a statistically longer (p < 0.0000001) mPFS, 9.9 months (95% CI 7.59–12.22 months) vs 3.2 months (95% CI 2.95–3.44 months), respectively. mOS according to DCR and ORR upon axitinib was 20.1 vs 7.83 months (p < 0. 0000001) and 27.2 vs 7.8 months (p = 0. 000026), respectively. DCR and ORR to previous Sunitinib treatment were associated with longer statistically mPFS, 7.96 months (95% CI 6.49–9.42 months, p = 0. 00031) and 7.7 months (95% CI 5.8–9.7 months, p = 0.0011) vs 4.0 months (95% CI 1.14–6.68 months) and 4.0 months (95% CI 1.4–6.7 months), respectively; no statistically significant differences in mOS according to DCR upon sunitinib was recorded, 17.6 months (95% CI 12.9–22.4 months, p = 0.094) vs 7.8 months (95% CI 4.9–10.8 months); conversely, patients who achieved ORR with first line sunitinib had a significant longer median OS, 19.0 months (95% CI 12.7–25.4 months, p = 0.049) vs 4.0 months (95% CI 4.9–10.7 months). With stratifying patients by duration of prior sunitinib therapy (≤ vs > median duration), a statistically significant difference in mPFS was reported: patients with a median duration of Sunitinib ≥ 13.1 months experienced disease progression upon axitinib later than ones who progressed within 13 months (8.8 months vs 6.3 months, p = 0.021), without any difference in mOS (p = 0.151). We reported no differences in terms of mPFS according to previous sunitinib administration schedule, 13.1 months (95% CI 11.7–14.6 months) vs 12.7 (95% CI 9.7–15.7 months) (standard schedule vs modified schedule; p = 0.096); no difference in mOS (p = 0.205) according to alternative schedule vs standard, 17.6 months (95% CI 12.6–22.7 months) vs 10.2 months (95% CI 8.7–11.7 months). When patients were stratified by Heng score, mPFS was 5.8, 7.0 and 9.0 months according to poor, intermediate and favorable risk group (p = 0.066), with statistically significant difference in mOS (9.4 vs 14.3 vs 20.1 months, respectively p = 0.002); similar results were obtained by using Motzer score. Patients with better ECOG PS (0) experienced longer mPFS, 9.08 months (95% CI 6.80–11.3 months, p = 0.026) vs 6.2 months (95% CI 5.5–6.9 months) and mOS, 27.2 months (95% CI 12.0–42.4 months, p = 0.003) vs 10.9 months (95% CI 8.3–13.6 months). Prior nephrectomy significantly correlated to a longer mPFS, 7.7 vs 4.4 months (p = 0.001), as well as to longer mOS, 18.7 vs 8.2 months, (p = 0.000004). Axitinib at standard schedule of 5 mg bid was safe without grade 4 toxicity. Dose reduction occurred in 24% (35/148): the most common adverse events of all grades were fatigue (50.7%), gastro-intestinal disorders (36.5%), hypertension (26.4%), hypothyroidism (18.2%), dysphonia (12.2%), hand-foot syndrome (14.2%) (Table 5). At univariate analysis G3 blood pressure elevation (systolic ≥ 160 mmHg and/or diastolic ≥ 100 mmHg) significantly correlated with longer mPFS and mOS compared to G1–G2 or no toxicity (mean PFS 28.8 months, p = 0.017—mean 6 OS 38.15 months, p = 0.017—median survival times not reached for both analysis). Noteworthy, men compared to women showed both a longer mPFS (9 vs 5.8 months, p = 0.014) and mOS (19.5 vs 12 months, p = 0.048). The Sunitinib–Axitinib sequence, was well-tolerated, without worsening in side effects, particularly in terms of hypertension and hand–foot syndrome, with a mOS of 41.15 months (95% CI 32–50.32 months; Fig. 2). Tables 5 and 6 summarized the adjusted hazard ratios (HR) for PFS and OS: the Cox multivariate model, performed according to a backward elimination of factors showing a p value ≥ 0.10, was then adjusted for age, gender, and center; gender (male vs female: HR 0.567, 95% CI 0.378–0.851, p value = 0. 006), DCR upon axitinib (HR 0.171, 95% CI 0.107–0.272, p value < 0.0000001) and upon prior sunitinib (HR 0.549, 95% CI 0.308–0.977, p value = 0.04) showed a significant independent impact in terms of PFS; on the other hand, DCR upon axitinib (HR 0.336, 95% CI 0.192–0.590, p value = 0.0001), Heng score (poor prognosis vs favorable prognosis: HR 3.4, 95% CI 1.374–8.541, p value = 0.008—intermediate prognosis vs favorable prognosis: HR 2.06, 95% CI 1.04–4.0, p value = 0.04) and prior nephrectomy (HR 0.319, 95% CI 0.153–0.664, p value = 0.0022) independently affected overall survival (Table 4). Dose escalation to 7 or 10 mg bid was feasible in 35/148 patients (24.2%). mPFS was longer, but not statistically significant, than patients without dose titration, 9.9 months (95% CI 6.2–13.5 months, p = 0.1) vs. 6.4 months (95% CI 5.2–7.6 months), respectively. No difference in mOS was observed too (p = 0.115, Figs. 3, 4). Dose titration was well-tolerated without significant increase in side effects (Tables 5, 6, 7).
Table 3
Objective response in our study population
 
Patient n = 148
Best response, (%)
 CR
0.6
 PR
16
 SD
54
 PD
29.4
 DCR (CR + PR + SD)
70.6
 ORR (CR + PR)
16.6
Table 4
Univariate analysis of PFS and OS in our study population
 
p value
mPFS
mOS
Tumor response rate to axitinib
 DCR
< 0.0000001
< 0.0000001
 ORR
< 0.0000001
0.000026
Tumor response rate to prior sunitinib
 DRC
0.00031
0.094
 ORR
0.0011
0.049
Duration prior sunitinib treatment ≥ 13.1 vs < 13.1 mo
0.21
0.151
HENG score
0.066
0.002
ECOG PS
0.026
0.003
Prior nephrectomy
0.001
0.000004
G3 blood pressure
0.017
0.017
Table 5
Axitinib toxicity
Adverse event (%)
Standard dose
Titration
Grade 1–2
87.3%
Grade 3
12.7%
Grade 4
0%
Grade 1–2
86.6%
Grade 3
13.4%
Grade 4
0%
Haematologic
9.5
0.7
11.4
2
Hypertension
20.9
5.4
25.7
5.7
Gastro-intestinal
32.4
4.1
34.3
Hypothyroidism
17.6
0.7
25.7
Stomatitis/mucositis
8.1
8.5
Fatigue
43.2
7.4
48.6
8.6
Hepatic
2.8
2
2.9
5.7
Hand-foot syndrome
12.2
2
17.2
2.9
Dysphonia
11.5
0.7
11.4
2.9
Table 6
Cox multivariate analysis for PFS
 
Progression-free survival (PFS)
HR
(95% CI)
p value
DCR axitinib
0.171
(0.107–0.272)
< 0.0000001
DCR sunitinib
0.549
(0.308–0.977)
0.041
Heng score
 Good prognosis
1
 
0.174
 Poor prognosis
1.909
(0.964–3.779)
0.064
 Intermediate
1.249
(0.752–2.073)
0.391
Nephrectomy
 Yes
0.572
(0.305–1.072)
0.081
Gender
 Male
0.567
(0.378–0.851)
0.006
Table 7
Cox multivariate analysis for OS
 
Overall survival (OS)
HR
(95% CI)
p-value
DCR axitinib
0.336
(0.192–0.590)
0.00015
Performance status
 ECOG 0
1
 
0.058
 ECOG 1
0.872
(0.183–4.160)
0.863
 ECOG 2
1.706
(0.359–8.108)
0.502
Heng score
 Good
1
 
0.025
 Poor
3.426
(1.374–8.541)
0.008
 Intermediate
2.057
(1.040–4.068)
0.038
Nephrectomy
 Yes
0.319
(0.153–0.664)
0.002
Istology
 Clear cell carcinoma
0.402
(0.149–1.079)
0.070
Gender
 Male
0.629
(0.371–1.066)
0.085

Discussion

Currently the goal of mRCC treatment strategy is represented by the correct use of the approved drugs in a sequential algorithm [26, 27]. Axitinib is licensed in Italy for the treatment of mRCC patients only after failure of sunitinib or cytokines therapy. We report herein the retrospective data of axitinib in Italian real-life practice for mRCC: despite our population was more “battered” than the one investigated in AXIS trial, our results are consistent with AXIS ones, confirming the efficacy of axitinib in second line treatment [10, 11], with ORR, mPFS and mOS of 16.6%, 7.14 and 15.5 months, respectively. Fifteen percentage of our study population was over 75 years, normally under-represented in clinical trials [28]. The elderly patients are usually a frail population with a lower performance status (PS), poor tolerance to medical treatments and multiple co-morbidities [29]. To date few data are available concerning the use of axitinib in elderly mRCC patients [3032]. Our results showed no differences in both mPFS [6.4 months (95% CI 4. 95–7.95, p = 0.74)] and mOS [13.0 months (95% CI 5.9–20.15, p = 0.72)] than younger patients. In addition, there was no significant difference in the incidence of AEs or dose reduction, or discontinuation. The efficacy and safety of the VEGF-TKI -VEGF-TKI treatment sequence has been confirmed by various trials, showing a statistically longer mPFS and in some of these mOS too [10, 11, 26, 33, 34]. Leung et al. indicated axitinib as more appropriate TTs option, compared to sorafenib and pazopanib, in the second line setting; in particular, axitinib is associated with the lowest risk of withdrawal due to adverse events [35]. In post hoc analysis of the AXIS trial, Escudier et al. evaluated the efficacy of axitinib by response and duration of prior sunitinib or cytokines treatment, showed no statistically significant differences in PFS or OS in responders vs non-responders, although a significantly longer PFS and OS was reported in patients who had received a longer prior cytokines treatment [36]. On the contrary, our analysis showed that longer previous sunitinib duration (≤ vs > median duration), correlated with a statistically significant difference in mPFS (8.8 vs 6.3 months, p = 0.021), without any difference in mOS (p = 0.151). The same conclusion was reached by Elaidi et al. who showed that patients who remained on first-line TKI treatment between 11 and 22 months benefited from a TKI rechallenge rather than from second-line mTORi (PFS: 9.4 vs 3.9 months, p = 0.003) [37]. Higher ORR (20–30%) was reported with VEGF-TKI compared to mTORi (≤ 10%), which is supported by our analysis [38]. Dose titration to 7 or 10 mg bid was feasible in 24% (35/148) of our patients, lower than the axitinib Asian trial (61.5%) [39] or the AXIS trial (37%) [10], but higher than other real-world studies (16%) [2123, 40, 41]. We reported no differences in both mOS (p = 0.115) and mPFS (p = 0.1), in accordance to the phase II study of first-line axitinib [17, 23] but in contrast to Matias et al. results, in which dose escalation at 2-weeks was associated to better ORR, PFS and TTF, but not OS. Patients with better ECOG PS (0) experienced longer mPFS, 9.08 (p = 0.026) vs 6.2 months and mOS, 27.2 (p = 0.003) vs 10.9 months. Prior nephrectomy significantly correlated with longer mPFS, 7.7 vs 4.4 months (p = 0.001), as well as longer mOS, 18.7 vs 8.2 months, (p = 0.000004). Axitinib at standard dose of 5 mg bid was safe, a dose reduction occurred in 24% (35/148), without any case of discontinuation: the most common AEs of all grades were: fatigue (50.7%), gastro-intestinal disorders (36.5%), hypertension (26.4%), hypothyroidism (18.2%), dysphonia (12.2%), hand-foot syndrome (14.2%) (Table 5). Our data showed a lower incidence of AEs than AXIS trial, the higher incidence of fatigue in our experience, was probably due to the difficulty to distinguish and explain to the patients the difference between fatigue and asthenia. All these results suggest that axitinib treatment is feasible and safe in this unselected real-world population. At univariate analysis hypertension G3 blood pressure elevation (systolic ≥ 160 mmHg and/or diastolic ≥ 100 mmHg) significantly correlated with longer mPFS and mOS compared to G1-G2 or no toxicity (mean PFS 28.8 months, p = 0.017—mean OS 38.15 months, p = 0.017—median survival times not reached for both analysis Table 6, 7). Our data are consistent with other real-world studies [42, 43] and AXIS trial, suggesting that the development of hypertension during the treatment could be a surrogate of survival in this population. It was interesting to note that the 18% (27/148) of patients enrolled in our study, adopted a modified schedule of sunitinib in first line (2 weeks on 1 week off), without showing any difference in outcomes. These data confirm those of others retrospective studies that evaluated sunitinib alternative schedules, showing a reduction in the AEs and achieving comparable outcomes to the standard schedule [4446]. The identification of effective prognostic factors in mRCC patients receiving axitinib represents a new challenge. In these series we identified the following independent prognostic indicators: gender (male), DCR upon axitinib and prior sunitinib for PFS, and DCR upon axitinib, Heng score (poor prognosis vs intermediate vs good prognosis) and prior nephrectomy for OS. The sequence TKI–TKI (sunitinib-axitinib) was well tolerated without worsening in side effects, the global mOS was 41.15 months, higher than AXIS trial (33.7 months). The main limitation of our analysis was represented by the small patient numbers, selection bias, the retrospective nature, without centralized data review. Recently the results of three major clinical trials involving nivolumab, cabozantinib, and lenvatinib plus everolimus, showed superior efficacy in terms of response rates (RR) and OS in second-line setting [4750] and these will change dramatically the therapeutic sequence in second-line setting. To date, there are few data about the best sequential therapeutic algorithm beyond first-line VEGF TKIs, and no head-to-head study between these new drugs and the currently approved agents are ongoing [5154]. The mTORi everolimus is the only drug tested head-to-head with nivolumab, cabozantinib and lenvatinib plus everolimus, and no data are available with axitinib as comparator. Treatment selection in second line-setting, is based on several factors, including patient health status, contraindications and comorbidities, histologic RCC subtype, safety profiles, and previous treatment. Recently, Bracarda et al. published a Prognostic Factor Analyses from the AXIS Trial, that as well as our data, identified a subgroup of patients who had a long-term benefit with axitinib treatment. Therefore, axitinib could be suitable (post sunitinib) 2nd line treatment option for mRCC selected patients with VEGF-dependent mRCC, favourable/intermediate risk, low tumour burden, and no bone or liver metastases and with long life expectancy [55]. In the new era of Immunotherapy, are VEGF-TKIs still a valid option for mRCC treatment? The angiogenesis plays a central role in the RCC tumorigenesis and immunogenicity. The prevalence of pro-angiogenic factors over anti-angiogenic signals promotes an immunosuppressive tumor microenvironment, through abnormal tumor vessel formation and dysregulation of various immune cells. Therefore, anti-angiogenic therapy remains the gold standard in selected patients (VEGF-dependent favourable mRCC in all setting) and increases the efficacy of immunotherapy, modulating immune responses, increasing anticancer immune-trafficking and activity, through the regulation of tumor vessels and reducing suppressing cytokines and infiltrating T regs [54, 56, 57]. Different phase 3 trials evaluated or are evaluating combination of immune checkpoint inhibitors, such as anti PD-1 nivolumab and anti CTLA-4 ipilimumab, or anti PD-1/PDL-1 and VEGFR-TKI in first-line treatment, with impressive results that will dramatically impact on the choice of the first and second-line treatments (Table 8).
Table 8
Real world trial data comparison
 
mPFS (mo)
mOS (mo)
DCR (CR + PR + SD) (%)
SAX real world
7.14
15.5
70.6
Spanish real world
4.4
10.8
65.7
France real world
8.3,
16.4,
72
AXIS
6.5
15.2
69.3

Conclusions

Evidences emerging from our retrospective analysis are consistent with the available literature and confirm the efficacy and safety of axitinib in a not selected population, particularly in patients who most benefited from first-line sunitinib (VEGF-dependent mRCC). The advent of new drugs such as nivolumab and cabozantinib has further improved the therapeutic landscape of second line setting. Prospective trial will be needed to assess the right sequence of anti PD-1/PD-L1 and VEGF/VEGFRi and moreover, head to head studies will be needful to determine the best VEGFRi (cabozantinib vs axitinib) in second line setting, mostly after the impressive results of the combination trials of immune checkpoint inhibitors and immune checkpoint inhibitors with VEGFR-TKIs, in first-line therapy.

Acknowledgements

Not applicable.
The study was approved by the Institutional Board of National Cancer Institute “G. Pascale” – IRCCS - of Napoli Italy and all patients gave consent to participate.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
7.
Zurück zum Zitat Cavaliere C, D’Aniello C, Cecere S, Di Napoli M, Berretta M, De Domenico R, et al. Renal cancer: prognostic and predictive biomarkers. In: Islam R, editor. Prognostic and predictive response therapy factors in cancer disease (Colorectal, Breast, Liver, Lung, Gastric, Renal and Prost ate Cancers). New York: Nova Science Publishers; 2015. p. 147–74. Cavaliere C, D’Aniello C, Cecere S, Di Napoli M, Berretta M, De Domenico R, et al. Renal cancer: prognostic and predictive biomarkers. In: Islam R, editor. Prognostic and predictive response therapy factors in cancer disease (Colorectal, Breast, Liver, Lung, Gastric, Renal and Prost ate Cancers). New York: Nova Science Publishers; 2015. p. 147–74.
9.
Zurück zum Zitat D’Aniello C, Cavaliere C, Licchetta A, Gnoni A, Pisconti S, Facchini G. Metastatic renal cancer: prognostic and predictive biomarkers. World Cancer Res J. 2014;1:e289. D’Aniello C, Cavaliere C, Licchetta A, Gnoni A, Pisconti S, Facchini G. Metastatic renal cancer: prognostic and predictive biomarkers. World Cancer Res J. 2014;1:e289.
10.
Zurück zum Zitat Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, Michaelson MD, Gorbunova VA, Gore ME, Rusakov IG, Negrier S, Ou YC, Castellano D, Lim HY, Uemura H, Tarazi J, Cella D, Chen C, Rosbrook B, Kim S, Motzer RJ. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet. 2011;378(9807):1931–9. https://doi.org/10.1016/S0140-6736(11)61613-9 (Epub 2011 Nov 4).CrossRefPubMed Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, Michaelson MD, Gorbunova VA, Gore ME, Rusakov IG, Negrier S, Ou YC, Castellano D, Lim HY, Uemura H, Tarazi J, Cella D, Chen C, Rosbrook B, Kim S, Motzer RJ. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet. 2011;378(9807):1931–9. https://​doi.​org/​10.​1016/​S0140-6736(11)61613-9 (Epub 2011 Nov 4).CrossRefPubMed
11.
Zurück zum Zitat Motzer RJ, Escudier B, Tomczak P, Hutson TE, Michaelson MD, Negrier S, Oudard S, Gore ME, Tarazi J, Hariharan S, Chen C, Rosbrook B, Kim S, Rini BI. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol. 2013;14(6):552–62. https://doi.org/10.1016/S1470-2045(13)70093-7 (Epub 2013 Apr 16).CrossRefPubMed Motzer RJ, Escudier B, Tomczak P, Hutson TE, Michaelson MD, Negrier S, Oudard S, Gore ME, Tarazi J, Hariharan S, Chen C, Rosbrook B, Kim S, Rini BI. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol. 2013;14(6):552–62. https://​doi.​org/​10.​1016/​S1470-2045(13)70093-7 (Epub 2013 Apr 16).CrossRefPubMed
13.
14.
Zurück zum Zitat Basso U, Calvani N, De Giorgi U, De Tursi M, De Vivo R, Facchini G, et al. Trattamento di seconda linea del carcinoma renale metastatico me gestione del paziente: focus su axitinib. Future Oncol. 2014;1:5–74. Basso U, Calvani N, De Giorgi U, De Tursi M, De Vivo R, Facchini G, et al. Trattamento di seconda linea del carcinoma renale metastatico me gestione del paziente: focus su axitinib. Future Oncol. 2014;1:5–74.
16.
Zurück zum Zitat Maroto P, Lainez N, Esteban E, Espinosa M, Juan MJ, Etxaniz O, Suarez C, Sepúlveda JM, Rubio G, Arranz Arija JA, Jimenez L, Saez MI, Puente J, Chirivella Gonzalez I, Gallardo E, Jurado JM, Garcia-Donas J, López Brea M, Garrido M, de Soto Prado Y, Otero D. Real life efficacy and safety of axitinib (AXI) in patients with renal cell carcinoma (RCC): results from the Spanish compassionate use program. Ann Oncol. 2014;25(suppl_4):iv280–304.CrossRef Maroto P, Lainez N, Esteban E, Espinosa M, Juan MJ, Etxaniz O, Suarez C, Sepúlveda JM, Rubio G, Arranz Arija JA, Jimenez L, Saez MI, Puente J, Chirivella Gonzalez I, Gallardo E, Jurado JM, Garcia-Donas J, López Brea M, Garrido M, de Soto Prado Y, Otero D. Real life efficacy and safety of axitinib (AXI) in patients with renal cell carcinoma (RCC): results from the Spanish compassionate use program. Ann Oncol. 2014;25(suppl_4):iv280–304.CrossRef
17.
Zurück zum Zitat Hutson T, Jiao X, Wilson T, Cisar LA, MacLean EA. Axitinib treatment among patients with mRCC in a U.S. community oncology setting: a retrospective study of 135 patients. J Clin Oncol. 2016;34(suppl 2S) (abstract 569).CrossRef Hutson T, Jiao X, Wilson T, Cisar LA, MacLean EA. Axitinib treatment among patients with mRCC in a U.S. community oncology setting: a retrospective study of 135 patients. J Clin Oncol. 2016;34(suppl 2S) (abstract 569).CrossRef
19.
Zurück zum Zitat Vogl UM, Ponhold L, Locker GL, Zielinski C, Klingler C, Kramer G, Schmidinger M. Safety and efficacy of axitinib in pretreated patients with metastatic renal cell carcinoma: a single center experience of the Medical University of Vienna, Austria. J Clinical Oncol. 2013;31(15_suppl): e15535–e15535. Vogl UM, Ponhold L, Locker GL, Zielinski C, Klingler C, Kramer G, Schmidinger M. Safety and efficacy of axitinib in pretreated patients with metastatic renal cell carcinoma: a single center experience of the Medical University of Vienna, Austria. J Clinical Oncol. 2013;31(15_suppl): e15535–e15535.
20.
Zurück zum Zitat Signorovitch JE, Kumar Pal S, Reichmann WM, Li N, Liu Z, Perez JR, Vogelzang NJ, Jonasch E. Comparative effectiveness of everolimus (EVE) and axitinib (AXI) for 2nd targeted therapy (TT) of metastatic renal cell carcinoma (mRCC) in the US: A retrospective chart review. J Clin Oncol. 2015; 33:(suppl) (abstract e15612). Signorovitch JE, Kumar Pal S, Reichmann WM, Li N, Liu Z, Perez JR, Vogelzang NJ, Jonasch E. Comparative effectiveness of everolimus (EVE) and axitinib (AXI) for 2nd targeted therapy (TT) of metastatic renal cell carcinoma (mRCC) in the US: A retrospective chart review. J Clin Oncol. 2015; 33:(suppl) (abstract e15612).
24.
Zurück zum Zitat D’Aniello C, Vitale MG, Farnesi A, Calvetti L, Laterza MM, Cavaliere C, Della Pepa C, Conteduca V, Crispo A, De Vita F, Grillone F, Ricevuto E, De Tursi M, De Vivo R, Di Napoli M, Cecere SC, Iovane G, Amore A, Piscitelli R, Quarto G, Pisconti S, Ciliberto G, Maiolino P, Muto P, Perdonà S, Berretta M, Naglieri E, Galli L, Cartenì G, De Giorgi U, Pignata S, Facchini G, Rossetti S. Axitinib after sunitinib in metastatic renal cancer: preliminary results from Italian “Real-World” SAX study. Front Pharmacol. 2016;7:331.PubMedPubMedCentral D’Aniello C, Vitale MG, Farnesi A, Calvetti L, Laterza MM, Cavaliere C, Della Pepa C, Conteduca V, Crispo A, De Vita F, Grillone F, Ricevuto E, De Tursi M, De Vivo R, Di Napoli M, Cecere SC, Iovane G, Amore A, Piscitelli R, Quarto G, Pisconti S, Ciliberto G, Maiolino P, Muto P, Perdonà S, Berretta M, Naglieri E, Galli L, Cartenì G, De Giorgi U, Pignata S, Facchini G, Rossetti S. Axitinib after sunitinib in metastatic renal cancer: preliminary results from Italian “Real-World” SAX study. Front Pharmacol. 2016;7:331.PubMedPubMedCentral
25.
33.
Zurück zum Zitat Hutson TE, Escudier B, Esteban E, Bjarnason GA, Lim HY, Pittman KB, Senico P, Niethammer A, Lu DR, Hariharan S, Motzer RJ. Randomized phase III trial of temsirolimus versus sorafenib as second-line therapy after sunitinib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2014;32(8):760–7.CrossRef Hutson TE, Escudier B, Esteban E, Bjarnason GA, Lim HY, Pittman KB, Senico P, Niethammer A, Lu DR, Hariharan S, Motzer RJ. Randomized phase III trial of temsirolimus versus sorafenib as second-line therapy after sunitinib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2014;32(8):760–7.CrossRef
34.
Zurück zum Zitat Eichelberg C, Vervenne WL, De Santis M, von Weikersthal LF, Goebell PJ, Lerchenmüller C, Zimmermann U, Bos MM, Freier W, Schirrmacher-Memmel S, Staehler M, Pahernik S, Los M, Schenck M, Flörcken A, van Arkel C, Hauswald K, Indorf M, Gottstein D, Michel MS. SWITCH: a randomised, sequential, open-label study to evaluate the efficacy and safety of sorafenib–sunitinib versus sunitinib–sorafenib in the treatment of metastatic renal cell cancer. Eur Urol. 2015;68(5):837–47. https://doi.org/10.1016/j.eururo.2015.04.017.CrossRefPubMed Eichelberg C, Vervenne WL, De Santis M, von Weikersthal LF, Goebell PJ, Lerchenmüller C, Zimmermann U, Bos MM, Freier W, Schirrmacher-Memmel S, Staehler M, Pahernik S, Los M, Schenck M, Flörcken A, van Arkel C, Hauswald K, Indorf M, Gottstein D, Michel MS. SWITCH: a randomised, sequential, open-label study to evaluate the efficacy and safety of sorafenib–sunitinib versus sunitinib–sorafenib in the treatment of metastatic renal cell cancer. Eur Urol. 2015;68(5):837–47. https://​doi.​org/​10.​1016/​j.​eururo.​2015.​04.​017.CrossRefPubMed
35.
Zurück zum Zitat Leung HW, Chan AL, Lin SJ. Indirect comparisons of efficacy and safety between seven newer targeted agents for metastatic renal cell carcinoma: a network meta-analysis of randomised clinical trials. Mol Clin Oncol. 2014;2(5):858–64 (Epub 2014 Jun 23).CrossRef Leung HW, Chan AL, Lin SJ. Indirect comparisons of efficacy and safety between seven newer targeted agents for metastatic renal cell carcinoma: a network meta-analysis of randomised clinical trials. Mol Clin Oncol. 2014;2(5):858–64 (Epub 2014 Jun 23).CrossRef
36.
Zurück zum Zitat Escudier B, Michaelson MD, Motzer RJ, Hutson TE, Clark JI, Lim HY, Porfiri E, Zalewski P, Kannourakis G, Staehler M, Tarazi J, Rosbrook B, Cisar L, Hariharan S, Kim S, Rini BI. Axitinib versus sorafenib in advanced renal cell carcinoma: subanalyses by prior therapy from a randomised phase III trial. Br J Cancer. 2014;110(12):2821–8. https://doi.org/10.1038/bjc.2014.244.CrossRefPubMedPubMedCentral Escudier B, Michaelson MD, Motzer RJ, Hutson TE, Clark JI, Lim HY, Porfiri E, Zalewski P, Kannourakis G, Staehler M, Tarazi J, Rosbrook B, Cisar L, Hariharan S, Kim S, Rini BI. Axitinib versus sorafenib in advanced renal cell carcinoma: subanalyses by prior therapy from a randomised phase III trial. Br J Cancer. 2014;110(12):2821–8. https://​doi.​org/​10.​1038/​bjc.​2014.​244.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Elaidi R, Harbaoui A, Beuselinck B, Eymard JC, Bamias A, De Guillebon E, Porta C, Vano Y, Linassier C, Debruyne PR, Gross-Goupil M, Ravaud A, Aitelhaj M, Marret G, Oudard S. Outcomes from second-line therapy in long-term responders to first-line tyrosine kinase inhibitor in clear-cell metastatic renal cell carcinoma. Ann Oncol. 2015;26(2):378–85. https://doi.org/10.1093/annonc/mdu552.CrossRefPubMed Elaidi R, Harbaoui A, Beuselinck B, Eymard JC, Bamias A, De Guillebon E, Porta C, Vano Y, Linassier C, Debruyne PR, Gross-Goupil M, Ravaud A, Aitelhaj M, Marret G, Oudard S. Outcomes from second-line therapy in long-term responders to first-line tyrosine kinase inhibitor in clear-cell metastatic renal cell carcinoma. Ann Oncol. 2015;26(2):378–85. https://​doi.​org/​10.​1093/​annonc/​mdu552.CrossRefPubMed
41.
Zurück zum Zitat Rini BI, Tomita Y, Melichar B, Ueda T, Grünwald V, Fishman MN, Uemura H, Oya M, Bair AH, Andrews GI, Rosbrook B, Jonasch E. Overall survival analysis from a randomized phase II study of axitinib with or without dose titration in first-line metastatic renal cell carcinoma. Clin Genitourin Cancer. 2016;14(6):499–503. https://doi.org/10.1016/j.clgc.2016.04.005.CrossRefPubMed Rini BI, Tomita Y, Melichar B, Ueda T, Grünwald V, Fishman MN, Uemura H, Oya M, Bair AH, Andrews GI, Rosbrook B, Jonasch E. Overall survival analysis from a randomized phase II study of axitinib with or without dose titration in first-line metastatic renal cell carcinoma. Clin Genitourin Cancer. 2016;14(6):499–503. https://​doi.​org/​10.​1016/​j.​clgc.​2016.​04.​005.CrossRefPubMed
42.
Zurück zum Zitat Rini BI, Quinn DI, Baum M, Wood LS, Tarazi J, Rosbrook B, Arruda LS, Cisar L, Roberts WG, Kim S, Motzer RJ. Hypertension among patients with renal cell carcinoma receiving axitinib or sorafenib: analysis from the randomized phase III AXIS trial. Target Oncol. 2015;10(1):45–53. https://doi.org/10.1007/s11523-014-0307-z (Epub 2014 Mar 5).CrossRefPubMed Rini BI, Quinn DI, Baum M, Wood LS, Tarazi J, Rosbrook B, Arruda LS, Cisar L, Roberts WG, Kim S, Motzer RJ. Hypertension among patients with renal cell carcinoma receiving axitinib or sorafenib: analysis from the randomized phase III AXIS trial. Target Oncol. 2015;10(1):45–53. https://​doi.​org/​10.​1007/​s11523-014-0307-z (Epub 2014 Mar 5).CrossRefPubMed
43.
Zurück zum Zitat Eto M, Uemura H, Tomita Y, Kanayama H, Shinohara N, Kamei Y, Fujii Y, Umeyama Y, Ozono S, Naito S, Akaza H, Japan Axitinib Phase II Study Group. Overall survival and final efficacy and safety results from a Japanese phase II study of axitinib in cytokine-refractory metastatic renal cell carcinoma. Cancer Sci. 2014;105(12):1576–83. https://doi.org/10.1111/cas.12546.CrossRefPubMedPubMedCentral Eto M, Uemura H, Tomita Y, Kanayama H, Shinohara N, Kamei Y, Fujii Y, Umeyama Y, Ozono S, Naito S, Akaza H, Japan Axitinib Phase II Study Group. Overall survival and final efficacy and safety results from a Japanese phase II study of axitinib in cytokine-refractory metastatic renal cell carcinoma. Cancer Sci. 2014;105(12):1576–83. https://​doi.​org/​10.​1111/​cas.​12546.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Lee JL, Kim MK, Park I, Ahn JH, Lee DH, Ryoo HM, Song C, Hong B, Hong JH, Ahn H. Randomized phase II trial of sunitinib four weeks on and two weeks off versus two weeks on and one week off in metastatic clear-cell type REnal cell carcinoma: RESTORE trial. Ann Oncol. 2015;26(11):2300–5. https://doi.org/10.1093/annonc/mdv357.CrossRefPubMed Lee JL, Kim MK, Park I, Ahn JH, Lee DH, Ryoo HM, Song C, Hong B, Hong JH, Ahn H. Randomized phase II trial of sunitinib four weeks on and two weeks off versus two weeks on and one week off in metastatic clear-cell type REnal cell carcinoma: RESTORE trial. Ann Oncol. 2015;26(11):2300–5. https://​doi.​org/​10.​1093/​annonc/​mdv357.CrossRefPubMed
46.
Zurück zum Zitat Bracarda S, Iacovelli R, Boni L, Rizzo M, Derosa L, Rossi M, Galli L, Procopio G, Sisani M, Longo F, Santoni M, Morelli F, Di Lorenzo G, Altavilla A, Porta C, Camerini A, Escudier B, Rainbow Group. Sunitinib administered on 2/1 schedule in patients with metastatic renal cell carcinoma: the RAINBOW analysis. Ann Oncol. 2016;27(2):366. https://doi.org/10.1093/annonc/mdv589.CrossRefPubMed Bracarda S, Iacovelli R, Boni L, Rizzo M, Derosa L, Rossi M, Galli L, Procopio G, Sisani M, Longo F, Santoni M, Morelli F, Di Lorenzo G, Altavilla A, Porta C, Camerini A, Escudier B, Rainbow Group. Sunitinib administered on 2/1 schedule in patients with metastatic renal cell carcinoma: the RAINBOW analysis. Ann Oncol. 2016;27(2):366. https://​doi.​org/​10.​1093/​annonc/​mdv589.CrossRefPubMed
47.
Zurück zum Zitat Choueiri TK, Escudier B, Powles T, Mainwaring PN, Rini BI, Donskov F, Hammers H, Hutson TE, Lee JL, Peltola K, Roth BJ, Bjarnason GA, Géczi L, Keam B, Maroto P, Heng DY, Schmidinger M, Kantoff PW, Borgman-Hagey A, Hessel C, Scheffold C, Schwab GM, Tannir NM, Motzer RJ, METEOR Investigators. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1814–23. https://doi.org/10.1056/nejmoa1510016.CrossRefPubMedPubMedCentral Choueiri TK, Escudier B, Powles T, Mainwaring PN, Rini BI, Donskov F, Hammers H, Hutson TE, Lee JL, Peltola K, Roth BJ, Bjarnason GA, Géczi L, Keam B, Maroto P, Heng DY, Schmidinger M, Kantoff PW, Borgman-Hagey A, Hessel C, Scheffold C, Schwab GM, Tannir NM, Motzer RJ, METEOR Investigators. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1814–23. https://​doi.​org/​10.​1056/​nejmoa1510016.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Choueiri TK, Escudier B, Powles T, Tannir NM, Mainwaring PN, Rini BI, Hammers HJ, Donskov F, Roth BJ, Peltola K, Lee JL, Heng DYC, Schmidinger M, Agarwal N, Sternberg CN, McDermott DF, Aftab DT, Hessel C, Scheffold C, Schwab G, Hutson TE, Pal S, Motzer RJ, METEOR investigators. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2016;17(7):917–27. https://doi.org/10.1016/s1470-2045(16)30107-3.CrossRefPubMed Choueiri TK, Escudier B, Powles T, Tannir NM, Mainwaring PN, Rini BI, Hammers HJ, Donskov F, Roth BJ, Peltola K, Lee JL, Heng DYC, Schmidinger M, Agarwal N, Sternberg CN, McDermott DF, Aftab DT, Hessel C, Scheffold C, Schwab G, Hutson TE, Pal S, Motzer RJ, METEOR investigators. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2016;17(7):917–27. https://​doi.​org/​10.​1016/​s1470-2045(16)30107-3.CrossRefPubMed
49.
Zurück zum Zitat Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, Castellano D, Choueiri TK, Gurney H, Donskov F, Bono P, Wagstaff J, Gauler TC, Ueda T, Tomita Y, Schutz FA, Kollmannsberger C, Larkin J, Ravaud A, Simon JS, Xu LA, Waxman IM, Sharma P, CheckMate 025 Investigators. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13. https://doi.org/10.1056/nejmoa1510665.CrossRefPubMedPubMedCentral Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, Castellano D, Choueiri TK, Gurney H, Donskov F, Bono P, Wagstaff J, Gauler TC, Ueda T, Tomita Y, Schutz FA, Kollmannsberger C, Larkin J, Ravaud A, Simon JS, Xu LA, Waxman IM, Sharma P, CheckMate 025 Investigators. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13. https://​doi.​org/​10.​1056/​nejmoa1510665.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Escudier B, Sharma P, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, Castellano D, Gurney H, Donskov F, Peltola K, Wagstaff J, Gauler TC, Ueda T, Zhao H, Waxman IM, Motzer RJ, CheckMate 025 investigators. CheckMate 025 Randomized Phase 3 Study: Outcomes by key baseline factors and prior therapy for nivolumab versus everolimus in advanced renal cell carcinoma. Eur Urol. 2017. https://doi.org/10.1016/j.eururo.2017.02.010.CrossRefPubMedPubMedCentral Escudier B, Sharma P, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, Castellano D, Gurney H, Donskov F, Peltola K, Wagstaff J, Gauler TC, Ueda T, Zhao H, Waxman IM, Motzer RJ, CheckMate 025 investigators. CheckMate 025 Randomized Phase 3 Study: Outcomes by key baseline factors and prior therapy for nivolumab versus everolimus in advanced renal cell carcinoma. Eur Urol. 2017. https://​doi.​org/​10.​1016/​j.​eururo.​2017.​02.​010.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Stukalin I, Wells JC, Graham J, Yuasa T, Beuselinck B, Kollmansberger C, Ernst DS, Agarwal N, Le T, Donskov F, Hansen AR, Bjarnason GA, Srinivas S, Wood LA, Alva AS, Kanesvaran R, Fu SYF, Davis ID, Choueiri TK, Heng DYC. Real-world outcomes of nivolumab and cabozantinib in metastatic renal cell carcinoma: results from the International Metastatic Renal Cell Carcinoma Database Consortium. Curr Oncol. 2019;26(2):e175–9. https://doi.org/10.3747/co.26.4595.CrossRefPubMedPubMedCentral Stukalin I, Wells JC, Graham J, Yuasa T, Beuselinck B, Kollmansberger C, Ernst DS, Agarwal N, Le T, Donskov F, Hansen AR, Bjarnason GA, Srinivas S, Wood LA, Alva AS, Kanesvaran R, Fu SYF, Davis ID, Choueiri TK, Heng DYC. Real-world outcomes of nivolumab and cabozantinib in metastatic renal cell carcinoma: results from the International Metastatic Renal Cell Carcinoma Database Consortium. Curr Oncol. 2019;26(2):e175–9. https://​doi.​org/​10.​3747/​co.​26.​4595.CrossRefPubMedPubMedCentral
Metadaten
Titel
Second line therapy with axitinib after only prior sunitinib in metastatic renal cell cancer: Italian multicenter real world SAX study final results
verfasst von
Gaetano Facchini
Sabrina Rossetti
Massimiliano Berretta
Carla Cavaliere
Sarah Scagliarini
Maria Giuseppa Vitale
Chiara Ciccarese
Giuseppe Di Lorenzo
Erica Palesandro
Vincenza Conteduca
Umberto Basso
Emanuele Naglieri
Azzurra Farnesi
Michele Aieta
Nicolò Borsellino
Leonardo La Torre
Gelsomina Iovane
Lucia Bonomi
Donatello Gasparro
Enrico Ricevuto
Michele De Tursi
Rocco De Vivo
Giovanni Lo Re
Francesco Grillone
Paolo Marchetti
Ferdinando De Vita
Claudio Scavelli
Claudio Sini
Salvatore Pisconti
Anna Crispo
Vittorio Gebbia
Antonio Maestri
Luca Galli
Ugo De Giorgi
Roberto Iacovelli
Carlo Buonerba
Giacomo Cartenì
Carmine D’Aniello
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2019
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-2047-4

Weitere Artikel der Ausgabe 1/2019

Journal of Translational Medicine 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.