Skip to main content
Erschienen in:

01.06.2019 | Original Article

Selective antagonism of CRF1 receptor by a substituted pyrimidine

verfasst von: Stelios Sakellaris, Minos-Timotheos Matsoukas, Vlasios Karageorgos, Smaragda Poulaki, Bhimanna Kuppast, Andrew Margioris, Maria Venihaki, Hesham Fahmy, George Liapakis

Erschienen in: Hormones | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

The corticotrophin-releasing factor (CRF) and its type 1 receptor (CRF1R) regulate the hypothalamic-pituitary-adrenal axis, as well as other systems, thus playing a crucial role in the maintenance of homeostasis. Non-peptide CRF1R-selective antagonists exert therapeutic effects on experimental animals with abnormal regulation of their homeostatic mechanisms. However, none of them is as yet in clinical use. In an effort to develop novel small non-peptide CRF1R-selective antagonists, we have synthesized a series of substituted pyrimidines described in a previous study. These small molecules bind to CRF1R, with analog 3 having the highest affinity. Characteristic structural features of analog 3 are a N,N-bis(methoxyethyl)amino group at position 6 and a methyl in the alkythiol group at position 5. Based on the binding profile of analog 3, we selected it in the present study for further pharmacological characterization. The results of this study suggest that analog 3 is a potent CRF1R-selective antagonist, blocking the ability of sauvagine, a CRF-related peptide, to stimulate cAMP accumulation in HEK 293 cells via activation of CRF1R, but not via CRF2R. Moreover, analog 3 blocked sauvagine to stimulate the proliferation of macrophages, further supporting its antagonistic properties. We have also constructed molecular models of CRF1R to examine the interactions of this receptor with analog 3 and antalarmin, a prototype CRF1R-selective non-peptide antagonist, which lacks the characteristic structural features of analog 3. Our data facilitate the design of novel non-peptide CRF1R antagonists for clinical use.
Literatur
1.
Zurück zum Zitat Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213(4514):1394–1397CrossRefPubMed Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213(4514):1394–1397CrossRefPubMed
2.
Zurück zum Zitat Owens MJ, Nemeroff CB (1991) Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev 43(4):425–473PubMed Owens MJ, Nemeroff CB (1991) Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev 43(4):425–473PubMed
3.
Zurück zum Zitat Ramot A, Jiang Z, Tian JB et al (2017) Hypothalamic CRFR1 is essential for HPA axis regulation following chronic stress. Nat Neurosci 20(3):385–388CrossRefPubMed Ramot A, Jiang Z, Tian JB et al (2017) Hypothalamic CRFR1 is essential for HPA axis regulation following chronic stress. Nat Neurosci 20(3):385–388CrossRefPubMed
4.
Zurück zum Zitat Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5(7):374–381CrossRefPubMed Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5(7):374–381CrossRefPubMed
5.
Zurück zum Zitat Chrousos GP (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 332(20):1351–1362CrossRefPubMed Chrousos GP (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 332(20):1351–1362CrossRefPubMed
6.
Zurück zum Zitat Martinez V, Tache Y (2006) CRF1 receptors as a therapeutic target for irritable bowel syndrome. Curr Pharm Des 12(31):4071–4088CrossRefPubMed Martinez V, Tache Y (2006) CRF1 receptors as a therapeutic target for irritable bowel syndrome. Curr Pharm Des 12(31):4071–4088CrossRefPubMed
7.
Zurück zum Zitat Venihaki M, Majzoub J (2002) Lessons from CRH knockout mice. Neuropeptides 36(2–3):96–102CrossRefPubMed Venihaki M, Majzoub J (2002) Lessons from CRH knockout mice. Neuropeptides 36(2–3):96–102CrossRefPubMed
9.
Zurück zum Zitat Dermitzaki E, Liapakis G, Androulidaki A et al (2014) Corticotrophin-releasing factor (CRF) and the urocortins are potent regulators of the inflammatory phenotype of human and mouse white adipocytes and the differentiation of mouse 3T3L1 pre-adipocytes. PLoS One 9(5):e97060CrossRefPubMedPubMedCentral Dermitzaki E, Liapakis G, Androulidaki A et al (2014) Corticotrophin-releasing factor (CRF) and the urocortins are potent regulators of the inflammatory phenotype of human and mouse white adipocytes and the differentiation of mouse 3T3L1 pre-adipocytes. PLoS One 9(5):e97060CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Karalis K, Sano H, Redwine J et al (1991) Autocrine or paracrine inflammatory actions of corticotropin-releasing hormone in vivo. Science 254(5030):421–423CrossRefPubMed Karalis K, Sano H, Redwine J et al (1991) Autocrine or paracrine inflammatory actions of corticotropin-releasing hormone in vivo. Science 254(5030):421–423CrossRefPubMed
11.
Zurück zum Zitat Henckens MJ, Deussing JM, Chen A (2016) Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat Rev Neurosci 17(10):636–651CrossRefPubMed Henckens MJ, Deussing JM, Chen A (2016) Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat Rev Neurosci 17(10):636–651CrossRefPubMed
12.
Zurück zum Zitat Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160(1):1–12CrossRefPubMed Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160(1):1–12CrossRefPubMed
13.
Zurück zum Zitat Reul JM, Holsboer F (2002) Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2(1):23–33CrossRefPubMed Reul JM, Holsboer F (2002) Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2(1):23–33CrossRefPubMed
14.
Zurück zum Zitat Nielsen DM (2006) Corticotropin-releasing factor type-1 receptor antagonists: the next class of antidepressants? Life Sci 78(9):909–919CrossRefPubMed Nielsen DM (2006) Corticotropin-releasing factor type-1 receptor antagonists: the next class of antidepressants? Life Sci 78(9):909–919CrossRefPubMed
15.
Zurück zum Zitat Rivier JE, Rivier CL (2014) Corticotropin-releasing factor peptide antagonists: design, characterization and potential clinical relevance. Front Neuroendocrinol 35(2):161–170CrossRefPubMed Rivier JE, Rivier CL (2014) Corticotropin-releasing factor peptide antagonists: design, characterization and potential clinical relevance. Front Neuroendocrinol 35(2):161–170CrossRefPubMed
16.
Zurück zum Zitat Grammatopoulos DK, Chrousos GP (2002) Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol Metab 13(10):436–444CrossRefPubMed Grammatopoulos DK, Chrousos GP (2002) Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol Metab 13(10):436–444CrossRefPubMed
17.
18.
Zurück zum Zitat Spierling SR, Zorrilla EP (2017) Don't stress about CRF: assessing the translational failures of CRF1antagonists. Psychopharmacology 234(9–10):1467–1481CrossRefPubMedPubMedCentral Spierling SR, Zorrilla EP (2017) Don't stress about CRF: assessing the translational failures of CRF1antagonists. Psychopharmacology 234(9–10):1467–1481CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Muller MB, Zimmermann S, Sillaber I et al (2003) Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat Neurosci 6(10):1100–1107CrossRefPubMed Muller MB, Zimmermann S, Sillaber I et al (2003) Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat Neurosci 6(10):1100–1107CrossRefPubMed
20.
Zurück zum Zitat Timpl P, Spanagel R, Sillaber I et al (1998) Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 19(2):162–166CrossRefPubMed Timpl P, Spanagel R, Sillaber I et al (1998) Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 19(2):162–166CrossRefPubMed
21.
22.
Zurück zum Zitat Fahmy H, Spyridaki K, Kuppast B, Liapakis G (2012) The "homeostasis hormone" and its CRF(1) receptor. From structure to function. Hormones (Athens) 11(3):254–271CrossRef Fahmy H, Spyridaki K, Kuppast B, Liapakis G (2012) The "homeostasis hormone" and its CRF(1) receptor. From structure to function. Hormones (Athens) 11(3):254–271CrossRef
23.
Zurück zum Zitat Stengel A, Goebel M, Million M et al (2009) Corticotropin-releasing factor-overexpressing mice exhibit reduced neuronal activation in the arcuate nucleus and food intake in response to fasting. Endocrinology 150(1):153–160CrossRefPubMed Stengel A, Goebel M, Million M et al (2009) Corticotropin-releasing factor-overexpressing mice exhibit reduced neuronal activation in the arcuate nucleus and food intake in response to fasting. Endocrinology 150(1):153–160CrossRefPubMed
24.
Zurück zum Zitat Liapakis G, Venihaki M, Margioris A, Grigoriadis D, Gkountelias K (2011) Members of CRF family and their receptors: from past to future. Curr Med Chem 18(17):2583–2600CrossRefPubMed Liapakis G, Venihaki M, Margioris A, Grigoriadis D, Gkountelias K (2011) Members of CRF family and their receptors: from past to future. Curr Med Chem 18(17):2583–2600CrossRefPubMed
25.
Zurück zum Zitat Hillhouse EW, Grammatopoulos DK (2006) The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev 27(3):260–286CrossRefPubMed Hillhouse EW, Grammatopoulos DK (2006) The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev 27(3):260–286CrossRefPubMed
26.
Zurück zum Zitat Gkountelias K, Papadokostaki M, Javitch JA, Liapakis G (2010) Exploring the binding site crevice of a family B G protein-coupled receptor, the type 1 corticotropin releasing factor receptor. Mol Pharmacol 78(4):785–793CrossRefPubMed Gkountelias K, Papadokostaki M, Javitch JA, Liapakis G (2010) Exploring the binding site crevice of a family B G protein-coupled receptor, the type 1 corticotropin releasing factor receptor. Mol Pharmacol 78(4):785–793CrossRefPubMed
27.
Zurück zum Zitat Grace CR, Perrin MH, DiGruccio MR et al (2004) NMR structure and peptide hormone binding site of the first extracellular domain of a type B1 G protein-coupled receptor. Proc Natl Acad Sci U S A 101(35):12836–12841CrossRefPubMedPubMedCentral Grace CR, Perrin MH, DiGruccio MR et al (2004) NMR structure and peptide hormone binding site of the first extracellular domain of a type B1 G protein-coupled receptor. Proc Natl Acad Sci U S A 101(35):12836–12841CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Pioszak AA, Parker NR, Suino-Powell K, Xu HE (2008) Molecular recognition of corticotropin-releasing factor by its G-protein-coupled receptor CRFR1. J Biol Chem 283(47):32900–32912CrossRefPubMedPubMedCentral Pioszak AA, Parker NR, Suino-Powell K, Xu HE (2008) Molecular recognition of corticotropin-releasing factor by its G-protein-coupled receptor CRFR1. J Biol Chem 283(47):32900–32912CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Hoare SR, Sullivan SK, Ling N, Crowe PD, Grigoriadis DE (2003) Mechanism of corticotropin-releasing factor type I receptor regulation by nonpeptide antagonists. Mol Pharmacol 63(3):751–765CrossRefPubMed Hoare SR, Sullivan SK, Ling N, Crowe PD, Grigoriadis DE (2003) Mechanism of corticotropin-releasing factor type I receptor regulation by nonpeptide antagonists. Mol Pharmacol 63(3):751–765CrossRefPubMed
30.
Zurück zum Zitat Kuppast B, Spyridaki K, Liapakis G, Fahmy H (2014) Synthesis of substituted pyrimidines as corticotropin releasing factor (CRF) receptor ligands. Eur J Med Chem 78:1–9CrossRefPubMed Kuppast B, Spyridaki K, Liapakis G, Fahmy H (2014) Synthesis of substituted pyrimidines as corticotropin releasing factor (CRF) receptor ligands. Eur J Med Chem 78:1–9CrossRefPubMed
31.
Zurück zum Zitat Venihaki M, Gravanis A, Margioris AN (1996) Kappa opioids exert a strong antiproliferative effect on PC12 rat pheochromocytoma cells. Peptides 17(3):413–419CrossRefPubMed Venihaki M, Gravanis A, Margioris AN (1996) Kappa opioids exert a strong antiproliferative effect on PC12 rat pheochromocytoma cells. Peptides 17(3):413–419CrossRefPubMed
32.
Zurück zum Zitat Hollenstein K, Kean J, Bortolato A et al (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499(7459):438–443CrossRefPubMed Hollenstein K, Kean J, Bortolato A et al (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499(7459):438–443CrossRefPubMed
33.
Zurück zum Zitat Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461PubMedPubMedCentral Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461PubMedPubMedCentral
34.
Zurück zum Zitat Wootten D, Simms J, Miller LJ, Christopoulos A, Sexton PM (2013) Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc Natl Acad Sci U S A 110(13):5211–5216CrossRefPubMedPubMedCentral Wootten D, Simms J, Miller LJ, Christopoulos A, Sexton PM (2013) Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc Natl Acad Sci U S A 110(13):5211–5216CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Spyridaki K, Matsoukas MT, Cordomi A et al (2014) Structural-functional analysis of the third transmembrane domain of the Corticotropin-releasing factor type 1 receptor: Role in activation and allosteric antagonism. J Biol Chem 289(27):18966–18977CrossRefPubMedPubMedCentral Spyridaki K, Matsoukas MT, Cordomi A et al (2014) Structural-functional analysis of the third transmembrane domain of the Corticotropin-releasing factor type 1 receptor: Role in activation and allosteric antagonism. J Biol Chem 289(27):18966–18977CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Cordomi A, Liapakis G, Matsoukas MT (2017) Understanding Corticotropin releasing factor receptor (CRFR) activation using structural models. Curr Mol Pharmacol 10(4):325–333CrossRefPubMed Cordomi A, Liapakis G, Matsoukas MT (2017) Understanding Corticotropin releasing factor receptor (CRFR) activation using structural models. Curr Mol Pharmacol 10(4):325–333CrossRefPubMed
37.
Zurück zum Zitat McGillis JP, Park A, Rubin-Fletter P et al (1989) Stimulation of rat B-lymphocyte proliferation by corticotropin- releasing factor. J.Neurosci.Res. 23(3):346–352CrossRefPubMed McGillis JP, Park A, Rubin-Fletter P et al (1989) Stimulation of rat B-lymphocyte proliferation by corticotropin- releasing factor. J.Neurosci.Res. 23(3):346–352CrossRefPubMed
38.
Zurück zum Zitat Singh VK (1989) Stimulatory effect of corticotropin-releasing neurohormone on human lymphocyte proliferation and interleukin-2 receptor expression. J Neuroimmunol 23:257–262CrossRefPubMed Singh VK (1989) Stimulatory effect of corticotropin-releasing neurohormone on human lymphocyte proliferation and interleukin-2 receptor expression. J Neuroimmunol 23:257–262CrossRefPubMed
39.
Zurück zum Zitat Jessop DS, Harbuz MS, Snelson CL, Dayan CM, Lightman SL (1997) An antisense oligodeoxynucleotide complementary to corticotropin- releasing hormone mRNA inhibits rat splenocyte proliferation in vitro. J.Neuroimmunol. 75(1–2):135–140CrossRefPubMed Jessop DS, Harbuz MS, Snelson CL, Dayan CM, Lightman SL (1997) An antisense oligodeoxynucleotide complementary to corticotropin- releasing hormone mRNA inhibits rat splenocyte proliferation in vitro. J.Neuroimmunol. 75(1–2):135–140CrossRefPubMed
Metadaten
Titel
Selective antagonism of CRF1 receptor by a substituted pyrimidine
verfasst von
Stelios Sakellaris
Minos-Timotheos Matsoukas
Vlasios Karageorgos
Smaragda Poulaki
Bhimanna Kuppast
Andrew Margioris
Maria Venihaki
Hesham Fahmy
George Liapakis
Publikationsdatum
01.06.2019
Verlag
Springer International Publishing
Erschienen in
Hormones / Ausgabe 2/2019
Print ISSN: 1109-3099
Elektronische ISSN: 2520-8721
DOI
https://doi.org/10.1007/s42000-019-00105-9

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Innere Medizin

Verbände und Cremes gegen Dekubitus: „Wir wissen nicht, was sie bringen!“

Die Datenlage zur Wirksamkeit von Verbänden oder topischen Mitteln zur Prävention von Druckgeschwüren sei schlecht, so die Verfasser einer aktuellen Cochrane-Studie. Letztlich bleibe es unsicher, ob solche Maßnahmen den Betroffenen nutzen oder schaden.

Schützt das tägliche Glas Milch vor Darmkrebs?

Die Milch machts – sie bietet Frauen nach Daten einer großen Ernährungsanalyse den besten Darmkrebsschutz aller Lebensmittel, was am hohen Kalziumgehalt liegen dürfte. Am anderen Ende des Spektrums steht der Alkoholkonsum: Das Glas Wein am Abend ist eher ungünstig.

Vorsicht mit Glukokortikoiden bei Glomerulopathie

Auch niedrig dosierte Glukokortikoide zur Behandlung einer primären Glomerulopathie lassen offenbar die Infektionsgefahr steigen. In einer US-Studie hing das Risiko vor allem mit der kombinierten Anwendung von Immunsuppressiva zusammen.

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.