Skip to main content
Erschienen in: Journal of Medical Systems 3/2017

01.03.2017 | Systems-Level Quality Improvement

Selective Search and Intensity Context Based Retina Vessel Image Segmentation

verfasst von: Zhaohui Tang, Jin Zhang, Weihua Gui

Erschienen in: Journal of Medical Systems | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

In the framework of computer-aided diagnosis of eye disease, a new contextual image feature named influence degree of average intensity is proposed for retinal vessel image segmentation. This new feature evaluates the influence degree of current detected pixel decreasing the average intensity of the local row where that pixel located. Firstly, Hessian matrix is introduced to detect candidate regions, for the reason of accelerating segmentation. Then, the influence degree of average intensity of each pixel is extracted. Next, contextual feature vector for each pixel is constructed by concatenating the 8 feature neighbors. Finally, a classifier is built to classify each pixel into vessel or non-vessel based on its contextual feature. The effectiveness of the proposed method is demonstrated through receiver operating characteristic analysis on the benchmarked databases of DRIVE and STARE. Experiment results show that our method is comparable with the state-of-the-art methods. For example, the average accuracy, sensitivity, specificity achieved on the database DRIVE and STARE are 0.9611, 0.8174, 0.9747 and 0.9547, 0.7768, 0.9751, respectively.
Literatur
1.
Zurück zum Zitat Bhuiyan, A., Nath, B., Ramamohanarao, K., Kawasaki, R., and Wong, T.Y., Automated analysis of retinal vascular tortuosity on color retinal images. J. Med. Syst. 36(2):689–697, 2012.CrossRefPubMed Bhuiyan, A., Nath, B., Ramamohanarao, K., Kawasaki, R., and Wong, T.Y., Automated analysis of retinal vascular tortuosity on color retinal images. J. Med. Syst. 36(2):689–697, 2012.CrossRefPubMed
2.
Zurück zum Zitat Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., et al., An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9):2538–2548, 2012.CrossRefPubMed Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., et al., An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9):2538–2548, 2012.CrossRefPubMed
3.
Zurück zum Zitat Ganjee, R., Azmi, R., and Gholizadeh, B., An Improved Retinal Vessel Segmentation Method Based on High Level Features for Pathological Images. J. Med. Syst. 38(9):1–9, 2014.CrossRef Ganjee, R., Azmi, R., and Gholizadeh, B., An Improved Retinal Vessel Segmentation Method Based on High Level Features for Pathological Images. J. Med. Syst. 38(9):1–9, 2014.CrossRef
4.
Zurück zum Zitat Rahebi, J., and Hardalaç, F., Retinal Blood Vessel Segmentation with Neural Network by Using Gray-Level Co-Occurrence Matrix-Based Features. J. Med. Syst. 38(8):1–12, 2014.CrossRef Rahebi, J., and Hardalaç, F., Retinal Blood Vessel Segmentation with Neural Network by Using Gray-Level Co-Occurrence Matrix-Based Features. J. Med. Syst. 38(8):1–12, 2014.CrossRef
5.
Zurück zum Zitat Waheed, A., Akram, M.U., Khalid, S., Waheed, Z., Khan, M.A., and Shaukat, A., Hybrid Features and Mediods Classification based Robust Segmentation of Blood Vessels. J. Med. Syst. 39(10):1–14, 2015.CrossRef Waheed, A., Akram, M.U., Khalid, S., Waheed, Z., Khan, M.A., and Shaukat, A., Hybrid Features and Mediods Classification based Robust Segmentation of Blood Vessels. J. Med. Syst. 39(10):1–14, 2015.CrossRef
6.
Zurück zum Zitat Akram, U.M., and Khan, S.A., Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy. J. Med. Syst. 36(5):3151–3162, 2012.CrossRefPubMed Akram, U.M., and Khan, S.A., Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy. J. Med. Syst. 36(5):3151–3162, 2012.CrossRefPubMed
7.
Zurück zum Zitat Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., et al., Blood vessel segmentation methodologies in retinal images--a survey. Comput. Methods Prog. Biomed. 108(1):407–433, 2012.CrossRef Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., et al., Blood vessel segmentation methodologies in retinal images--a survey. Comput. Methods Prog. Biomed. 108(1):407–433, 2012.CrossRef
8.
Zurück zum Zitat Zana, F., and Klein, J.-C., Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10(7):1010–1019, 2001.CrossRefPubMed Zana, F., and Klein, J.-C., Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10(7):1010–1019, 2001.CrossRefPubMed
9.
Zurück zum Zitat Poon, K., Hamarneh, G., Abugharbieh, R., Live-vessel: extending livewire for simultaneous extraction of optimal medial and boundary paths in vascular images. Medical Image Computing and Computer Assisted Intervention 444–51, 2007. Poon, K., Hamarneh, G., Abugharbieh, R., Live-vessel: extending livewire for simultaneous extraction of optimal medial and boundary paths in vascular images. Medical Image Computing and Computer Assisted Intervention 444–51, 2007.
10.
Zurück zum Zitat Wang, L., Kallem, V., Bansal, M., Eledath, J., Sawhney, H., Karp, K., et al., Interactive retinal vessel extraction by integrating vessel tracing and graph search. Medical Image Computing and Computer Assisted Intervention Springer. 567–74, 2013. Wang, L., Kallem, V., Bansal, M., Eledath, J., Sawhney, H., Karp, K., et al., Interactive retinal vessel extraction by integrating vessel tracing and graph search. Medical Image Computing and Computer Assisted Intervention Springer. 567–74, 2013.
11.
Zurück zum Zitat Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., and van Ginneken, B., Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging. 23(4):501–509, 2004.CrossRefPubMed Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., and van Ginneken, B., Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging. 23(4):501–509, 2004.CrossRefPubMed
12.
Zurück zum Zitat Ricci, E., and Perfetti, R., Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging. 26(10):1357–1365, 2007.CrossRefPubMed Ricci, E., and Perfetti, R., Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging. 26(10):1357–1365, 2007.CrossRefPubMed
13.
Zurück zum Zitat Welikala, R., Dehmeshki, J., Hoppe, A., Tah, V., Mann, S., Williamson, T.H., et al., Automated detection of proliferative diabetic retinopathy using a modified line operator and dual classification. Comput. Methods Prog. Biomed. 114(3):247–261, 2014.CrossRef Welikala, R., Dehmeshki, J., Hoppe, A., Tah, V., Mann, S., Williamson, T.H., et al., Automated detection of proliferative diabetic retinopathy using a modified line operator and dual classification. Comput. Methods Prog. Biomed. 114(3):247–261, 2014.CrossRef
14.
Zurück zum Zitat Lupascu, C.A., Tegolo, D., and Trucco, E., FABC: retinal vessel segmentation using AdaBoost. IEEE Trans. Inf. Technol. Biomed. 14(5):1267–1274, 2010.CrossRefPubMed Lupascu, C.A., Tegolo, D., and Trucco, E., FABC: retinal vessel segmentation using AdaBoost. IEEE Trans. Inf. Technol. Biomed. 14(5):1267–1274, 2010.CrossRefPubMed
15.
Zurück zum Zitat Marín, D., Aquino, A., Gegúndez-Arias, M.E., and Bravo, J.M., A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging. 30(1):146–158, 2011.CrossRefPubMed Marín, D., Aquino, A., Gegúndez-Arias, M.E., and Bravo, J.M., A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging. 30(1):146–158, 2011.CrossRefPubMed
16.
Zurück zum Zitat You, X., Peng, Q., and Yuan, Y., Cheung Y-m, Lei J, Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn. 44(10–11):2314–2324, 2011.CrossRef You, X., Peng, Q., and Yuan, Y., Cheung Y-m, Lei J, Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn. 44(10–11):2314–2324, 2011.CrossRef
17.
Zurück zum Zitat Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., et al., Adaptive histogram equalization and its variations. Computer Vision Graphics & Image Processing. 39(3):355–368, 1987.CrossRef Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., et al., Adaptive histogram equalization and its variations. Computer Vision Graphics & Image Processing. 39(3):355–368, 1987.CrossRef
18.
Zurück zum Zitat Van de Sande, K.E., Uijlings, J.R., Gevers, T., and Smeulders, A.W., Segmentation as selective search for object recognition. IEEE International Conference on Computer Vision (ICCV) IEEE. 1879–86, 2011. Van de Sande, K.E., Uijlings, J.R., Gevers, T., and Smeulders, A.W., Segmentation as selective search for object recognition. IEEE International Conference on Computer Vision (ICCV) IEEE. 1879–86, 2011.
19.
Zurück zum Zitat Wang, X., Yang, M., Zhu, S., and Lin, Y., Regionlets for generic object detection. IEEE Trans. Pattern Anal. Mach. Intell. 17–24, 2014. Wang, X., Yang, M., Zhu, S., and Lin, Y., Regionlets for generic object detection. IEEE Trans. Pattern Anal. Mach. Intell. 17–24, 2014.
20.
Zurück zum Zitat Hoover, A., Kouznetsova, V., and Goldbaum, M., Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging. 19(3):203–210, 2000.CrossRefPubMed Hoover, A., Kouznetsova, V., and Goldbaum, M., Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging. 19(3):203–210, 2000.CrossRefPubMed
21.
Zurück zum Zitat Al-Diri, B., Hunter, A., and Steel, D., An active contour model for segmenting and measuring retinal vessels. IEEE Trans. Med. Imaging. 28(9):1488–1497, 2009.CrossRefPubMed Al-Diri, B., Hunter, A., and Steel, D., An active contour model for segmenting and measuring retinal vessels. IEEE Trans. Med. Imaging. 28(9):1488–1497, 2009.CrossRefPubMed
22.
Zurück zum Zitat Zhao, Y., Rada, L., Chen, K., Harding, S., Zheng, Y., Automated Vessel Segmentation Using Infinite Perimeter Active Contour Model with Hybrid Region Information with Application to Retina Images. IEEE Trans. Med. Imaging. 2015. Zhao, Y., Rada, L., Chen, K., Harding, S., Zheng, Y., Automated Vessel Segmentation Using Infinite Perimeter Active Contour Model with Hybrid Region Information with Application to Retina Images. IEEE Trans. Med. Imaging. 2015.
23.
Zurück zum Zitat Melinscak M, Prentasic P, Loncaric S, Retinal Vessel Segmentation Using Deep Neural Networks. Int. Conf. Comput. Vis. Theory Appl. 2015. Melinscak M, Prentasic P, Loncaric S, Retinal Vessel Segmentation Using Deep Neural Networks. Int. Conf. Comput. Vis. Theory Appl. 2015.
24.
Zurück zum Zitat Hecht-Nielsen, R., Theory of the backpropagation neural network. Neural Netw. 1(1):65–93, 1989. Hecht-Nielsen, R., Theory of the backpropagation neural network. Neural Netw. 1(1):65–93, 1989.
25.
Zurück zum Zitat Schapire, R.E., and Freund, Y., A Decision-Theoritic Generalization of on-line Learning and an Application to Boosting. J. Comput. Syst. Sci. 55(1):119–39(21), 1997.CrossRef Schapire, R.E., and Freund, Y., A Decision-Theoritic Generalization of on-line Learning and an Application to Boosting. J. Comput. Syst. Sci. 55(1):119–39(21), 1997.CrossRef
26.
Zurück zum Zitat Hastie, T., and Tibshirani, R., Discriminant Adaptive Nearest Neighbor Classification. IEEE Transactions on Pattern Analysis & Machine Intelligence. 18(6):607–616, 1996.CrossRef Hastie, T., and Tibshirani, R., Discriminant Adaptive Nearest Neighbor Classification. IEEE Transactions on Pattern Analysis & Machine Intelligence. 18(6):607–616, 1996.CrossRef
27.
Zurück zum Zitat Cortes, C., and Vapnik, V., Support-Vector Networks. Mach. Learn. 20(3):273–297, 1995. Cortes, C., and Vapnik, V., Support-Vector Networks. Mach. Learn. 20(3):273–297, 1995.
28.
Zurück zum Zitat Soares, J.V., Leandro, J.J., Cesar, R.M., Jelinek, H.F., and Cree, M.J., Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging. 25(9):1214–1222, 2006.CrossRefPubMed Soares, J.V., Leandro, J.J., Cesar, R.M., Jelinek, H.F., and Cree, M.J., Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging. 25(9):1214–1222, 2006.CrossRefPubMed
29.
Zurück zum Zitat Azzopardi, G., Strisciuglio, N., Vento, M., and Petkov, N., Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 19(1):46–57, 2015.CrossRefPubMed Azzopardi, G., Strisciuglio, N., Vento, M., and Petkov, N., Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 19(1):46–57, 2015.CrossRefPubMed
30.
Zurück zum Zitat Bankhead, P., Scholfield, C.N., McGeown, J.G., and Curtis, T.M., Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS One. 7(3):e32435, 2012.CrossRefPubMedPubMedCentral Bankhead, P., Scholfield, C.N., McGeown, J.G., and Curtis, T.M., Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS One. 7(3):e32435, 2012.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Imani, E., Javidi, M., and Pourreza, H.-R., Improvement of retinal blood vessel detection using morphological component analysis. Comput. Methods Prog. Biomed. 118(3):263–279, 2015.CrossRef Imani, E., Javidi, M., and Pourreza, H.-R., Improvement of retinal blood vessel detection using morphological component analysis. Comput. Methods Prog. Biomed. 118(3):263–279, 2015.CrossRef
Metadaten
Titel
Selective Search and Intensity Context Based Retina Vessel Image Segmentation
verfasst von
Zhaohui Tang
Jin Zhang
Weihua Gui
Publikationsdatum
01.03.2017
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 3/2017
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-017-0696-5

Weitere Artikel der Ausgabe 3/2017

Journal of Medical Systems 3/2017 Zur Ausgabe

Transactional Processing Systems

Privacy-Preserving Integration of Medical Data