Skip to main content
Erschienen in: Brain Topography 2/2018

14.08.2017 | Original Paper

Separating the Idea from the Action: A sLORETA Study

verfasst von: Martin Rakusa, Pierpaolo Busan, Piero Paolo Battaglini, Janez Zidar

Erschienen in: Brain Topography | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Simple imaginary movements activate similar cortical and subcortical areas to actual movements, chiefly in the sensory-motor network. However, only a few studies also examined the imagery of more skilful movements such as reaching. Ten volunteers performed reaching movements or imagined the same movements. EEG was simultaneously recorded and analysed with sLORETA, which compared the preparation for actual and imagined reaching with respect to their baseline and between tasks. Major differences between them were found at three time intervals after target presentation, always in favour of the actual reaching condition. The first one was from 160 to 220 msec in the frontal and parietal regions. The second difference was evident from 220 to 320 msec in the premotor cortex. The third difference was evident from 320 msec, mainly in the perirolandic region. Also, the anterior and posterior cingulate cortices were widely involved, in both tasks. We suggest the existence of two separate systems which may work together during actual reaching programming. The first one involves structures such as the premotor cortex, supplementary motor area and primary motor cortex, together with the parietal and occipital cortex. This system may integrate extrinsic target coordinates with proprioceptive information from the reaching arm and pre-stored programs in the associative motor cortex. It is activated strongly and involves more cortical areas in actual than imagined reaching. The second system, common to both tasks, involves anterior and posterior cingulate cortices, with the possible role of contributing awareness and focusing the various components of the process.
Literatur
Zurück zum Zitat Calautti C, Jones PS, Naccarato M et al (2007) The relationship between motor deficit and hemisphere activation balance after stroke: a 3 T fMRI study. Neuroimage 34:322–331CrossRefPubMed Calautti C, Jones PS, Naccarato M et al (2007) The relationship between motor deficit and hemisphere activation balance after stroke: a 3 T fMRI study. Neuroimage 34:322–331CrossRefPubMed
Zurück zum Zitat Cramer SC, Lastra L, Lacourse MG, Cohen MJ (2005) Brain motor system function after chronic, complete spinal cord injury. Brain 128:2941–2950CrossRefPubMed Cramer SC, Lastra L, Lacourse MG, Cohen MJ (2005) Brain motor system function after chronic, complete spinal cord injury. Brain 128:2941–2950CrossRefPubMed
Zurück zum Zitat Eaves DL, Riach M, Holmes PS, Wright DJ (2016) Motor imagery during action observation: a brief review of evidence, theory and future research opportunities. Front Neurosci 10:514CrossRefPubMedPubMedCentral Eaves DL, Riach M, Holmes PS, Wright DJ (2016) Motor imagery during action observation: a brief review of evidence, theory and future research opportunities. Front Neurosci 10:514CrossRefPubMedPubMedCentral
Zurück zum Zitat Fernandez-Ruiz J, Goltz HC, DeSouza JFX et al (2007) Human parietal “reach region” primarily encodes intrinsic visual direction, not extrinsic movement direction, in a visual motor dissociation task. Cereb Cortex 17:2283–2292. doi: 10.1093/cercor/bhl137 CrossRefPubMed Fernandez-Ruiz J, Goltz HC, DeSouza JFX et al (2007) Human parietal “reach region” primarily encodes intrinsic visual direction, not extrinsic movement direction, in a visual motor dissociation task. Cereb Cortex 17:2283–2292. doi: 10.​1093/​cercor/​bhl137 CrossRefPubMed
Zurück zum Zitat Filimon F, Nelson JD, Hagler DJ, Sereno MI (2007) Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. Neuroimage 37:1315–1328CrossRefPubMedPubMedCentral Filimon F, Nelson JD, Hagler DJ, Sereno MI (2007) Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. Neuroimage 37:1315–1328CrossRefPubMedPubMedCentral
Zurück zum Zitat Ibáñez J, Monge-Pereira E, Molina-Rueda F et al (2017) Low latency estimation of motor intentions to assist reaching movements along multiple sessions in chronic stroke patients: a feasibility study. Front Neurosci 11:126PubMedPubMedCentral Ibáñez J, Monge-Pereira E, Molina-Rueda F et al (2017) Low latency estimation of motor intentions to assist reaching movements along multiple sessions in chronic stroke patients: a feasibility study. Front Neurosci 11:126PubMedPubMedCentral
Zurück zum Zitat Isomura Y, Takada M (2004) Neural mechanisms of versatile functions in primate anterior cingulate cortex. Rev Neurosci 15:279–291CrossRefPubMed Isomura Y, Takada M (2004) Neural mechanisms of versatile functions in primate anterior cingulate cortex. Rev Neurosci 15:279–291CrossRefPubMed
Zurück zum Zitat Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14:S103–S109CrossRef Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14:S103–S109CrossRef
Zurück zum Zitat Kertzman C, Schwarz U, Zeffiro T, Hallett M (1997) The role of posterior parietal cortex in visually guided reaching movements in humans. Exp Brain Res 114:170–183CrossRefPubMed Kertzman C, Schwarz U, Zeffiro T, Hallett M (1997) The role of posterior parietal cortex in visually guided reaching movements in humans. Exp Brain Res 114:170–183CrossRefPubMed
Zurück zum Zitat Leiguarda R (2005) Apraxias as traditionally defined. In: Freund H-J, Jeannerod M, Hallett M (eds.) Higher order motor disorders: from neuroanatomy and neurobiology to clinical neurology. Oxford University Press, Oxford, pp 303–339 Leiguarda R (2005) Apraxias as traditionally defined. In: Freund H-J, Jeannerod M, Hallett M (eds.) Higher order motor disorders: from neuroanatomy and neurobiology to clinical neurology. Oxford University Press, Oxford, pp 303–339
Zurück zum Zitat López-Larraz E, Antelis JM, Montesano L et al. (2012) Continuous decoding of motor attempt and motor imagery from EEG activity in spinal cord injury patients. Conf Proc IEEE Eng Med Biol Soc 2012:1798–1801. doi: 10.1109/EMBC.2012.6346299 PubMed López-Larraz E, Antelis JM, Montesano L et al. (2012) Continuous decoding of motor attempt and motor imagery from EEG activity in spinal cord injury patients. Conf Proc IEEE Eng Med Biol Soc 2012:1798–1801. doi: 10.​1109/​EMBC.​2012.​6346299 PubMed
Zurück zum Zitat López-Larraz E, Montesano L, Gil-Agudo A et al (2015) Evolution of EEG motor rhythms after spinal cord injury: a longitudinal study. PLoS ONE 10:e0131759CrossRefPubMedPubMedCentral López-Larraz E, Montesano L, Gil-Agudo A et al (2015) Evolution of EEG motor rhythms after spinal cord injury: a longitudinal study. PLoS ONE 10:e0131759CrossRefPubMedPubMedCentral
Zurück zum Zitat Mangun GR, Buonocore MH, Girelli M, Jha AP (1998) ERP and fMRI measures of visual spatial selective attention. Hum Brain Mapp 6:383–389CrossRefPubMed Mangun GR, Buonocore MH, Girelli M, Jha AP (1998) ERP and fMRI measures of visual spatial selective attention. Hum Brain Mapp 6:383–389CrossRefPubMed
Zurück zum Zitat Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25CrossRefPubMed Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25CrossRefPubMed
Zurück zum Zitat Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12PubMed Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12PubMed
Zurück zum Zitat Pilgramm S, de Haas B, Helm F et al (2016) Motor imagery of hand actions: decoding the content of motor imagery from brain activity in frontal and parietal motor areas. Hum Brain Mapp 37:81–93CrossRefPubMed Pilgramm S, de Haas B, Helm F et al (2016) Motor imagery of hand actions: decoding the content of motor imagery from brain activity in frontal and parietal motor areas. Hum Brain Mapp 37:81–93CrossRefPubMed
Zurück zum Zitat Sirigu A, Duhamel JR, Cohen L et al (1996) The mental representation of hand movements after parietal cortex damage. Science 273:1564–1568CrossRefPubMed Sirigu A, Duhamel JR, Cohen L et al (1996) The mental representation of hand movements after parietal cortex damage. Science 273:1564–1568CrossRefPubMed
Zurück zum Zitat Tomberg C, Caramia MD (1991) Prime mover muscle in finger lift or finger flexion reaction times: identification with transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 81:319–322CrossRefPubMed Tomberg C, Caramia MD (1991) Prime mover muscle in finger lift or finger flexion reaction times: identification with transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 81:319–322CrossRefPubMed
Metadaten
Titel
Separating the Idea from the Action: A sLORETA Study
verfasst von
Martin Rakusa
Pierpaolo Busan
Piero Paolo Battaglini
Janez Zidar
Publikationsdatum
14.08.2017
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 2/2018
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-017-0584-9

Weitere Artikel der Ausgabe 2/2018

Brain Topography 2/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.