Skip to main content
Erschienen in: BMC Infectious Diseases 1/2020

Open Access 01.12.2020 | Research article

Seroprevalence of Brucella infection and associated factors among pregnant women receiving antenatal care around human, wildlife and livestock interface in Ngorongoro ecosystem, Northern Tanzania. A cross-sectional study

verfasst von: Robert Makala, Mtebe V. Majigo, George M. Bwire, Upendo Kibwana, Mariam M. Mirambo, Agricola Joachim

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2020

Abstract

Background

Brucellosis is a zoonotic disease transmitted to humans through contact with infected animals, animal products or consumption of infected dairy products. Brucella infection during pregnancy is of special interest due to association with adverse pregnancy outcomes. This study determined the seroprevalence and factors associated with Brucella infection among pregnant women around the human-wildlife-livestock interface area in Ngorongoro ecosystem, Northern Tanzania.

Methods

A facility-based cross-sectional study was conducted between May and June 2018 at six health facilities that provide antenatal services. Pregnant women receiving antenatal care were invited to participate. A structured questionnaire was used to collect socio-demographic and obstetric characteristics in addition to behavior and practices related to the occurrence of human brucellosis. The presence of serum immunoglobulin against Brucella was determined using Rose Bengal Plate Test (RBPT). The positive samples were further assayed for the presence of IgG and IgM using The enzyme-linkedimmunosorbent assay. Bivariate analysis was conducted to determine the variables associated with Brucella seropositivity. Multivariable logistic regression analysis was performed to examine the factors independently associations with Brucella seropositivity after adjustment for other explanatory variables.

Results

A total of 313 participants were enrolled in the study. The overall seroprevalence of Brucella infection was 10.9% (34/313) determined by Rose Bengal plate test. Of 34 positive individuals, 27(79.4%) and 8(23.5%) were positive in the ELISA specific for IgG and IgM Brucella antibodies respectively. Regular contact with manure (AOR 3.16, 95%CI 1.27–7.83) and preference for animal fresh milk (AOR 3.80, 95% CI 1.23–11.69), raw meat (AOR 2.58, 95% CI 1.14–5.81) and raw animal blood (AOR 2.71, 95% CI 1.15–6.35) increased the odds of being Brucella seropositive. Contact with the animal placenta were not associated with Brucella seropositivity after adjustment.

Conclusion

This study has found that brucellosis is an important public health problem among pregnant women in areas with interactions of humans; livestock and wildlife. The risk of infection increased with the regular contact with manure and preference of raw foodstuffs like animal blood, meat, and milk. We emphasize the need for interventional strategies to reduce the risk of exposure.
Hinweise
Robert Makala and Mtebe V. Majigo contributed equally to this work.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12879-020-4873-7.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ELISA
Enzyme-linked immunosorbent assay
IgG
Immunoglobulin G
IgM
Immunoglobulin M
MUHAS
Muhimbili University of Health and Allied Sciences
RBPT
Rose Bengal plate test

Background

Brucellosis is one of the neglected zoonotic diseases, acquired through contact with infected animals, consumption of infected dairy products, or inhalation of aerosols [1, 2]. Wildlife animals near human and domestic animal may act as reservoirs to both [3]. Veterinarians, livestock farmers, milkers, abattoir workers and laboratory workers are occupations at high risk of getting Brucella infection [4, 5]. Exposure of wildlife animals to Brucella abortus in the Ngorongoro ecosystem has reached 24 and 17% for buffalo and wildebeest populations respectively [6]. The prevalence of brucellosis in domestic ruminants free-range grazing system in Ngorongoro conservation was found to range from 3 to 14.28% in different animals [7].
The community health significance of Brucella infection in humans is a severely devastating disease that requires prolonged treatment and may end with disabling results [8]. The major challenge is the similarity of clinical presentation to other febrile illnesses such as malaria and typhoid fever. Consequently, under-reporting and mismanagement may be common in areas with limited laboratory diagnosis [9, 10]. Infection in pregnancy is of major public concerns as it associate with several detrimental pregnancy outcomes like spontaneous abortion, preterm delivery, and fetal death [1, 2, 4, 8]. The risk of low birth weight has been demonstrated to be higher in pregnant women infected with Brucella [8]. The major burden of brucellosis is mostly seen in poor individuals living in close contact with animals and having poor access to health care service [11].
Previous studies conducted in Tanzania have reported up to 13% prevalence of brucellosis in the area of pastoral and agro-pastoral communities [11, 12]. However, there is limited published data regarding Brucella infections among pregnant women in Tanzania, especially in the area of interactions of humans, livestock and wildlife. This limited information highlights the need to determine the seroprevalence of Brucella infection and associated modifiable factors among pregnant women. The information generated from this study may be of help for policy and interventional strategies. Ngorongoro was selected as the study area based on the presence of high interactions among the human-animal-wildlife interface which could play a role in the maintenance of the disease.

Methods

Study design and setting

This was a facility-based cross-sectional study conducted between May and June 2018 in Ngorongoro District, Arusha region of Northern Tanzania. The district plays host to parts of the wildebeest migration at the same time cattle, goat and sheep rearing is a common practice. The population of the Ngorongoro District is around 130,000 and the major ethnic groups are the Masai and Sonjo.
The Ngorongoro District has 20 public health facilities including 14 dispensaries, four health centres, and two hospitals. Each of the two hospital records between 25 and 40 new antenatal clinic attendances per week. The study involved six health facilities that provide antenatal services including: Wasso designated district hospital, Sakala and Loliondo health centers as well as Muholo, Sale, and Samunge dispensaries.

Study population, sample size, and sampling procedure

Pregnant women attending the antenatal clinic at selected health facilities were invited to participate in the study. The study enrolled pregnant women who lived in the study area for more than 3 months and accepting to participate by signing written informed consent were enrolled. The sample size was estimated using Kish Leslie formula [13], at 95% confidence interval (CI) considering 7.7% seroprevalence of Brucella infection in Arusha Tanzania [12] and a 3% margin of error. Eligible clients were consecutively enrolled in the study until reaching a representative sample size.

Data collection

A structured questionnaire (Additional file 1) was used to collect the required information from each participant. Data for socio-demographic and obstetric characteristics included: age, marital status, education level, occupation, location, gestation age, gravidity, parity and history of spontaneous abortion. Factors with potential risk for Brucella transmission related to animal care, animal product consumption and presence or absence of exposure at the individual level were also collected. The questionnaire included contact with animals and animal products, involvement in milking, sharing water sources with animals, assisting animals to give birth or drink animal fresh milk.

Study variables

The dependent variable was Brucella serostatus as defined using the Rose Bengal Plate Test result and independent variables were behavior and practices with potential risk for Brucella infection. Regular contact with animal manure was defined as unprotected exposure to manure at least once in every week in the past 3 months. Participants were counted to contact the placenta if assisted animals giving birth at least once in the past 3 months. Washing animals at home was counted when performed at least once every week for 3 months. Preference of foodstuffs like animal fresh milk, raw animal blood, and raw meat was defined as consumption of the same at least once every week in the past 3 months.

Specimen collection

Experienced health personnel working at the facilities collected 4 ml of venous blood aseptically using a plain vacutainer system. The collected specimens were labelled with the specific participant’s identification number. Serum samples were separated from whole blood by centrifugation at 3000 rpm for 5 min. The specimens were kept at room temperature for 30 min then at 2–8 °C up to 24 h before processing.

Laboratory procedure

Rose Bengal plate test

The Brucella serology was first determined by Rose Bengal Plate Test (RBPT) a rapid agglutination test as previously described [14]. The test does not differentiate antibodies against different Brucella species like Brucella abortus and Brucella melitensis. Briefly, a drop of serum (50 μl) was taken using a clean micro-pipette onto the test plate beside an equal (50 μl) drop of RBPT antigen. The drops of serum and antigen were mixed using applicator stick then rocked manually for 4 min before examination. The presence of any visible reaction was considered to be positive [15].

Enzyme-linked Immunosorbent assay

Positive samples were kept at minus 20 °C before transportation to the reference laboratory in Dar es Salaam for the detection of Immunoglobulin M and G antibodies. The commercially available test kits of enzyme-linked immunosorbent assay (ELISA), SERION ELISA classic Brucella IgG/IgM/IgA (Institut Virion/Serion GmbH) was used to detect IgM and IgG antibodies. The technique was performed according to the instructions from the manufacturer. In brief, 100 ml of diluted serum samples and ready to use control were added to the micro test wells containing antigen. The assays were then incubated at 37 °C for 60 min, after which the first wash was performed. Later, anti-human IgM or IgG conjugated with an enzyme was added and incubated for 30 min at 37 °C. All wells were washed to remove excess conjugate, followed by a new incubation for 30 min at 37 °C with the enzyme-substrate. Finally, the reaction was stopped by adding 100 ml of stopping solution. The enzyme reaction with the Substrate yields a coloured product. The colour intensity is proportional to the amount of specific antibody and can be measured by the photometric method.

Data analysis

Categorical variables were summarized as frequencies and proportions while continuous variables were summarized as median and inter-quartile range (IQR). Group differences were examined using Pearson’s Chi-square test. Bivariate analysis was conducted to determine the variables associated with Brucella seropositivity and crude odds ratio (cOR) with 95% CI. Multivariable logistic regression was performed to examine the associations between the outcome variable and independent variables after adjustment for other variables as fixed effect and the cluster variable facility as random effect. Likelihood ratio tests (LRT) was used to simplify the final multivariable model so that only variables that are significantly associated with the outcome are retained in the final model. Associations in the multivariable logistic models were presented as adjusted odds ratios (AOR) with 95% CI. Interactions between independent variables were examined, and the Wald test was used to test the associations of the variables and interactions. The Hosmer-Lemeshow test was used to examine the overall fitness of the model. Statistical Package for Social Sciences version 23 was used for all data analyses. The level of significance was specified at 0.05.

Results

Characteristics of participants and seropositivity of Brucella infection

A total of 313 participants were enrolled in the study, the median age was 25 years, interquartile range 20–30 years. The majority 299 (95.5%) were Agro-pastoralists, 150 (47.9%) had no formal education, 288 (92.0%) were married, and 201(64.2%) had ≤28 weeks of gestation. Out of 237 with prior pregnancies, 35 (14.8%) reported a history of spontaneous abortion.
All participants were screened for antibodies against y Brucella using a rapid RBPT test. Out of 313 participants, 34(10.9% [7.9–14.8]) were seropositive. Of 34 seropositive individuals, 27(79.4%) and 8(23.5%) were positive in the ELISA specific for IgG and IgM antibodies respectively. Based on the detection of IgM antibodies, 2.6% (8/313) of participants were deemed to have had recent Brucella infection. The seropositivity observed for demographic (age, occupation, education level, marital status) and obstetric characteristics (gestation age, number of pregnancies, history of spontaneous abortion) were not significantly different (p > 0.05) (Table 1).
Table 1
Descriptive characteristic of participants and Brucella seropositivity based on rapid RBPT
Variable
Frequency
Seropositivity N (%)
P-Value*
Overall-seropositivity
313
34 (10.9)
 
Age group (years)
 ≤ 25
160
16(10.0)
0.616
 > 25
153
18(11.8)
 
Occupation
 Agro-pastoralist
299
31(10.4)
0.194
 Formal employment
14
3(21.4)
 
Level of education
 Informal
150
11(7.3)
0.054
 Primary
98
11(11.2)
 
 Secondary and above
65
12 (18.5)
 
Marital status
 Single
25
4 (16.0)
0.389
 Married
288
30 (10.4)
 
Gestation age (weeks)
 ≤ 28
201
24 (11. 9)
0.412
 > 28
112
10 (8.9)
 
Previous pregnancy
 0
76
8(10.5)
 
 1
76
9(11.8)
 
 2
58
3 (5.2)
0.421
 3+
103
14(13.6)
 
Spontaneous abortion (n = 237)
 No
202
20(9.9)
0.206
 Yes
35
6(17.1)
 
*P value according to Pearson Chi-Square test

Behavior and practice associated with Brucella infection

Several factors with the potential risk of brucellosis among humans were assessed and reported in Table 2. Participants who reported to have been exposed to the assessed potential risk factors; had more seropositive cases of Brucella except for those reported washing animals at home. At bivariate analysis, regular contact with animal manure increased the probability of Brucella seropositivity (cOR 2.7, 95%CI 1.12–6.33). Contact with animal placenta through assisting of parturition had higher odds of being seropositive (cOR 3.1, 95%CI 1.18–8.37). Preference for animal fresh milk, raw meat, and raw animal blood, were significantly associated with seropositivity to Brucella (p < 0.05). The odds of being seropositive among those prefer animal fresh milk, raw meat and raw animal blood ranged from 2.1 to 3.1 (Table 2). Washing animal at home (p = 0.4) and Sharing water source with the animal (p = 0.82) were not associated with seropositivity to Brucella.
Table 2
Bivariate analysis of factors associated with Brucella seropositive
Variable
Frequency
Seropositive N (%)
cOR
95%CI
P-value
Regular contact with manure
 Yes
192
27 (14.0)
2.7
(1.12–6.33)
0.022
 No
121
7 (5.8)
1
  
Contact with animal placenta
 Yes
210
29 (13.8)
3.1
(1.18–8.37)
0.017
 No
103
5 (4.9)
1
  
Washing animal at home
 Yes
201
20 (10.0)
0.8
(0.37–1.59)
0.487
 No
112
14 (12.5)
1
  
Preference for fresh milk
 Yes
229
30 (13.1)
3.0
(1.03–8.83)
0.036
 No
84
4 (4.8)
1
  
Preference for raw meat
 Yes
76
13(17.1)
2.1
(1.01–4.48)
0.044
 No
237
21(8.9)
1
  
Preference for raw animal blood
 Yes
174
26 (14.9)
2.9
(1.26–6.57)
0.009
 No
139
8 (5.8)
1
  
Sharing water source with animal
 Yes
160
18 (11.3)
1.1
(0.53–2.21)
0.822
 No
153
16 (10.5)
1
  
Key: cOR Crude odds ratio, CI Confidence Interval, P-value according to Pearson Chi-Square test
Table 3 shows the result of final model of multivariable regression analysis performed to measure the relationship between Brucella seropositivity and independent variables. Variables that showed significant association (p < 0.05) in the bivariate analysis were included. Variables with significant LRT were retained in the final multivariable model. The multivariate logistic regression analysis revealed that regular contact with manure, preference for raw animal blood, preference for raw meat, and preference for animal fresh milk remained a risk factor for Brucella seropositivity (Table 3). Contact with placenta was not significantly associated with Brucella seropositivity after adjustment for other factors (AOR 1.99, 95% CI 0.64–6.28.1, p = 0.219).
Table 3
Multivariable analysis of factors associated with the RBPT seropositivity of participants
Variable (*P-value)
Seropositive N (%)
AOR
95% CI
**P value
Regular contact with manure (p = 0.007)
 Yes
27 (14.0)
3.16
1.27–7.83
0.013
 No
7 (5.8)
1
  
Preference of raw milk (p = 0.008)
 Yes
30 (13.1)
3.80
1.23–11.69
0.020
 No
4 (4.8)
1
  
Preference of raw meat (p = 0.025)
 Yes
26 (14.9)
2.58
1.14–5.81
0.022
 No
8 (5.8)
1
  
Raw blood consumption (p = 0.016)
 Yes
26 (14.9)
2.71
1.15–6.35
0.022
 No
8 (5.8)
1
  
Key: AOR Adjusted odds ratio, CI Confidence interval * P-value according to Likelihood Ratio Tests, **P-value according to wald test
The significance of odds ratio at 5% level for all variables in the multivariable model did not change after including facility variable to adjust for cluster random effect. Potential interactions between contact with manure and contact with placenta as well as, preference for raw meat and preference for raw animal blood on the outcome of Brucella seropositivity were found not significant. Based on these observations the interaction terms were drooped in the final model. The Hosmer-Lemeshow test result was p = 0.438 which indicated the fitness of the overall model.

Discussion

The current study has demonstrated a higher (10.9%, [7.9–14.8]) seropositive of Brucella in pregnant women compared to the previous reports in the general population of the same geographical location [12, 16]. Besides, the study has revealed nearly 3% of pregnant women with immunologic evidence of recent Brucella infection based on IgM ELISA. The level of seropositive found among pregnant women in the Ngorongoro District suggests that Brucella infection is a public health problem. Our finding is higher compared to a previous report from Pakistan (5.8%) among pregnant women [4] but comparable to report from Nepal (11.25%) among pregnant women [17]. Besides, our study finding is lower compared to a report from Uganda (17%) in agro-pastoral communities [18] and 25% among women with abortion in Rwanda [2].
The community where the present study was conducted comprised around 95% agro-pastoralists. In most of the agro-pastoralist communities, women do most of the work associated with care and harvest of livestock products. They actively engage in barn cleaning, herding small ruminants, milking and preparing manure dung [19]. The seroprevalence found in the studied population can be explained by increased risk of exposure due to their routine activities [5]. Brucellosis being an endemic disease in humans and animals [11, 20] and the proximity of population to livestock-wildlife can also contribute to high seroprevalence observed.
The higher seropositivity of Brucella infection among pregnant women showed by this study could be attributed in part due to the preference for raw foodstuffs like fresh milk, raw meat, and raw animal blood. Eating habits may expose an individual to Brucella infection if the consumed products from infected livestock are not properly prepared [12, 18, 21, 22]. A substantial number of participants in the current study reported a preference for animal fresh milk (73.2%), preference for raw meat (24.3%) and preference for raw animal blood (55.6%). The habits of consumption of raw foodstuff were the risk factors independently associated with Brucella infection among pregnant women in Ngorongoro District. Our findings are in agreement with the previous study conducted in Tanzania which reported food preferences and eating behavior to play major roles in Brucella infection in pastoral and agro-pastoral communities [5, 12]. Other studies in Africa also reported similar predictors for transmission of brucellosis, although the main predictors vary depending on customs and taboos of referred community [23, 24].
Regular contact with animal manure and contact with the placenta had increased odds of being seropositive for Brucella infection in the bivariate analysis model. However, contact with animal placenta was not associated with Brucella seropositivity in the multivariable logistic regression model. Some studies also reported direct contact with livestock excreta as a potential route of exposure to Brucella infection [12, 23]. Similarly, contact with animal placenta has been reported associated with brucellosis [2528]. It is also documented that Brucella spp. from infected animals are found in animal excreta which serve as sources of humans infections [29]. There was no evidence from the analysis to explain the lack of independent association of Brucella infection with exposure to animal placenta. The potential interaction with other variables was not supported by the multivariable logistic regression model.
The study relied heavily upon self-reported information which is open to information bias, clustering of events and failure to recall. Participants could have missed out on some possible factors associated with the occurrence of brucellosis. Reporting error for some measures was reduced by asking participants to recall only events in the last 3 months. Despite the limitations encountered, this study has demonstrated some important factors associated with transmission of Brucella to humans in the Ngorongoro ecosystem. Our findings serve as considerable baseline data for prevention and control of the disease and associated adverse effect in pregnancy.

Conclusion

This study has found that brucellosis is an important public health problem among pregnant women in the area with interactions of humans; livestock and wildlife. The risk of infection increased with the preference of raw foodstuffs like animal blood, meat, and milk. These findings emphasize the need for interventional strategies to reduce the risk of exposure and improve early detection of infection in pregnant women.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12879-020-4873-7.

Acknowledgments

We are grateful to all pregnant women who participated in the study. We thank laboratory personnel at Wasso hospital and Central Veterinary Laboratory for technical support. Our sincere gratitude also goes to health workers at Wasso hospital for cooperation and assistance in recruitment and specimen collection.
The ethical approval was obtained from the Senate Research and Publication Committee, the Institutional Review Board of Muhimbili University of Health and Allied Sciences (MUHAS). Permission to conduct the study was obtained from the District Director and hospital authorities where the study was conducted. Written informed consent was obtained from all patients before being enrolled in the study.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge
Literatur
1.
Zurück zum Zitat Kurdoglu M, Adali E, Kurdoglu Z, Karahocagil MK, Kolusari A, Yildizhan R, Kucukaydin Z, Sahin HG, Kamaci M, Akdeniz H. Brucellosis in pregnancy: a 6-year clinical analysis. Arch Gynecol Obstet. 2009;281(2):201–6.CrossRef Kurdoglu M, Adali E, Kurdoglu Z, Karahocagil MK, Kolusari A, Yildizhan R, Kucukaydin Z, Sahin HG, Kamaci M, Akdeniz H. Brucellosis in pregnancy: a 6-year clinical analysis. Arch Gynecol Obstet. 2009;281(2):201–6.CrossRef
2.
Zurück zum Zitat Rujeni N, Mbanzamihigo L. Prevalence of brucellosis among women presenting with abortion/stillbirth in Huye, Rwanda. J Trop Med. 2014;2014:740479.CrossRef Rujeni N, Mbanzamihigo L. Prevalence of brucellosis among women presenting with abortion/stillbirth in Huye, Rwanda. J Trop Med. 2014;2014:740479.CrossRef
3.
Zurück zum Zitat Godfroid J, Scholz HC, Barbier T, Nicolas C, Wattiau P, Fretin D, Whatmore AM, Cloeckaert A, Blasco JM, Moriyon I, et al. Brucellosis at the animal/ecosystem/human interface at the beginning of the 21st century. Prev Vet Med. 2011;102(2):118–31.CrossRef Godfroid J, Scholz HC, Barbier T, Nicolas C, Wattiau P, Fretin D, Whatmore AM, Cloeckaert A, Blasco JM, Moriyon I, et al. Brucellosis at the animal/ecosystem/human interface at the beginning of the 21st century. Prev Vet Med. 2011;102(2):118–31.CrossRef
4.
Zurück zum Zitat Ali S, Akhter S, Neubauer H, Scherag A, Kesselmeier M, Melzer F, Khan I, El-Adawy H, Azam A, Qadeer S, et al. Brucellosis in pregnant women from Pakistan: an observational study. BMC Infect Dis. 2016;16:468.CrossRef Ali S, Akhter S, Neubauer H, Scherag A, Kesselmeier M, Melzer F, Khan I, El-Adawy H, Azam A, Qadeer S, et al. Brucellosis in pregnant women from Pakistan: an observational study. BMC Infect Dis. 2016;16:468.CrossRef
5.
Zurück zum Zitat Swai ES, Schoonman L. Human brucellosis: seroprevalence and risk factors related to high risk occupational groups in Tanga municipality, Tanzania. Zoonoses Public Health. 2009;56(4):183–7.CrossRef Swai ES, Schoonman L. Human brucellosis: seroprevalence and risk factors related to high risk occupational groups in Tanga municipality, Tanzania. Zoonoses Public Health. 2009;56(4):183–7.CrossRef
6.
Zurück zum Zitat Fyumagwa R, Wambura P, Mellau L, Hoare R. Seroprevalence of Brucella abortus in buffaloes and wildebeests in the Serengeti ecosystem: a threat to humans and domestic ruminants. Tanzania Vet J. 2009;26(2):62–7. Fyumagwa R, Wambura P, Mellau L, Hoare R. Seroprevalence of Brucella abortus in buffaloes and wildebeests in the Serengeti ecosystem: a threat to humans and domestic ruminants. Tanzania Vet J. 2009;26(2):62–7.
7.
Zurück zum Zitat Mellau L, Kuya S, Wambura P. Seroprevalence of brucellosis in domestic ruminants in livestock-wildlife interface: a case study of Ngorongoro conservation area, Arusha, Tanzania. Tanzania Vet J. 2009;26(1):44–50.CrossRef Mellau L, Kuya S, Wambura P. Seroprevalence of brucellosis in domestic ruminants in livestock-wildlife interface: a case study of Ngorongoro conservation area, Arusha, Tanzania. Tanzania Vet J. 2009;26(1):44–50.CrossRef
8.
Zurück zum Zitat Vilchez G, Espinoza M, D’Onadio G, Saona P, Gotuzzo E. Brucellosis in pregnancy: clinical aspects and obstetric outcomes. Int J Infect Dis. 2015;38:95–100.CrossRef Vilchez G, Espinoza M, D’Onadio G, Saona P, Gotuzzo E. Brucellosis in pregnancy: clinical aspects and obstetric outcomes. Int J Infect Dis. 2015;38:95–100.CrossRef
9.
Zurück zum Zitat Bosilkovski M, Dimzova M, Grozdanovski K. Natural history of brucellosis in an endemic region in different time periods. Acta Clin Croat. 2009;48(1):41–6.PubMed Bosilkovski M, Dimzova M, Grozdanovski K. Natural history of brucellosis in an endemic region in different time periods. Acta Clin Croat. 2009;48(1):41–6.PubMed
10.
Zurück zum Zitat Memish ZA, Balkhy HH. Brucellosis and international travel. J Travel Med. 2004;11(1):49–55.CrossRef Memish ZA, Balkhy HH. Brucellosis and international travel. J Travel Med. 2004;11(1):49–55.CrossRef
11.
Zurück zum Zitat Kunda J, Fitzpatrick J, Kazwala R, French NP, Shirima G, Macmillan A, Kambarage D, Bronsvoort M, Cleaveland S. Health-seeking behaviour of human brucellosis cases in rural Tanzania. BMC Public Health. 2007;7:315.CrossRef Kunda J, Fitzpatrick J, Kazwala R, French NP, Shirima G, Macmillan A, Kambarage D, Bronsvoort M, Cleaveland S. Health-seeking behaviour of human brucellosis cases in rural Tanzania. BMC Public Health. 2007;7:315.CrossRef
12.
Zurück zum Zitat John K, Fitzpatrick J, French N, Kazwala R, Kambarage D, Mfinanga GS, MacMillan A, Cleaveland S. Quantifying risk factors for human brucellosis in rural northern Tanzania. PLoS One. 2010;5(4):e9968.CrossRef John K, Fitzpatrick J, French N, Kazwala R, Kambarage D, Mfinanga GS, MacMillan A, Cleaveland S. Quantifying risk factors for human brucellosis in rural northern Tanzania. PLoS One. 2010;5(4):e9968.CrossRef
13.
Zurück zum Zitat Israel GD. Determining sample size; 1992. Israel GD. Determining sample size; 1992.
14.
Zurück zum Zitat Ruiz-Mesa JD, Sanchez-Gonzalez J, Reguera JM, Martin L, Lopez-Palmero S, Colmenero JD. Rose Bengal test: diagnostic yield and use for the rapid diagnosis of human brucellosis in emergency departments in endemic areas. Clin Microbiol Infect. 2005;11(3):221–5.CrossRef Ruiz-Mesa JD, Sanchez-Gonzalez J, Reguera JM, Martin L, Lopez-Palmero S, Colmenero JD. Rose Bengal test: diagnostic yield and use for the rapid diagnosis of human brucellosis in emergency departments in endemic areas. Clin Microbiol Infect. 2005;11(3):221–5.CrossRef
16.
Zurück zum Zitat Shirima GM, Kunda JS. Prevalence of brucellosis in the human, livestock and wildlife interface areas of Serengeti National Park, Tanzania. Onderstepoort J Vet Res. 2016;83(1):a1032.CrossRef Shirima GM, Kunda JS. Prevalence of brucellosis in the human, livestock and wildlife interface areas of Serengeti National Park, Tanzania. Onderstepoort J Vet Res. 2016;83(1):a1032.CrossRef
17.
Zurück zum Zitat Thapa SMM. Sero prevalence of brucellosis in pregnant women visiting Gynaecology Department of Kathmandu Model Hospital, Kathmandu, Nepal. Natl J Health Sci. 2018;9(3):16–9.CrossRef Thapa SMM. Sero prevalence of brucellosis in pregnant women visiting Gynaecology Department of Kathmandu Model Hospital, Kathmandu, Nepal. Natl J Health Sci. 2018;9(3):16–9.CrossRef
18.
Zurück zum Zitat Tumwine G, Matovu E, Kabasa JD, Owiny DO, Majalija S. Human brucellosis: sero-prevalence and associated risk factors in agro-pastoral communities of Kiboga District, Central Uganda. BMC Public Health. 2015;15:900.CrossRef Tumwine G, Matovu E, Kabasa JD, Owiny DO, Majalija S. Human brucellosis: sero-prevalence and associated risk factors in agro-pastoral communities of Kiboga District, Central Uganda. BMC Public Health. 2015;15:900.CrossRef
19.
Zurück zum Zitat Nigussie A, Hoag D, Alemu T. Women’s workload and role in livestock production in pastoral and agro-pastoral communities of Ethiopia: the case of Afar. African J Agric Econ Rural Dev. 2014;2(4):138–46. Nigussie A, Hoag D, Alemu T. Women’s workload and role in livestock production in pastoral and agro-pastoral communities of Ethiopia: the case of Afar. African J Agric Econ Rural Dev. 2014;2(4):138–46.
20.
Zurück zum Zitat Assenga JA, Matemba LE, Muller SK, Malakalinga JJ, Kazwala RR. Epidemiology of Brucella infection in the human, livestock and wildlife interface in the Katavi-Rukwa ecosystem, Tanzania. BMC Vet Res. 2015;11:189.CrossRef Assenga JA, Matemba LE, Muller SK, Malakalinga JJ, Kazwala RR. Epidemiology of Brucella infection in the human, livestock and wildlife interface in the Katavi-Rukwa ecosystem, Tanzania. BMC Vet Res. 2015;11:189.CrossRef
21.
Zurück zum Zitat Hambolu D, Freeman J, Taddese HB. Predictors of bovine TB risk behaviour amongst meat handlers in Nigeria: a cross-sectional study guided by the health belief model. PLoS One. 2013;8(2):e56091.CrossRef Hambolu D, Freeman J, Taddese HB. Predictors of bovine TB risk behaviour amongst meat handlers in Nigeria: a cross-sectional study guided by the health belief model. PLoS One. 2013;8(2):e56091.CrossRef
22.
Zurück zum Zitat Pappas G, Akritidis N, Bosilkovski M, Tsianos E. Brucellosis. N Engl J Med. 2005;352(22):2325–36.CrossRef Pappas G, Akritidis N, Bosilkovski M, Tsianos E. Brucellosis. N Engl J Med. 2005;352(22):2325–36.CrossRef
23.
Zurück zum Zitat Genene RDM, Yamuah L, Hiwot T, Teshome G, Asfawesen G, Abraham A, Abdoel TH, Smits HL. Human brucellosis in traditional pastoral communities in Ethiopia. Int J Trop Med. 2009;4(2):59–64. Genene RDM, Yamuah L, Hiwot T, Teshome G, Asfawesen G, Abraham A, Abdoel TH, Smits HL. Human brucellosis in traditional pastoral communities in Ethiopia. Int J Trop Med. 2009;4(2):59–64.
24.
Zurück zum Zitat Adesokan HK, Alabi PI, Ogundipe MA. Prevalence and predictors of risk factors for Brucellosis transmission by meat handlers and traditional healers’ risk practices in Ibadan, Nigeria. J Prev Med Hyg. 2016;57(3):E164–71.PubMedPubMedCentral Adesokan HK, Alabi PI, Ogundipe MA. Prevalence and predictors of risk factors for Brucellosis transmission by meat handlers and traditional healers’ risk practices in Ibadan, Nigeria. J Prev Med Hyg. 2016;57(3):E164–71.PubMedPubMedCentral
25.
Zurück zum Zitat Bikas C, Jelastopulu E, Leotsinidis M, Kondakis X. Epidemiology of human brucellosis in a rural area of North-Western Peloponnese in Greece. Eur J Epidemiol. 2003;18(3):267–74.CrossRef Bikas C, Jelastopulu E, Leotsinidis M, Kondakis X. Epidemiology of human brucellosis in a rural area of North-Western Peloponnese in Greece. Eur J Epidemiol. 2003;18(3):267–74.CrossRef
26.
Zurück zum Zitat Cooper CW. Risk factors in transmission of brucellosis from animals to humans in Saudi Arabia. Trans R Soc Trop Med Hyg. 1992;86(2):206–9.CrossRef Cooper CW. Risk factors in transmission of brucellosis from animals to humans in Saudi Arabia. Trans R Soc Trop Med Hyg. 1992;86(2):206–9.CrossRef
27.
Zurück zum Zitat Schelling E, Diguimbaye C, Daoud S, Nicolet J, Boerlin P, Tanner M, Zinsstag J. Brucellosis and Q-fever seroprevalences of nomadic pastoralists and their livestock in Chad. Prev Vet Med. 2003;61(4):279–93.CrossRef Schelling E, Diguimbaye C, Daoud S, Nicolet J, Boerlin P, Tanner M, Zinsstag J. Brucellosis and Q-fever seroprevalences of nomadic pastoralists and their livestock in Chad. Prev Vet Med. 2003;61(4):279–93.CrossRef
28.
Zurück zum Zitat Lim HS, Min YS. Lee HS: [investigation of a series of brucellosis cases in Gyeongsangbuk-do during 2003-2004]. J Prev Med Public Health. 2005;38(4):482–8.PubMed Lim HS, Min YS. Lee HS: [investigation of a series of brucellosis cases in Gyeongsangbuk-do during 2003-2004]. J Prev Med Public Health. 2005;38(4):482–8.PubMed
29.
Metadaten
Titel
Seroprevalence of Brucella infection and associated factors among pregnant women receiving antenatal care around human, wildlife and livestock interface in Ngorongoro ecosystem, Northern Tanzania. A cross-sectional study
verfasst von
Robert Makala
Mtebe V. Majigo
George M. Bwire
Upendo Kibwana
Mariam M. Mirambo
Agricola Joachim
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2020
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-4873-7

Weitere Artikel der Ausgabe 1/2020

BMC Infectious Diseases 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.